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Abstract
The influence of geometric errors on the accuracy of machine tools tends to attract more attention to the increasing demand
for high-precision machining. In this paper, geometric error modeling and sensitivity analysis are employed to quantify the
importance of geometric error for a new efficient and automatic 6-axis welding equipment. The geometric error model of the
6-axis welding equipment with 36 geometric error components is established based on Lie theory. Based on the geometric
error model, the new sensitivity analysis method, in which the deviation of the welding torch pose is treated as a distance
metric in SE(3), is proposed to evaluate the influences of geometric errors on the accuracy of the welding torch. And the
sensitivity coefficient of each geometric error is derived by considering the basic value of geometric errors. Numerical
simulations of a typical welding trajectory for intersecting pipes are conducted to analyze the sensitivity of geometric errors
by the new method. The simulation results verified the validity of the sensitivity analysis method and the dominant geometric
errors affecting the accuracy of the welding equipment were identified. Compared with the previous sensitivity analysis
method, the proposed sensitivity analysis method considers the orientation error and position error of the welding torch
simultaneously, which is more convenient and effective, and can also be applied in precision design and geometric error
compensation of machine tools.

Keywords Geometric error model · Welding equipment · Sensitivity analysis · Lie theory

1 Introduction

Intersecting pipes welding widely exists in pipeline engi-
neering, steel structure, valve manufacturing, pressure ves-
sel manufacturing, etc. With the development of manufac-
turing, the industry focuses on the dimensional accuracy
and surface finish for improved functioning of the machined
parts. The requirement of welding accuracy for welding
equipment is increasing. Up to the present, the existing
strategies to improve the accuracy of machine tools can be
divided into two categories: precision design and error com-
pensation [1]. The strategy of precision design is to improve
the precision of components at the design stage of a machine
tool. However, the strategy of error compensation tries to

� Xincheng Tian
txch@sdu.edu.cn

1 Center for Robotics, School of Control Science and Engineering,
Shandong University, Jinan 250061, China

2 Engineering Research Center of Intelligent Unmanned
System, Ministry of Education, Jinan 250061, China

improve the machining accuracy by software or assistant
mechanisms without changing the machine tool structure.
Compared with error compensation, the cost and degree of
difficulty are increasing rapidly with the improvement of
machining accuracy by precision design, and the range of
application is limited for existing machine tools, though,
regardless of which approach is employed to improve the
accuracy of a machine tool, geometric error modeling and
identifying vital error components are essential steps to do
first.

The geometric error sources of machine tools can be
mainly classified into four parts: kinematic errors, thermo-
mechanical errors, forces, and control errors [2]. As the
geometric errors existing in machine tools are inevitable,
plenty of researchers focused on geometric error modeling
and error analysis. Lin and Shen [3] proposed the matrix
summation approach to establish the error model of the
five-axis machine tool and broke down the kinematics
equation into six components, which decreases the amount
of computation and makes the five-axis kinematics model
manageable and understandable. Fu et al. [4] established a
geometric error model of a multi-axis machine tool based
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on the product of exponential (POE) theory, and the results
showed the effectiveness and precision of the integrated
model. Chen et al. [5] developed an error model for a four-
axis machine tool, in which the geometric errors of axis
were regarded as a differential motion, and a Spearman
rank correlation method was proposed to identify the key
geometric error parameters which have a large effect on
the tool posture of machine tools. E. Dı́az-Tena et al. [6]
proposed a methodology for evaluating the geometrical
accuracy of a multi-axis machine based on Denavit and
Hartenberg (D-H) method, in which the geometric errors
were introduced as additional geometric parameters in
each elemental transformation matrix. Zhang et al. [7]
focused on system reliability and global sensitivity analyses
of machine tools through the multiplicative dimensional
reduction method (M-DRM), but the results were only
verified in the three-axis vertical milling machine tool
by Monte Carlo simulation method. Cheng [8] employed
multi-body theory to establish a geometric error model of
a 3-axis machine tool and identified the key geometric
error elements by Sobol sensitivity analysis method. Cheng
et al. [9] proposed a method based on the product of
exponential screw theory to obtain the error model of a five-
axis machine tool, then identified the key geometric errors,
which have a greater influence on the machining accuracy,
by global sensitivity analysis based on Morris method. Hong
et al. [10] focused on the error motions of rotary axes on
a five-axis machine tool and discussed the influence of
position-dependent geometric errors of rotary axes on the
machining accuracy of cone frustum machined. Lin and Lee
proposed a systematically mathematical analysis method to
analyze the assembly error of five-axis machine tools based
on form-shaping theory [11]. Fu et al. [12] developed an
integrated geometric error model of a machine tool based
on the differential motion matrix, and the influences of
geometric errors on the accuracy of the tool were calculated
with the error vector of each axis.

The geometric error model of multi-axis machine tools
is carried out by researchers mainly based on the D-H
method [13, 14], or rigid body kinematics method with
different theories [4, 5, 9]. However, Tang et al. [15]
proposed a geometric error modeling method for a multi-
axis system based on the stream of variation (SOV) theory,
in which the axis was treated as a continuous workstation
and the intermediate deviations were evaluated station by
station. Nonetheless, previous studies mainly focused on
conventional machine tools, in which multi-axis welding
equipment is less mentioned, especially a kind of 6-axis
welding equipment, consisting of a five-axis industry robot
and a positioner, which is used in the field of intersecting
pipes welding [16]. Compare with conventional machine

tools for turning, milling, boring, and grinding, the main
geometric error sources of the welding equipment are
kinematic errors and control errors. The geometric error
sensitivity analysis of machine tools is commonly carried
out with probabilistic analyses (e.g., [7, 8, 24]) or direct
analyses (e.g., [14, 17, 20]). However, the insufficiency
of these studies is that the geometric error model of
machine tools is an approximate model. In this paper, a
new method is proposed to analyze the geometric error of
multi-axis machine based on Lie theory, which considers the
orientation and position deviation of the welding torch at the
same time.

The rest of the paper is organized as follows: Section 2
introduces the kinematics of rigid body motion, including
Lie group and Lie algebra theory to describe rigid motion.
In Section 3, the geometric errors of the 6-axis welding
equipment are analyzed, and the geometric error model of
the 6-axis welding equipment is established based on Lie
theory. In Section 4, a new method is proposed to evaluate
the influence of geometric errors by treating the deviation
of the welding torch as a distance metrics in SE(3), and a
new sensitivity coefficient for geometric errors is proposed
by considering the reality. The numerical simulations and
discussion are carried out in Section 5. Conclusions are
given in Section 6.

2 Kinematics of rigid bodymotion based
on Lie theory

The rigid body motion like machine tools or manipulators
can be described by a curve in the group of rigid motions
in three-dimensional Euclidean space. In mathematical
discussion of machine tools or manipulators, the Lie group
SE(3) is bound to play a fundamental role. The element
g ∈ SE(3) can be regarded as a mapping transformation
g : R

3 → R
3 in the form of g(x) = Rx + p, showing

the distance and posture between points [22]. In general, the
homogeneous g ∈ SE(3) can be written as:

g =
[
R p

0 1

]
(1)

where R ∈ SO(3) represents the rotation matrix in R
3,

p ∈ R
3 is the translation vector, SO(3) = {R ∈ R

3×3 :
RRT = I, detR = 1} represents the rotation group of R3.

The Lie algebra of g ∈ SE(3) can be defined as ξ̂ ∈
se(3), and ξ̂ also known as a twist. The matrix form of ξ̂ can
be expressed as:

ξ̂ =
[
ω̂ v

0 0

]
(2)
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where ω ∈ R
3 and ν ∈ R

3, ω̂ ∈ so(3) is a 3 × 3
skew symmetric matrix. so(3) represents the Lie algebra of

SO(3), and if ω = [
ωx ωy ωz

]T
, ω̂ can be written as:

ω̂ =
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (3)

The exponential map can be used to map ξ̂ ∈ se(3) into
the group g ∈ SE(3), which means, one can obtain:

g = exp(ξ̂θ) =
[
R p

0 1

]
(4)

when ω = 0, ξ̂ =
[

0 v

0 0

]
, it represents pure translational

motion of rigid body, then

g = eξ̂θ =
[
I vθ

0 1

]
(5)

when v = 0, ξ̂ =
[
ω̂ 0
0 0

]
, it represents pure rotational

motion of rigid body, then

g = eξ̂θ =
[
eω̂θ 0
0 1

]
(6)

when ω �= 0 and ‖ω‖ = 1,

g = eξ̂θ =
[
eω̂θ (I − eω̂θ )ω × v + ωωT vθ

0 1

]
(7)

The rotational part eω̂θ in Taylor series expansions can be
transformed by the means of triangular progression, then

R = eω̂θ = I + ω̂sinθ + ω̂
2
(1 − cosθ) (8)

The mapping ξ̂ ∈ se(3) �→ ξ = (vT , ωT )
T ∈ R

6 is
isomorphic, where ξ is known as the ray coordinate or twist
coordinate of ξ̂ . In 3-dimensional Euclidean space, the final
transformation matrix of the rigid body moves from point a

to point b can be expressed as:

gab(θ) = eξ̂θgab(0) (9)

where gab(0) represents the initial transformation matrix, ξ̂

represents the unit twist of the motion from a to b, θ ∈ R

represents the rotation angle from a to b when ω �= 0, or the
distance from a to b when ω = 0.

Considering gab(0) ∈ SE(3) and gab(θ) ∈ SE(3), the
Lie algebra of gab(0) and gab(θ) can be defined as ξ̂ab and
ξ̂ ′
ab, respectively. Thus, Eq. 9 can be rewritten as:

ξ ′
ab = Ad(eξ̂θ )ξab (10)

where Ad(eξ̂θ ) is the adjoint transformation associated

with eξ̂θ .

Given g = eξ̂θ =
[
R p

0 1

]
, the adjoint matrix of g is given

as

Ad(g) = Ad(eξ̂θ ) =
[
R p̂R

0 R

]
(11)

For an n degree of freedom (DOF) open-chain manipula-
tor, the forward kinematics can be expressed as:

gST (θ1, θ2, · · · , θn) = eξ̂1θ1eξ̂2θ2 · · · eξ̂nθngST (0) (12)

where gST (0) represents the initial transformation matrix,
θ1, θ2, ... ,θn represent the joint angle variable or prismatic
joint variable of link 1, link 2, ..., link n, respectively.

3 Geometric error modeling of the 6-axis
welding equipment

The 6-axis welding equipment is based on a common main
pipe and consists of a chain robot and positioner, which
is different from the conventional welding equipment. The
chain robot has five DOF, including three translational
axes, i.e., X-axis, Y-axis, and Z-axis, and two postural
axes, U-axis and V-axis, respectively. The U-axis rotates
around X-axis, and V-axis rotates around Y-axis. The one
DOF positioner, B-axis, is used to rotate the main pipe,
which rotates around Y-axis. The kinematics of the 6-axis
welding equipment is shown in Fig. 1, and the reference
coordinate system (RCS) is set at the center axis of the main
pipe, which is coincident with the User Coordinate System
defined in [16]. The welding torch coordinate system (TCS)
is coincident with the RCS in the origin. With different
tools, the 6-axis welding equipment can not only finish
welding but also cut the intersection curve for pipes.

Fig. 1 The kinematics of the 6-axis welding equipment
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3.1 Geometric error modeling of axis

In general, the position and posture of a rigid body
in 3-dimensional space can be described by 3 location
parameters and 3 orientation parameters. Similarly, there are
six error components for a translational axis: the positioning
error, two straightness error motions, roll error motion, and
two tilt error motions, which are called pitch and yaw
error motion for horizontal axis [2]. For the 6-axis welding
equipment, there are 3 translational axes and 3 rotation axes,
and the kinematics model of each axis can be described by
the Lie group.

Usually, when the six error components of X-axis are
ignored, the ideal kinematics model of X-axis can be written
as:

gx(x) = eξ̂xxgx(0) (13)

where ξx = (1, 0, 0, 0, 0, 0)T is the unit twist coordinate of
X-axis, gx(0) is the initial transformation matrix, and x is
the amount of translation that moves along X-axis.

However, the actual kinematics model of X-axis is influ-
enced by various reasons. Geometric error components exist
in each axis. As shown in Fig. 2, the six error components
of X-axis, δx(x) represents the linear error, δy(x) and δz(x)

represent the straightness error in Y-axis and Z-axis direc-
tion, εx(x) represents the roll error, and εy(x) and εz(x)

represent the tilt error around Y-axis and Z-axis, respec-
tively. When the geometric errors of X-axis are treated as
the twist motion. According to [23], the actual kinematics
model of X-axis can be written as:

gx(x) =eξ̂xxeξ̂xδx(x)eξ̂yδy(x)eξ̂zδz(x)

eξ̂cεz(x)eξ̂bεy(x)eξ̂aεx(x)gx(0)
(14)

where ξy = (0, 1, 0, 0, 0, 0)T and ξz = (0, 0, 1, 0, 0, 0)T

are the unit twist coordinate of Y-axis and Z-axis,
respectively. ξb = (0, 0, 0, 0, 1, 0)T is the unit twist

( )z x

( )x x

( )y x

( )z x

( )y x

( )x x

Fig. 2 Error components of X axis

coordinate of B-axis; ξa = (0, 0, 0, 1, 0, 0)T is the unit
twist coordinate of A-axis, which rotates around X-axis;
ξc = (0, 0, 0, 0, 0, 1)T is the unit twist coordinate of C-axis,
which rotates around Z-axis. On account of its complication,
the actual transformation matrix of X-axis is not formulated
in detail here.

The actual kinematics model of X-axis can be regarded as
two parts. One is the ideal translation along X-axis, and the
other is the pose deviation caused by the geometric errors
which can be regarded as a smooth motion in R

3. Thus,
Eq. 14 can be rewritten as:

gx(x) = eξ̂xxeξ̂xegx(0) (15)

where eξ̂xe represents the transformation matrix of error part
and ξxe represents the equivalent twist coordinate of the
pose deviation of X-axis.

For the rotation axis, as shown in Fig. 3, the six error
components of the B-axis. δy(b) represents the axial error
of B-axis, and δx(b) and δz(b) represent the radial error of
B-axis in X direction and Z direction, respectively. εy(b)

represents the angular positioning error, and εx(b) and
εz(b) represent the tilt error around X-axis and Z-axis,
respectively. The ideal kinematics of the B-axis can be
written as:

gb(b) = eξ̂bbgb(0) (16)

In the same way, when considering the geometric errors
of the B-axis, the actual kinematics model of B-axis can be
written as:

gb(b) = eξ̂bbeξ̂begb(0) (17)

where eξ̂be represents the transformation matrix of error part
and ξbe represents the equivalent twist coordinate of the
pose deviation of B-axis.

For the 6-axis welding equipment, there are 36 geometric
error components, which are shown in Table 1. δx , δy ,
and δz represent the location error components, where the

X

Y

Z( )x b

( )y b

( )z b

( )z b

( )x b

( )y b

Fig. 3 Error components of B-axis
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Table 1 Geometric errors of the 6-axis welding equipment

Sequence Axis Error components

number

1 − 6 B δx(b), δy(b), δz(b), εx(b), εy(b), εz(b)

7 − 12 U δx(u), δy(u), δz(u), εx(u), εy(u), εz(u)

13 − 18 V δx(v), δy(v), δz(v), εx(v), εy(v), εz(v)

19 − 24 X δx(x), δy(x), δz(x), εx(x), εy(x), εz(x)

25 − 30 Y δx(y), δy(y), δz(y), εx(y), εy(y), εz(y)

31 − 36 Z δx(z), δy(z), δz(z), εx(z), εy(z), εz(z)

subscript represents the error direction; εx , εy , and εz

represent the angular error components, where the subscript
represents the rotation axis of error; b, u, and v are the
rotation angle of B-axis, U-axis, and V-axis, respectively; x,
y, and z are the translational distances of X-axis, Y-axis, and
Z-axis, respectively.

3.2 Geometric error modeling of the 6-axis welding
equipment

The topological structure of the 6-axis welding equipment
is shown in Fig. 4. The equipment can be considered as an
open kinematic chain from the working table to the welding
torch, and the machine bed can be ignored due to the twist
of the machine bed is zero. Then, the order of the kinematics
model is shown as B → Y → X → Z → V → U .
According to Section 2, the ideal kinematics model of the
6-axis welding equipment can be obtained as:

gi = eξ̂bbeξ̂yyeξ̂xxeξ̂zzeξ̂vveξ̂uug(0) (18)

where ξu = (0, 0, l1, 1, 0, 0)T and ξv =
(0, 0, l1 + l2, 0, 1, 0)T are unit twist coordinates of U-axis
and V-axis, respectively; l1 represents the distance from the
welding torch tip to the center of U-axis, l2 represents the
distance from the center of U-axis to the center of V-axis,
and g(0) = I4×4 is the initial transformational matrix.

Fig. 4 Topological structure of the 6-axis welding equipment

However, the existence of geometric errors in each axis,
affecting the accuracy of the equipment, is inevitable.
When the geometric errors are taken into account, the
actual kinematics model of the 6-axis automatic welding
equipment can be expressed as:

gr =eξ̂bbeξ̂be eξ̂yyeξ̂ye eξ̂xxeξ̂xe

eξ̂zzeξ̂ze eξ̂vveξ̂ve eξ̂uueξ̂ueg(0)
(19)

where ξ̂ye, ξ̂ze, ξ̂ve, and ξ̂ue are the equivalent twist of
the geometric errors existing in Y-axis, Z-axis, V-axis, and
U-axis, respectively.

The difference between the ideal and actual homoge-
neous coordinates of the welding torch tip is the pose error
of the welding torch, which can be defined as ge, then

gr = gi ∗ ge (20)

Thus, the geometric error model of the 6-axis welding
equipment can be expressed as:

ge = g−1
i ∗ gr =

[
Re pe

0 1

]
(21)

where pe represents the position error of the welding torch,
and Re represents the orientation error of the welding torch.
On account of its complication, the actual transformation
matrix is also not formulated in detail here.

4 Sensitivity analysis based on Lie theory

According to the geometric error model, the deviation of
the welding torch pose can be influenced by 36 geometric
error components. Among these, some geometric errors
have a significant impact on the accuracy of the welding
equipment, and some geometric errors have less impact on
the accuracy of the welding equipment. However, it is really
difficult to measure each geometric error and compensate
for all geometric errors. To improve the accuracy of a
machine tool, the essential geometric error components that
affect the accuracy of the tool should be identified first.
Therefore, the sensitivity analysis of geometric errors is
fundamentally essential.

4.1 Evaluation for the influence of geometric errors

As shown in Fig. 5, the deviation of the welding torch,
introduced by the geometric errors, can be regarded as a
smooth motion of the welding torch tip moving from the
actual pose to the ideal pose. Thus, the impact of geometric
errors on the accuracy of the welding torch can be regarded
as the impact of geometric errors on the smooth motion from
the actual pose to the ideal pose. Since no natural length
scale exists for physical space, the effect of geometrical
errors on the welding equipment is complex. However,
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Fig. 5 Deviation of the welding torch

according to [18, 19], the distance metrics of the tool frame
and desired goal frame can be constructed in SE(3) under
the left or right translations. On this basis, the distance
metrics from gi to gr = gi ∗ ge can be calculated. And,
according to the geometric error model, the left invariant
distance metric is suitable for analyzing the sensitivity of
geometric errors. This distance metric of left translations
can be defined as:

d(g1, g2) =
√

c

∥∥∥log(R−1
1 R2)

∥∥∥2 + d‖p2 − p1‖2

where g1 and g2 are elements of SE(3), ‖·‖ denotes the
Euclidean norm, and c and d are scale factors to balance the
position component and orientation component.

Hence, the influence of geometric errors can be evaluated
by the distance metrics from the ideal pose to the actual
pose, and the distance metrics can be written as:

d(gi, gr) = d(gi ∗ g0, gi ∗ ge) = d(g0, ge)

=
√

c ‖logRe‖2 + d ‖pe‖2
(22)

For the 6-axis welding equipment, the deviation between
the ideal welding trajectory and the actual welding
trajectory can be calculated by Eq. 22. Thus, for a complete
machining path, the root mean square error introduced by
geometric errors can be obtained as:

RMSE =
√√√√ 1

m

m∑
i=1

d(g0, ge)2 (23)

where m represents the sample number of the machining
path.

4.2 Sensitivity coefficient of the geometric error

To evaluate the influence of geometric errors on the accu-
racy of a machine tool, the sensitivity coefficient of geo-
metric error is often employed. In general, the sensitivity
coefficient of geometric error can be obtained by prob-
abilistic analyses or direct analyses. For the probabilistic
analysis method, the distribution of geometric error compo-
nents is required, which can be obtained by corresponding
measure methods like [8, 24], or assumed like [7]. How-
ever, the distribution of geometric error components in each
axis is uncertain, especially the rotation axis. The differen-
tial method is used to obtain the sensitivity indices in the
direct analysis, and the results are generally good. How-
ever, to simplify the calculation, the geometric error model
of machine tools is an approximate treatment in most stud-
ies. To identify the dominant geometric error, considering
the application of the 6-axis welding machine, the geomet-
ric error components set as a constant are desirable for
sensitivity analysis.

The geometric error components of each axis set or sep-
arately set as a constant are a common approach applied in
the geometric error sensitivity analysis of the multi-axis
machine tools [14, 15, 17, 21]. Nevertheless, it is inevitable
that the geometric errors of the machine tool exist and
affect the tool pose in actual situations, even after the com-
pensation. It is insufficient to consider the geometric error
components separately or just set the geometric error as a
constant. Therefore, considering the actual state of geomet-
ric errors, the basic value of each geometric error should be
defined at first, and the accuracy of the tool pose affected by
the increment of geometric error evaluated. In other words,
the geometric error, which has the best improvement on the
accuracy of the machine tool after compensation, is the key
geometric error of the machine tool.

For the difference of units, the basic value is different for
position error and angular error. The 36 geometric errors of
the 6-axis welding equipment can be divided into positional
error and angular error. Hence, we define Δp and Δa to
represent the fundamental value of positional error and
angular error, respectively. The basic root mean square error
is denoted by:

E0 =
√√√√ 1

m

m∑
i=1

d2
e (24)

where de is the basic distance metrics between the ideal tool
pose to the actual tool pose when geometric errors are taken
the basic value.

To figure out the influence of each geometric error, the
geometric error plus an increment value systematically at
the basic value of Δp or Δa . Thus, for the 36 geometric
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errors of the 6-axis welding equipment, the root mean
square error can be expressed as follows:

Ej =
√√√√ 1

m

m∑
i=1

d ′2
ei (25)

where j is the sequence number, represents the geometric
error component related to Table 1; d ′

e is the distance
metrics between the ideal tool pose to the actual tool pose
when the geometric error j plus the increment value and the
others are set at the basic value.

The impact on the tool tip of geometric errors is different:
each geometric error has a positive or negative effect on the
welding torch pose. The improvement of the accuracy of the
welding torch can be evaluated by the comparison of the
mean square errors. Therefore, the value between Ej and
E0 can be regarded as the size of effect introduced by the
increment value of geometric error, which can be denoted
as:

Kj = ∣∣Ej − E0
∣∣ (26)

The new sensitivity coefficients, for the 36 geometric
errors of the 6-axis welding equipment, can be defined as:

Sj = Kj/

36∑
i=1

Ki (27)

5 Numerical results and discussion

In this section, the numerical simulations are carried out
to verify the effectiveness of the geometric error model
and sensitivity analysis of all axes. The welding trajectory
planning for intersecting pipes introduced in literature [16]
is a typical algorithm to weld intersecting pipes, which can
be used to verify the kinematics model and conduct the
sensitivity analysis of geometric errors.

5.1 Parameters for numerical simulation

For computational expediency, the parameters of welding
equipment are set at l1 = 400 mm, and l2 = 150 mm. Thus,
the corresponding unit twist coordinates of the U-axis and
V-axis are ξu = (0, 0, 400, 1, 0, 0)T and ξv = (0, 0, 550, 0,

1, 0)T , respectively. The basic parameters and welding tech-
nological requirements for two intersecting pipes are obtained
from the literature [25], which are shown in Table 2. And,
the welding torch trajectory planning without swing motion.
As shown in Fig. 6, the ideal welding trajectory for inter-
secting pipes is obtained by the kinematics model of the
6-welding equipment based on Lie theory.

To closely resemble reality, the influence of basic
geometric errors is taken into consideration by setting the

Table 2 The welding parameters for intersecting pipes

Parameter name Value

Main pipe diameter 220mm

Branch pipe diameter 140mm

Offset distance 0mm

Crossing angle π/2

Travel angle 0

Working angle 0

basic value of geometric errors. Alternatively, the basic
position errors are set at Δp = 1 μm, and the basic angular
errors are set at Δa = 10 μrad. As the pose error of welding
torch can be divided into the position error and orientation
error, the scale factors c and d , mentioned in Section 4.1,
become particularly important. For different application
scenarios, the scale factors can be selected independently
based on the weight of position and orientation. Here, c and
d are taken at the same value (where c = d = 1).

To investigate the error contribution of each error, the
geometric error components of each axis are sequential plus
the corresponding increment on the basic value. Above the
basal value of Δp and Δa , the increment value of position
error is set at 1 μm, and the increment value of angular
error set at 10 μrad. Then, the deviation of the welding torch
pose introduced by the geometric errors can be obtained
by Eq. 25, and the sensitivity coefficient of each geometric
error can be obtained according to Eq. 27. In numerical
simulations, the sample number m is set at 500.

5.2 Simulation results and discussion

Shown in Fig. 7 are the numerical simulation result of sen-
sitivity coefficient for each geometric error. The sensitivity
coefficients range from 0.0003 to 0.1515, where the angular
error εz(u) has a minimal impact and εy(z) has a maximum
impact on the accuracy of the welding torch. For the 6-axis
welding equipment, the angular errors εy(x), εz(x), εy(z),
and εz(z) have a stronger influence on the welding torch
pose compared with other geometric errors, which means
that the angular errors εy(x), εz(x), εy(z), and εz(z) have
priority when compensating the geometric errors. Accord-
ing to the difference of units, the sum of sensitivity coef-
ficient of position error components is 0.36, and the sum
of sensitivity coefficient of the angular error components
is 0.64. However, it is easy to find the orientation error
caused by angular errors and the deviation of spatial location
caused by both position errors and angular errors in geomet-
ric error model. Compared with position error components,
the angular errors have a greater impact on the deviation of
the welding torch pose, and the sensitivity coefficients of the
geometric errors εy(x), εz(x), εy(z), and εz(z) are larger
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Fig. 6 Ideal welding trajectory
for intersecting pipes

than the others, which means that more attention should be
paid on the straightness of the X-axis and Z-axis.

When the position error and angular error analysis sep-
arated, the sensitivity coefficient of position error can be
defined as:

Spj = Kpj/

18∑
i=1

Kpi (28)

where the subscript p represents the sensitivity coefficient
of position error and the subscript j represents the sequence
number of position error.

Similarity, the sensitivity coefficient of angular error can
be defined as:

Saj = Kaj/

18∑
i=1

Kai (29)

where the subscript a represents the sensitivity coefficient
of angular error, and the subscript j represents the sequence
number of angular error.

The sensitivity coefficients of position errors and angular
errors are shown in Figs. 8 and 9, respectively. Besides the
angular errors εy(x), εz(x), εy(z), and εz(z), the angular
errors of B-axis have stronger influence on the accuracy of
the welding torch. The angular errors of the U-axis and V-
axis can be ignored when compared with the others, and the
angular errors around Y-axis impact the welding torch pose
most, followed by Z-axis. The position error components of
B-axis, X-axis, Y-axis, and Z-axis have the same effect on
the accuracy of the welding torch. The position error in the
X direction impacts the welding torch most, followed by Z
direction.

To further verify the sensitivity analysis method and
figure out the effect of geometric errors, the distance metrics
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Fig. 7 Sensitivity coefficient of geometric error components
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Fig. 8 Sensitivity coefficient of
angular errors

Fig. 9 Sensitivity coefficient of
position errors
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Fig. 10 The orientation deviation of the welding torch. The Basic represents the orientation deviation when the geometric errors are taken the
basic value
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d(g0, ge) can be divided into 2 parts: logRe represents the
orientation deviation and pe represents the position devi-
ation of the welding torch. According to [18], logRe =
d(Re, R0), and the simulation result of the orientation devi-
ation is shown in Fig. 10. For the angular errors of X, Y and
Z axes have the same effect as B-axis, εy(v) same as εy(b),
and εx(u) same as εx(v), on the orientation deviation of
the welding torch, the angular error components of X-axis,
Y-axis, Z-axis, εy(b), εx(v) are not shown in Fig. 10. The
basic curve in Fig. 10 represents the orientation error distri-
bution when the geometric errors are set at the basal value,
and εx(b), εy(b), εz(b), εx(u), εy(u), εz(u), and εz(ν)

represent the orientation error distribution of the welding
torch when the corresponding angular error component plus
the increment value and the other geometric errors remain
unchanged. And on the basis of all geometric errors set at

the basic value, when the angular errors are varied systemat-
ically, the changes of impact on the orientation accuracy of
the welding torch are roughly similar. The position error dis-
tribution of the welding torch is shown in Fig. 11, when all
geometric errors are varied systematically. The Basic curve
represents the position error of the welding torch when the
geometric errors are taken the basic value. It is obvious that
εy(x), εz(x), εy(z), and εz(z) have a stronger influence on
the position accuracy of the welding torch, which also ver-
ifies the validity of new sensitivity analysis method. It is
evident from Figs. 10 and 11 that the posture error of the
welding torch is relatively small compared to the position
error of the welding torch, which means the distance metrics
d(g0, ge) is predominantly affected by the position error of
the welding torch, and the angular errors of each axis have
a greater impact on the accuracy of the welding torch.
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Fig. 11 The position deviation of the welding torch when the geomet-
ric errors are changed systematically. The Basic represents the position
deviation when the geometric errors are taken the basic value. a B-axis,

b U-axis, c V-axis, d X-axis, e Y-axis, and f Z-axis are the position
deviations of the welding torch when the geometric errors of each axis
are changed systematically
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6 Conclusion

In this paper, the geometric error modeling and its sen-
sitivity analysis of a new automation welding equipment
for intersecting pipes welding, consisting of a positioner
and 5-axis industry robot, were studied. Compared with
the traditional machine tool, the 6-axis welding equipment
focuses on machining along the trajectory while the tradi-
tional machine tools focus on surface machining. The strict
error model of the 6-axis welding equipment including 36
geometric errors was established based on the Lie theory
without approximate treatment. Besides, a new sensitivity
analysis method was proposed to find out the key geomet-
ric error components which have a stronger influence on
the welding torch pose. The sensitivity coefficient of each
geometric error component was obtained and the dominant
geometric errors that affected the accuracy of the machine
were identified by applying the new sensitivity analysis
method. The major contributions of the paper are as follows:

(1) The strict geometric error model of the 6-axis welding
equipment is established, which contains 36 geometric
error components, based on Lie theory.

(2) A new sensitivity analysis method is proposed based
on the distance metrics of SE(3), which considers the
position and orientation error of the welding torch
at the same time. The proposed method is more
convenient and flexible, when compared with previous
studies of the geometric error sensitivity analysis
method.

(3) To closely resemble reality, a new sensitivity coeffi-
cient of geometric error is proposed by considering the
basic value of geometric error.

(4) Numerical simulations are taken to verify the sensi-
tivity analysis method, and the dominant geometric
errors of the 6-axis welding equipment were identified,
which lays the foundation for follow-up studies.
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