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Abstract
Frequent early failures are the key factors restricting the reliability improvement of CNC (computer numerical control) machine
tools. In order to eliminate the early failures of CNC machine tools as much as possible, this paper defined the early failures of
CNC machine tools strictly and divided the early failures into sudden early failures and progressive early failures. According to
the characteristics of sudden early failures, the corresponding reliability analysis model was established by fishbone diagram and
5M1E (man, machine, material, method, measurement, environment) method. Based on the failure time rather than failure time
intervals, the reliability analysis model of progressive early failures, which can reflect the dynamic characteristics of CNC
machine tool failures, was established by BBIP (bounded bathtub intensity process) method in NHPP (non-homogeneous
Poisson process). The reliability evaluation indexes of progressive early failures were given, and the analysis method of the
influence of the relationship between former failure and latter failure on the established reliability model was given. CNC
machine tools made in China were taken as the example, and the reliability analysis models of sudden early failures and
progressive early failures were established and analyzed, respectively. The conclusion that different product failures of the same
model could not be analyzed by the same parameter model is obtained. The results also verify the applicability and correctness of
the proposed method, which lay a foundation for the elimination of early failure and the improvement of reliability of machine
tools.
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Nomenclature
CNC Computer numerical control
5M1E Man, machine, material, method,

measurement, environment
BBIP Bounded bathtub intensity process
NHPP Non-homogeneous Poisson process
HPP Homogeneous Poisson process
RP Renewal process
CMTEF CNC machine tools early failures
SEF Sudden early failures
PEF Progressive early failures
TTT Total test time
MTBFs Instantaneous mean time between failure

MTBFc Cumulative mean time between failure
S-PLP Superposed power law process
S-LLP Superposed log-linear process
t0 The moment when machine tools are

installed and debugged
t1 Early failure time inflection point
t2 Accidental failure time inflection point
t3 The moment when the machine tools are scrapped
F(t) Normal operation state fluctuation function of ma-

chine tools
δ(t) Pulse function
tt0 Positive maximum fluctuation amplitude time
tt1 Negative maximum fluctuation amplitude time
A Maximum fluctuation amplitude that machine

tools can bear
m Total number of experimental machine tools
Ti Timing censoring time of the i-th product
ni Total number of failures collected in (0, Ti)
SK The moment when the K-th failure occurs in the

time series
N Total number of m product failures in the

statistical time
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u Failure occurrence time
p(u) Number of machine tools observed at time u
K Number of failures observed at u=SK
△t Very small time interval
λ(t) Failure intensity function
λc(t) Cumulative failure intensity function
ω(t) Cumulative failure intensity function
R(t) Reliability function
λ1(t) Early failure process of products
λ2(t) Depletion failure process of products
λ1 Model parameters of S-PLP
β1 Model parameters of S-PLP
λ2 Model parameters of S-PLP
β2 Model parameters of S-PLP
α1 Model parameters of S-LLP
α2 Model parameters of S-LLP
γ1 Model parameters of S-LLP
γ2 model parameters of S-LLP
α Model parameters of four-parameter method
β Model parameters of four-parameter method
η Model parameters of four-parameter method
θ Model parameters of four-parameter method
a1 Model parameters of five-parameter method
b1 Model parameters of five-parameter method
c1 Model parameters of five-parameter method
d1 Model parameters of five-parameter method
k Model parameters of five-parameter method
a Model parameters of BBIP
b Model parameters of BBIP
c model parameters of BBIP
d Model parameters of BBIP
τ0 Standing point of failure intensity function
τ1 Standing point of the first derivative of

failure intensity function
b̂ Estimated values of b
ĉ Estimated values of c
d̂ Estimated values of d
P Goodness of fit evaluation index
NSK Actual cumulative failure number of

CNC machine tools observed at time SK
NSK Expected failure number at time SK
ρpxy Pearson correlation coefficient
ρsxy Spearman’s rank correlation coefficient
ρkxy Kendall tau rank correlation coefficient
x Failure time data
y Failure time data
σx Standard deviation failure time data of x
σy Standard deviation failure time data of y
dK Difference between the ranks of two sets

of failure time data of x and y
C Number of elements with consistency in

x and y failure time data
H0 Zero hypothesis of BBIP model

H1 Alternative hypothesis of BBIP model
Λ likelihood ratio statistic
ρxy Nonlinear relationship between the first

failure and the second failure
a0 Coefficients of ρxy
a1 Coefficients of ρxy
a2 Coefficients of ρxy
b1 Coefficients of ρxy
b2 Coefficients of ρxy
l0 Maximum value of log-likelihood

function of BBIP model with the same parameters
li Maximum value of log-likelihood function

of i-th BBIP model with different parameters

1 Introduction

Due to the design errors, material defects, process defects,
machining errors, improper installation and debugging, im-
proper operation, etc. [1], CNC machine tools fail frequently
within half a year of use [2, 3], which greatly reduces their
reliability. At the same time, the initial stage of product use is a
critical time for users to judge the quality of the product psy-
chologically. In this stage, the frequent failure will seriously
damage the image of the enterprise [4, 5]. Therefore, it is of
great significance to study the failures in this period and try to
eliminate them in the product manufacturing enterprises to
improve the reliability and market competitiveness of prod-
ucts [6].

The definition of CNC machine tool early failures in the
current research is not accurate enough, and the character-
istics of different types of failures are not considered when
establishing the failure model. The accurate establishment
of the early failure model of CNC machine tools is of great
significance for the subsequent early failure analysis and
elimination measures, so it is necessary to select the appro-
priate method to analyze the failure data of CNC machine
tools. The current failure modeling methods of machine
tools are mostly based on the failure time intervals. They
assume that the failure data of products are independent
identical distribution and consider that the repair of the
products is a process of “repair as new” and the repaired
products can reach the level of just leaving the factory,
such as literature [7, 8]. However, the occurrence of CNC
machine tool failure is a dynamic process. It is obviously
inappropriate to use the time interval between failures as
the analysis data. In addition, the theory of “repair as new”
is generally for non-repairable products, while machine
tools are repairable systems [9, 10]. Moreover, the theory
also ignores the degradation of non-faulty parts of machine
tools [11], and the quality of repaired products cannot be
restored to its state of delivery. In fact, when CNC machine
tools fail, it is generally only necessary to repair or replace
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the failed parts [12], which can make the reliability of the
repaired products basically restore to the level before it was
repaired, so it is more reasonable to regard the maintenance
process as “repair as old” [13, 14]. In conclusion, it is more
accurate to use the time of failure as the analysis data and
use the random point process to describe the characteristics
of CNC machine tool failure. The occurrence of machine
tool failure is a random process. At present, there are three
main methods currently used for random point process
modeling, namely HPP (homogeneous Poisson process),
NHPP, and RP (renewal process). HPP assumes that the
failure intensity of the product is constant [15, 16], and it is
proven that the failure intensity of machine tools is not
constant [3], so the modeling method is not suitable for
machine tools. RP is mainly used to describe the situation
that product repair is “repair as new” [17, 18], and it is not
suitable for failure modeling of machine tools. NHPP
meets the minimum maintenance assumption of “repair as
old” [10, 19], and it is considered that the repaired product
can reach the level before its failure. NHPP can reflect the
randomness and dynamics of machine tool failure, which is
widely applied, as shown in literature [20, 21]. So, it is
reasonable to select this method to establish the failure
model of CNC machine tools. In addition, the former fail-
ure of products also has a certain impact on the latter fail-
ure, and this relationship has an important impact on the
failure modeling of machine tools, which should also be
valued and analyzed [22].

The rationality and integrity of failure data collection are
the basis for the accurate establishment of the failure model
and early failure cause tracing. The failure data should mainly
come from the experimental data of manufacturing enter-
prises, the maintenance data of after-sales departments, the
failure data of user self-repair, and the failure data of similar
products. The collected failure data should include product
model, production date, failure time, failure location, failure
mode, failure cause, failure handling, and maintenance start
and end time, etc. After the early failure model of CNC ma-
chine tools is established by the collected failure data and the
selected method, the fitting effect of the established model to
the failure data should be verified to determine the accuracy of
the selected model. Then, the early failure analysis and pre-
diction can be carried out according to the established model.

In this paper, the early failure of CNC machine tools is
clearly defined, and the classification and collection methods
of early failure are also introduced. The respective analysis
models are established for different types of early failure,
and the model is solved and the goodness of fit test is carried
out. The appropriate indicators are selected to evaluate the
reliability of CNC machine tools. The correlation between
the former early failure and the latter early failure of CNC
machine tools is also analyzed. The accuracy and rationality
of the proposed method are verified by an example.

2 Early failure definition and classification

2.1 Early failure definition

A large number of researches and practices have shown that
under the specified operating environment, operation, and
maintenance, the relationship between the failure characteris-
tic indexes of machine tools and time in its life cycle is gen-
erally shown as the shape of “bathtub”, which is commonly
called as the bathtub curve, as shown in Fig. 1 [23, 24].

In Fig. 1, t0 is the moment when machine tools are installed
and debugged; t1 is the transition point between early failure
period and accidental failure period of machine tools, which is
called the early failure time inflection point; t2 is the transition
point between accidental failure period and depletion failure
period of machine tools, which is called the accidental failure
time inflection point; t3 is the moment when the machine tools
are scrapped. The early failure of CNC machine tools is de-
fined as follows:

CNC machine tool early failures (CMTEF) refer to the
failures that occur during the period from the completion of
machine tool installation and commissioning to the rapid de-
cline of failure rate in the early stage of use, specifically the
failures occurring during the period t0~t1 in Fig. 1.

In early failure period, the failure rate of machine tools will
decrease rapidlywith time. In accidental failure period, the failure
rate of machine tools will basically stabilize. When products are
used for a certain period of time, the failure rate will increase
rapidly with time until they are scrapped. The failures in early
failure period of CNC machine tools often have the following
characteristics: failure occurrence rate is high but its decline
speed is fast, large proportion of early failures in the total number
of failures in the whole life cycle of the products, failure mode
and failure causes are concentrated, etc. [25].

2.2 Early failure classification

In this paper, the early failures of CNC machine tools are
divided into two types: sudden early failures and pro-
gressive early failures. The relevant definitions and anal-
ysis are as follows:

Sudden early failures (SEF) refer to those failures caused
by “accidental causes” in the early use stage of machine tools.
These failures occur irregularly, and they cannot be
established with probability models and calculated.

The “accidental causes” here refer to those factors that
cause sudden failures of machine tools, such as foreign matter
intrusion, processing fluid pollution, excessive temperature,
excessive humidity, noise pollution, large vibration, unstable
voltage, improper operation, interference of purchased parts,
and self-made parts, etc. These factors will cause sudden fail-
ures of the parts, which can reduce the stability of the perfor-
mance of CNC machine tools. In severe cases, the function of
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machine tools will be lost. The occurrence of sudden early
failures is irregular, and it is impossible to use quantitative
probability model to model them [26], which is the important
reason to restrict the improvement of machine tool reliability.

Sudden early failures can be regarded as a random
impulse failure function. Due to the early failure causes
of this type, the operating state of machine tools will
suddenly fluctuate greatly. When the fluctuation reaches
or exceeds the acceptable critical value, failures will
occur. Assuming that the normal operation state fluctu-
ation function of machine tools is F(t), which will be
impacted by pulse function δ(t) at tt0 and tt1, and the
maximum fluctuation amplitude that machine tools can
bear is A, then the schematic diagram of sudden early
failures of machine tools is shown in Fig. 2, and the
mathematical model is shown in formula (1).

F tt0ð Þ þ δ tt0ð Þ≥A
or
F tt1ð Þ þ δ tt1ð Þ≤−A

ð1Þ

Progressive early failures (PEF) refer to the failures
caused by “essential cause” in the early failure period of
machine tools. This kind of failures is subject to a cer-
tain probability distribution, and it can be predicted by
building a mathematical model.

The “essential causes” here refer to those failure factors that
can be modeled or quantified. The changes of parts quality
characteristics caused by them are traceable and can be

quantified by a certain statistical model. Progressive early fail-
ures obey a probability distribution, which can be analyzed by
building a probability statistical model [27].

The failure generation process of machine tools can
generally be described by NHPP [28–30]. According to
the failure model, the early failure period of machine
tools can be calculated, and the early failures of prod-
ucts can be obtained, which lays a foundation for sub-
sequent failure analysis.

3 Early failure modeling

3.1 Sudden early failure modeling

The occurrence of sudden early failures is closely related to the
capability and quality of the operators, the maintenance status of
equipment, the coordination status among the parts with different
materials, the process flow, the operating environment, and the
parameters detection, etc., which is the 5M1E.

Fishbone diagram, also known as Ishikawa diagram and
cause effect diagram, is an effective method to explore the
“essential causes” of problems, which is simple, intuitive,
convenient, and quick. In this paper, Fishbone diagram and
5M1E are used to discuss the sudden early failures, and the
failure model is shown in Fig. 3.

Figure 3 is only a schematic diagram to illustrate
how to establish the model from man, machine, materi-
al, method, measurement, and environment. In the spe-
cific case analysis, the required failure influencing fac-
tors can be added according to the process. When the
collected failure data is less, the historical failure data
of similar products can be used for analysis.

3.2 Progressive early failure modeling

The modeling process of progressive early failures of CNC
machine tools in this paper is shown in Fig. 4.

The detailed analysis of each modeling step in Fig. 4
is as follows.

Fig. 1 Failure rate bath curve

Fig. 2 Sudden early failure mathematical model
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(1) Failure data collection

There are three main sources of failure data in this
paper: the user’s self-maintenance record, the after-sales
maintenance record of products manufacturer, and the
on-site failure detection record. The specific failure data
collection process is as follows:

(a) For the failures that can be repaired by users themselves, the
maintenance personnel shall promptly repair them in time
after the failures occur and record the product maintenance
information;

(b) For the failures that users cannot repair by themselves,
they should contact with the after-sales department of the
product manufacturer in time. After receiving the users’
maintenance requirements, the after-sales department
should promptly repair the products and record the main-
tenance process;

(c) Regularly track the investigated products, so as to know
the products status and deal with the problems encoun-
tered in time.

(2) Failure data preprocessing and trend test

(a) Failure data preprocessing

Generally, the failure data collected from the prod-
ucts use site cannot be used directly and needs to be
transformed in advance. TTT (total test time) method is
the most commonly used data transformation method
[31]. This paper selects this method to preprocess the
collected data, and the transformation process is as
follows.

According to the principle of timing censoring, the
failure data of m machine tools are statistically analyzed.
Assuming that the timing censoring time of the i-th (0 <
i < m) product is Ti, ni failure data are collected in the
time of (0, Ti), and the moment when the j-th failure of
i-th product occurs is tij. The failure occurrence times of
the m machine tools are arranged in order of small to
large, then 0 < S1 ≤ S2 ≤… ≤ SK ≤… ≤ SN, where SK rep-
resents the moment when the K-th failure occurs in the

Fig. 3 Sudden early failure model

Fig. 4 Progressive early failure modeling process
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time series, and N = n1 + n2 +… + nm is the total number
of m product failures in the statistical time.

TTTmethod is used to process the collected failure data, and
the transformed time series can be obtained as formula (2):

T SKð Þ ¼ ∫SK0 p uð Þdu ð2Þ
where u represents the time of failure occurrence; p(u) is the
number of machine tools observed at time u, and when all
failure processes are observed, p(u) = m [30].

(b) Failure trend test

In order to improve the accuracy of reliability model selec-
tion, it is necessary to judge the trend of product failure data in
advance. TTT graph method is particularly suitable for the
trend judgment of failure data from multiple products [32].
The values of abscissa and ordinate of TTT graph can be
calculated from formula (3):

yK ¼ T SKð Þ=T Sð Þ ¼ ∫SK0 p uð Þdu=∫T0 p uð Þdu
xK ¼ K=N

�
ð3Þ

where T = max(T1, T2,…, Tm), K is the number of failures
observed at u = SK.

Substituting the processed failure data into formula (3), a TTT
graph of the product failures can be obtained, and then, the trend
of product failure intensity can be judged. In general, there are
four representations of TTT graphs, as shown in Fig. 5.

In Fig. 5, the scatter points in figure (a) are approximately a
straight line, indicating that there is no tendency for product
failures, and the product failure intensity is almost unchanged,
which means that the system is relatively stable. The scattered
points in figure (b) are concave, indicating that the product
failure intensity is getting smaller and smaller. As time goes
by, the number of product failures is less and less, and the
product performance tends to be stable. Figure (c) has the
opposite meaning to figure (b). The scatter points in figure
(d) are S-shaped and show “concave before convex”, which
indicates that the product failure intensity first decreases with
time and then increases with time, that is, the number of prod-
uct failures decreases first and then increases with time, which
is a typical “bathtub curve” trend.

(3) Model selection

(a) Modeling method primary selection

Traditional reliability modeling methods believe that
the reliability model established must be the same as
long as the product failure time intervals are the same
[33]. However, in engineering practice, for different
CNC machine tools of the same type with the same

failure time intervals but different failure sequence, the
reliability at the same time is not the same, as shown in
Fig. 6.

In Fig. 6, product 1-1, product 1-2, and product 1-3, respec-
tively, represent different CNC machine tools of the same
model; 1, 2, 3, and 4, respectively, represent the serial number
of failure; and △t, 2△t, and 3△t, respectively, represent the
failure interval time. It can be seen from Fig. 6 that products
1-1, 1-2, and 1-3 have the same failure time interval, then the
reliability models established by traditional methods are the
same, and the reliability of the three products at the same time
is also the same. However, the failure rules of these three
products are obviously different, and their reliability level at
the same time is not the same. It can be seen that the reliability
model based on the failure time interval is not consistent with
the engineering practice. Many studies have proved that the
maintenance of machine tools belong to the “minimum main-
tenance” of repairable products, and it can be considered that
the reliability of repaired products can reach the level before
failure, that is, the maintenance of CNC machine tools is a
“repair as old” process [34].

Compared with the operation time of machine tools,
the failure maintenance time can generally be ignored,
so that the failure occurrence process of machine tools
can be described by random point process. NHPP is the
most commonly used method in random point process,
and it is also the most suitable method for reliability
modeling of CNC machine tools [35]. Therefore, this

Fig. 5 Typical shape of TTT graphs. a System with stable failure rate. b
System with reduced failure rate. c System with increased failure rate. d
System with reduced first and increased then failure rate
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paper uses NHPP method to model the reliability of
CNC machine tools.

(b) NHPP process basic principles

If a counting process {N(t), t ⩾ 0} satisfies the following
conditions, it is called an NHPP process with failure intensity
function of λ(t):

① N(0) = 0;
② {N(t), t ⩾ 0} has independent increments;
③ P{N(t +Δt) −N(t) = 1} = λ(t)Δt + o(Δt);
④ P{N(t +Δt) −N(t) ≥ 2} = o(Δt).

where λ(t)Δt represents the failure probability of product
within time Δt; cumulative failure intensity function ω(t) is
the average failure number E[N(t)] in time (0,t], which is
shown in formula (4):

E N tð Þ½ � ¼ ω tð Þ ¼ ∫t0λ tð Þdt ð4Þ

Then

P N t þΔtð Þ−N tð Þ ¼ kf g
¼ ω t þΔtð Þ−ω tð Þ½ �k

k!
e− ω tþΔtð Þ−ω tð Þ½ � ð5Þ

or

P N tð Þ ¼ kf g ¼ ω tð Þ½ �k
k!

e−ω tð Þ ð6Þ

It can be seen from formulas (5) and (6) that N(t +Δt) −
N(t) obeys the Poisson distribution with a mean of ω(t +Δt)
− ω(t), or N(t) obeys the Poisson distribution with a mean of
ω(t).

(c) Model comparison and selection

Figure 1 is obtained from the failure analysis of electronic
products. Generally speaking, the failure intensity of machine
tools does not strictly follow the curve trend shown in Fig. 1.
Many test data show that the failure of CNC machine tools
generally follows the law shown in Fig. 7 [3].

It can be seen from Fig. 7 that the failure intensity curve of
CNC machine tools can be roughly divided into two parts:
early failure period and depletion failure period. The failure
process with the shape shown in Fig. 7 can be described by
superposition of two independent NHPPs [35], and the failure
intensity function is shown in formula (7).

λ tð Þ ¼ λ1 tð Þ þ λ2 tð Þ ð7Þ
where λ1(t) and λ2(t), respectively, represent the early failure
process and the depletion failure process of products.
According to the properties of NHPP, the superposed function
λ (t) is still a NHPP.

For products whose failure intensity curve is “bathtub” shape,
the commonly used NHPP modeling methods are mainly as
follows: S-PLP (superposed power law process) method pro-
posed by Pulcini [36], S-LLP (superposed log-linear process)
method proposed by Byeong [37], four-parameter method pro-
posed by Ren (referred to as four-parameter method) [29], five-
parameter method proposed by Wang (referred to as five-
parameter method) [38], and the BBIP method proposed by
Pulcini, which are, respectively, introduced as follows.

① S-PLP method model

S-PLP model is superimposed by two PLP models, and its
failure intensity function is shown in formula (8):

λ tð Þ ¼ λ1β1t
β1−1 þ λ2β2t

β2−1

λ1;λ2 > 0; 0 < β1 < 1;β1 > 1; t≥0
ð8Þ

Fig. 6 CNC machine tool failure
sequence

Fig. 7 CNC machine tool failure intensity curve
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where λ1, β1, λ2, and β2 are the model parameters of S-PLP
model, respectively.

From formula (8), we can see that the first half of S-PLP
model is a monotonically decreasing function, and the second
half is a monotonically increasing function. However, the fail-
ure intensity function will have a large mutation when t→ 0+,
which is quite different from the actual [39].

② S-LLP method model

S-LLP model is superimposed by two LLP models, and its
failure intensity function is shown in formula (9):

λ tð Þ ¼ α1e−γ1t þ α2eγ2t

α1;α2; γ1; γ2 > 0; t≥0 ð9Þ

where α1, γ1, α2, and γ2 are the model parameters of S-LLP
model, respectively.

It can be seen from formula (9) that S-LLP model is also
composed of a monotone decreasing function and a mono-
tone increasing function. λ(t) = α1 + α2 at t→ 0+, and
λ(t)|t→ + ∞ = + ∞ at t→ + ∞, which indicate that failure
intensity of products will increase infinitely with time,
which is not in line with the actual use process of the prod-
uct. This phenomenon is not consistent with the actual.

③ Four-parameter method model

The four-parameter method is superimposed by two inde-
pendent NHPP processes, and its failure intensity function is
shown in formula (10):

Fig. 8 Influence of model
parameters on failure intensity

Table 1 Simple correlation
judgment criteria Correlation coefficient Criterion Correlation degree

r = ρpxy/ρsxy/ρkxy Negative correlation − 0.3 < r < 0 Almost irrelevant

− 0.3 ≤ r < − 0.5 Low correlation

− 0.5 ≤ r < − 0.8 Moderate correlation

− 0.8 ≤ r < − 0.95 Highly correlation

− 0.95 ≤ r ≤ − 1 Significant correlation

r = − 1 Complete correlation

Irrelevant r = 0 Irrelevant

Positive correlation 0 < r < 0.3 Almost irrelevant

0.3 ≤ r < 0.5 Low correlation

0.5 ≤ r < 0.8 Moderate correlation

0.8 ≤ r < 0.95 Highly correlation

0.95 ≤ r < 1 Significant correlation

r = 1 Complete correlation

2738 Int J Adv Manuf Technol (2021) 112:2731–2754



λ tð Þ ¼ αβ= t þ αð Þ þ η 1−θ= t þ θð Þ½ �
α;β; η; θ > 0; t≥0 ð10Þ

where α, β, η, and θ are the model parameters of four-
parameter method model, respectively.

In this modeling method, λ(t) = β at t→ 0+, and λ(t) = η at
t→ +∞, which can better simulate the occurrence process of
product failures.

④ Five-parameter method model

Five-parameter modeling method is a combination of bound-
ed Burr XII failure intensity function and bounded intensity pro-
cess. It is mainly used to describe the failure intensity change of
the minimum maintenance system with the shape of “bathtub”,
and its failure intensity function is shown in formula (11):

λ tð Þ ¼ a1 þ kb1tb1−1= 1þ tc1ð Þ þ c1 1−exp −t=d1ð Þ½ �
a1; k; c1; d1 > 0; b1 > 1; t≥0

ð11Þ

where a1, b1, c1, d1, and k are the model parameters of five-
parameter method model, respectively.

Table 2 CNC machine tool failure time

Number Failure time/h

1 165.45 361.09 849.17 2084.72 3523.88 4674.65 6084.25

6723.53 7092.74 7714.06 8442.65 8854.21 9067.13 9298.65

2 58.17 383.42 961.21 1324.63 2143.55 2985.37 4150.11

5355.79 5726.33 6161.28 6865.24 7348.07 7709.34 8352.20

8640.85 8807.51 9196.45 9341.92

3 476.96 801.77 1534.27 3050.08 4981.44 6266.49 6802.34

7940.56 8609.25 8995.37 9249.48

4 270.45 623.16 1426.7 2575.49 4555.63 5530.51 6272.36

6705.57 7517.22 8362.06 8770.28 9047.13 9142.74

5 312.65 571.25 1382.8 2327.47 4453.43 5263.38 6127.83

6977.13 7396.41 7851.49 8224.3 8565.26 9095.33

6 419.3 771.83 1727.76 2645.78 5073.93 5711.49 6633.67

7178.07 8165.78 8409.92 8893.26 9439.01

7 245.16 895.49 2228.81 4075.42 5442.35 6517.64 6876.78

7657.45 8491.83 8905.77 9108.14 7657.45

8 82.53 443.05 1263.18 2126.09 3278.32 4519.2 5825.36

6328.7 6928.13 7214.55 8129.85 8712.21 8941.37 9224.64

Table 3 Failure modes and
frequencies of sudden early
failure

Failure mode Number Frequency

Software lost 1 0.03125

Guard plate, shield damage 1 0.03125

Machine does not operate according to the program instructions 1 0.03125

Liquid, gas, oil blockage 2 0.0625

Abnormal sound 2 0.0625

Unable to rotate and move 2 0.0625

Components damage 2 0.0625

No return to zero 2 0.0625

Moving parts are too jittery 2 0.0625

No action 2 0.0625

Liquid, gas, oil leakage 3 0.09375

Parts damage 3 0.09375

Reduced machining accuracy 4 0.125

Components function loss 5 0.15625
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Although formula (11) can better simulate the process of
product failures, the increase of model unknown parameters
will inevitably lead to the increase in computational difficulty
compared with the four-parameter modeling method.
Generally speaking, on the premise that solution accuracy
can be achieved, the fewer the parameters, the better.

⑤ BBIP method model

BBIPmodel is based on the Drenick theory, which consists
of an LLP model and a bounded intensity process model, and
its failure intensity function can be expressed as formula (12):

λ tð Þ ¼ a� exp −t=bð Þ þ c 1−exp −t=dð Þ½ �
a; b; c; d > 0; t≥0 ð12Þ

where a, b, c, and d are the model parameters of BBIP model,
respectively.

Fig. 9 Sudden early failure
proportion

Fig. 10 Component function loss early failure model
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When t = 0, λ(t)|t = 0 = a, and a represents the initial value of
the failure intensity function λ(t). When t→ +∞, λ(t)|t→∞ =
c, and c represents the progressive value of failure intensity
function λ(t). This model not only has the form of “bathtub” in
function shape, but also has the boundedness of the boundary
intensity function, and its form is simple and easy to calculate.

When the characteristics of product failure rate and
the properties of analyzed data are not known, the best
and the most suitable model can be obtained directly by
hypothesis testing. Instead, we can first compare the
properties of the alternative models with the characteris-
tics of product failure, so as to eliminate some inappro-
priate alternative models. If there are still some alterna-
tive models suitable for the analyzed data, the most suit-
able model can be selected from the remaining alterna-
tive models by hypothesis testing.

In summary, four-parameter method and BBIP method are
the most suitable NHPP methods for failure intensity model-
ing. Among these two methods, BBIP is more advantageous
in terms of model structure, calculation process, and applica-
bility [40]. Therefore, the BBIP method is used to model and
analyze the failures of CNC machine tools.

(d) Model property analysis

Formula (12) calculates the first partial derivative of time t,
and formula (13) can be obtained as follows:

λ
0
tð Þ ¼ −

a
b
e − t

bð Þ þ c
d
e − t

dð Þ ð13Þ

When t = 0, λ′(t)|t = 0 = − a/b + c/d. Because λ(t) is a func-
tion with the shape of “bathtub”, so λ′(t)|t = 0 < 0, that is, there
must be formula (14) as follows:

bc < ad ð14Þ

It can be seen from the value of λ′(t) at t = 0 that the smaller
b is, the faster λ(t) decreases, so b represents the decline rate of
failure intensity. The larger d is, the slower λ(t) approaches c.

Let λ′(t) = 0, the only standing point τ0 of λ(t) can be ob-
tained as shown in formula (15):

τ0 ¼ bd
d−b

ln
ad
bc

� �
b≠d ð15Þ

It is known from the meaning of τ0 that it is a positive
number, and b < d should be satisfied.

Let formula (13) calculate the partial derivative of time t,
and formula (16) can be obtained as follows:

λ″ tð Þ ¼ a

b2
e − t

bð Þ− c

d2
e − t

dð Þ ð16Þ

Substituting the value of τ0 into formula (16), formula (17)
can be obtained as follows:

λ″ tð Þ��t¼τ0
¼ ad

bc

� � d
b−d

� a d−bð Þ
b2d

ð17Þ

As can be seen from formula (17), λ″ tð Þ��t¼τ0
> 0. Since

there are λ
0
tð Þ��t¼τ0

¼ 0 and λ″ tð Þ��t¼τ0
≠0 when t = τ0, τ0 must

be the only extreme value point of λ(t), and τ0 is the minimum
value of λ(t) when bc < ad and b < d are satisfied. The min-
imum value of λ(t) can be obtained by substituting τ0 into

Fig. 11 CNC machine tool failure trend and cumulative failure change
trend Fig. 12 Progressive early failure TTT diagram
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formula (12) as shown in formula (18):

λ tð Þjt¼τ0
¼ cþ a b−dð Þ

b
� ad

bc

� � d
b−d

ð18Þ

To ensure that λ(t) is a single valley function with the
“bathtub” shape, formula (19) must be satisfied.

a; b; c; d > 0
bc < ad
b < d

8<
: ð19Þ

Let λ″(t) = 0, the only standing point of λ′(t) can be obtain-
ed as shown in formula (20):

τ1 ¼ bd
d−b

ln
ad2

b2c

� �
ð20Þ

Comparing formulas (15) and (20), since b < d, there must
be τ1 > τ0 > 0.

Let formula (16) calculate the partial derivative of time t,
and formula (21) can be obtained as follows:

λ‴ tð Þ ¼ −
a

b3
e − t

bð Þ− c

d3
e − t

dð Þ ð21Þ

Substituting the value of τ1 into formula (21), and formula
(22) can be obtained as follows:

λ‴ tð Þ��t¼τ1
¼ ad2

b2c

� � d
b−d

� a b−dð Þ
b3d

< 0 ð22Þ

It can be seen from λ″ tð Þ��t¼τ1
¼ 0 and formula (22) that τ1

must be an inflection point of λ(t), and the slope of λ(t) is the
largest at t = τ0. From the above analysis, we can also know that
λ(t) decreases monotonically in the interval [0, τ0], increases
monotonically in the interval [τ0, +∞], and τ0 is the early failure
inflection point. λ(t) is a concave function in the interval [0, τ1],
and a convex function in the interval [τ1, +∞].

To illustrate the influence of different parameters on λ(t),
Fig. 8 is obtained by control variable method.

In Fig. 8, comparing line ② and line ①, it can be
seen that the value of a determines the starting point of
λ(t), and the larger the value of a, the higher the initial
failure rate of products. Comparing line ③ and ①, we
can know that the value of b determines the decline
speed of failure intensity in the early failure period of
products, and the smaller the b value, the faster the λ(t)
decreases, the shorter the early failure period is. As far
as product manufacturing companies and users are con-
cerned, the smaller the b value, the better. Comparing
line ④ and line ①, the value of c determines the asymp-
totic value of failure intensity. It can be seen from the
figure that the smaller the c value, the more gentle the
λ(t) is, and the better the performance of products.
Comparing line ⑤ and line ①, the larger the value of
d is, the slower the failure intensity curve approaches to
its gradual value, and the longer the products is in the
accidental failure period. From the above analysis, we
can see that for the BBIP model, the smaller the values
of a, b, and c, and the larger the value of d, the better
the reliability of products.

Table 4 Estimation of BBIP
model with same parameters Parameters a b c d l0

Eight machine tools 4.26 × 10−3 775.29 3.87 × 10−3 15462.63 − 799.57

Table 5 Estimation of BBIP model with different parameters

Machine tool number Parameters

bai bbi bci bdi li

1 4.45 × 10−3 731.43 3.76 × 10−3 12732.81 − 103.65

2 4.73 × 10−3 878.54 4.18 × 10−3 10484.27 − 129.61

3 3.91 × 10−3 772.06 3.58 × 10−3 17327.11 − 84.85

4 4.17 × 10−3 746.52 3.68 × 10−3 13774.45 − 97.78

5 4.33 × 10−3 753.19 4.02 × 10−3 15664.66 − 97.95

6 3.87 × 10−3 684.08 3.70 × 10−3 14865.35 − 91.60

7 3.62 × 10−3 701.13 3.41 × 10−3 15208.56 − 84.60

8 4.07 × 10−3 912.44 3.72 × 10−3 13281.38 − 104.33
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(4) Model parameter estimation

Substituting formula (12) into formula (4), the average fail-
ure number of CNC machine tools in (0, t] time can be ob-
tained as shown in formula (23):

E N tð Þ½ � ¼ ω tð Þ ¼ ∫t0λ tð Þdt
¼ ab−cd−ab� exp −t=bð Þ
þc t þ d � exp −t=dð Þ½ �

ð23Þ

It can be seen from formula (23) thatE[N(t)]|t = 0 = 0 at t = 0,
which is consistent with the engineering practice.

The joint probability density likelihood function ofm CNC
machine tools’ failures can be obtained by formula (12) as
shown in formula (24):

L ¼ ∏
m

i¼1

n
∏
j¼1

ni

a� exp −tij=b
� �þ c 1−exp −tij=d

� �� 	
 �
�exp

n
−abþ cd þ ab� exp −T i=bð Þ

−c T i þ d � exp −T i=dð Þ½ �
oo ð24Þ

Formula (25) can be obtained by taking the logarithm of
both sides of formula (24) as follows:

l ¼ lnL ¼ ∑
m

i¼1

n
∑
j¼1

ni

ln a� exp −tij=b
� �þ c 1−exp −tij=d

� �� 	
 �
− ab−cd−ab� exp −Ti=bð Þ þ c Ti þ d � exp −Ti=dð Þ½ �f g

o
¼ ∑

m

i¼1
∑
j¼1

ni

ln a� exp −tij=b
� �þ c 1−exp −tij=d

� �� 	
 �
− ∑

m

i¼1
ab−cd−ab� exp −Ti=bð Þ þ c T i þ d � exp −Ti=dð Þ½ �f g

ð25Þ

It can be seen from formula (23) that the total failure num-
ber N of the m machine tools in (0, T] can be expressed as
formula (26):

N ¼ ∑
m

i¼1
ni

¼ ∑
m

i¼1
ab−cd−ab� exp −T i=bð Þ þ c T i þ d � exp −T i=dð Þ½ �f g

ð26Þ

Formula (27) can be obtained by transforming formula (26)
as follows:

a ¼
∑
m

i¼1
ni þ c d−T i−de−

T i
d

� h i
b ∑

m

i¼1
1−e−

T i
b

�  ð27Þ

Substituting formulas (26) and (27) into formula (25), a
function with three parameters can be obtained as shown in
formula (28):

l ¼ lnL

¼
Xm
i¼1

Xni
j¼1

ln

Xm
i¼1

ni þ c d−T i−de−
T i
d

� h i

b
Xm
i¼1

1−e−
T i
b

�  � exp −ti j=b
� �þ c 1−exp −ti j=d

� �� 	
8>>>><
>>>>:

9>>>>=
>>>>;

−N ð28Þ

In order to ensure the meaning of formula (28), there must
be formula (29).

∑
m

i¼1
ni þ c d−T i−de−

T i
d

� h i
b ∑

m

i¼1
1−e−

T i
b

�  > 0 ð29Þ

As can be seen from formula (12), b > 0. It is known from

the meaning of Ti that Ti > 0. At this time, b ∑
m

i¼1
1−e−

T i
b

� 
, then

formula (29) can be equivalent to formula (30).

Table 6 Machine tool goodness
of fit evaluation index value Evaluation index Machine tool number

1 2 3 4 5 6 7 8

P 0.9326 0.9454 0.9406 0.9371 0.9383 0.9527 0.9443 0.9477

Table 7 Early failure period of machine tools

Early failure period Different parameters Same parameters

Machine tool number 8 machine tools

1 2 3 4 5 6 7 8

t0/h 2347.5 2496.0 2585.1 2399.6 2460.1 2239.9 2305.5 2711.9 2521.3

Error 7.40% 1.01% − 2.47% 5.07% 2.49% 12.56% 9.36% − 7.03% /
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∑
m

i¼1
ni þ c d−T i−de−

T i
d

� h i
> 0 ð30Þ

The parameter estimation problem of λ(t) can be finally
transformed into the minimization problem of formula (28)
under the nonlinear constraint, and the solving model can be
shown in formula (31).

min− ∑
m

i¼1
∑
j¼1

ni

ln
∑
m

i¼1
ni þ c d−T i−de−

T i
d

� h i
b ∑

m

i¼1
1−e−

T i
b

�  � exp −tij=b
� �þ c 1−exp −tij=d

� �� 	
8>><
>>:

9>>=
>>;þ N

s:t:

− ∑
m

i¼1
ni þ c d−T i−de−

T i
d

� h i
< 0

−b < 0
−c < 0
−d < 0

8>>><
>>>:

ð31Þ

Solving formula (31), we can get the estimated values of b,

c, and d as bb, bc, and bd, respectively. Substituting them into
formula (27), we can get the estimated value of a as ba.
(5) Goodness of fit test

The purpose of goodness of fit test is to find out the degree of
conformity between the selected failure model and the failure
data. According to the reference [41], the goodness of fit evalu-
ation indexP of the failure model of CNCmachine tools is set as
formula (32).

Fig. 13 Progressive early failure TTT diagram

Fig. 14 Reliability index function
of machine tool 1. a Failure
intensity function of machine tool
1. b Average cumulative failure
number function of machine tool
1. c Instantaneous mean time
between failure function of
machine tool 1. d Cumulative
mean time between failure
function of machine tool 1. e
Cumulative failure intensity
function of machine tool 1. f
Reliability function of machine
tool 1
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P ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

SK¼0
NSK−NSK

� 2

∑
T

SK¼0
N 2

SK

vuuuuuut ð32Þ

where NSK is the actual cumulative failure number of CNC ma-

chine tools observed at time SK; NSK is the expected failure
number at time SK.

Generally speaking, when P > 0.9, it can be considered that
the fitting degree between the assumed model and the failure
data is acceptable [40], and the larger the value ofP, the higher
the fitting degree between the assumed model and the failure
data, that is, the more appropriate the selected model is.

4 Product reliability evaluation and early
failure correlation analysis

4.1 Reliability evaluation

Generally speaking, the commonly used reliability evaluation
indexes can be divided into instantaneous reliability indexes

and cumulative reliability indexes. Instantaneous reliability eval-
uation indexes mainly include instantaneous failure intensity
function λ(t) andMTBFs (instantaneous mean time between fail-
ure). Cumulative reliability indexes mainly include average cu-
mulative failure number ω(t), cumulative failure intensity func-
tion λc(t), MTBFc (cumulative mean time between failure), and
reliability function R(t). The meanings and calculation formulas
of λ(t) and ω(t) have been given above, and other reliability
evaluation indexes are introduced as follows:

(1) Instantaneous mean time between failure

MTBFs refers to the time taken for a failure of products,
which can be obtained by formula (33).

MTBFs ¼ 1=λ tð Þ ¼ 1=â� exp −t=b̂
� �þ ĉ 1−exp −t=d̂

� �� 	
ð33Þ

(2) Cumulative mean time between failure

MTBFc represents the reliability level of CNC machine
tools in time [0, t], which can be obtained by formula (34).

Fig. 15 Reliability index function
of machine tool 2. a Failure
intensity function of machine tool
2. b Average cumulative failure
number function of machine tool
2. c Instantaneous mean time
between failure function of
machine tool 2. d Cumulative
mean time between failure
function of machine tool 2. e
Cumulative failure intensity
function of machine tool 2. f
Reliability function of machine
tool 2
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MTBFc ¼ t2−t1
∫t2t1λ tð Þdt

¼ t2−t1
ω tð Þjt2t1

¼ t2−t1

babb−bcbd−babb� exp −t=bb� 
þ bc t þ bd � exp −t=bd� h in o���t2

t1

ð34Þ

(3) Cumulative failure intensity function

λc(t) can be directly given by formula (35) as follows [42]:

λc tð Þ ¼ 1

MTBFc

¼
babb−bcbd−babb� exp −t=bb� 

þ bc t þ bd � exp −t=bd� h in o���t2
t1

t2−t1
ð35Þ

(4) Reliability function

R(t) is mainly used to reflect the probability that products
can operate normally at time t, which can be obtained by
formula (36).

R tð Þ ¼ exp −∫t0λ tð Þdt
� 

¼ exp
�
−babbþ bcbd þ babb� exp −t=bb� 

−bc t þ bd � exp −t=bd� h i
ð36Þ

4.2 Early failure correlation analysis

Generally speaking, there is a strong or weak connection be-
tween the former failure and the latter failure of products.
Exploring this connection can lay a foundation for failure
prediction and preventive maintenance. Considering that the
functional relationship between the failures of products is
weak, the correlation analysis method can be used to study
the relationship. When the relationship between failure time
data is obvious, the data can be analyzed by Pearson correla-
tion coefficient method, Spearman’s rank correlation coeffi-
cient method and Kendall tau rank correlation coefficient
method. The calculation methods are as follows.

Pearson correlation coefficient ρpxy can be obtained by for-
mula (37).

Fig. 16 Reliability index function
of machine tool 3. a Failure
intensity function of machine tool
3. b Average cumulative failure
number function of machine tool
3. c Instantaneous mean time
between failure function of
machine tool 3. d Cumulative
mean time between failure
function of machine tool 3. e
Cumulative failure intensity
function of machine tool 3. (f)
Reliability function of machine
tool 3
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ρpxy ¼
cov x; yð Þ
σxσy

¼ E xyð Þ−E xð ÞE yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x2ð Þ−E2 xð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E y2ð Þ−E2 yð Þ

p ð37Þ

where cov(x, y) represents the covariance between two
sets of failure time data of x and y; σx and σy are the
standard deviation of two sets of failure time data of x
and y, respectively.

Spearman’s rank correlation coefficient ρsxy can be obtain-
ed by formula (38).

ρsxy ¼ 1−
6 ∑

N

K¼1
dK2

N N 2−1ð Þ ð38Þ

where dK represents the difference between the ranks of
two sets of failure time data of x and y; N is the total
failure number; K is the number of failures observed at
u = SK.

Kendall tau rank correlation coefficient ρkxy can be obtain-
ed by formula (39).

ρkxy ¼
2 C−Dð Þ
N N−1ð Þ ð39Þ

where C represents the number of elements with consistency
in x and y failure time data; D represents the number of ele-
ments with inconsistencies in x and y failure time data;N is the
total failure number.

The correlation judgment criteria between the two sets of
data represented by ρpxy, ρsxy, and ρkxy are shown in Table 1.

When the correlation of failure time data obtained
from formulas (37) to (39) is moderate or weaker, the
complex correlation of these data should be analyzed.
At this time, we can use polynomial, one or multiple
regression equations, information entropy and mutual
information, Fourier series, and other methods to ana-
lyze and solve the data correlation.

5 Application

In this paper, a CNC machine tool made in China is
taken as an example for early failure modeling and anal-
ysis. Based on the historical failure data of the products
to be tested and similar products, the time threshold for
failure data collection is set as 9500 h by the reference
[39]. During this time, 138 failure data of 8 CNC

Fig. 17 Reliability index function
of machine tool 4. a Failure
intensity function of machine tool
4. b Average cumulative failure
number function of machine tool
4. c Instantaneous mean time
between failure function of
machine tool 4. d Cumulative
mean time between failure
function of machine tool 4. e
Cumulative failure intensity
function of machine tool 4. f
Reliability function of machine
tool 4
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machine tools were obtained from after-sales department,
user maintenance department, and irregular investigation,
and 106 failure data were left after eliminating the sud-
den early failures, as shown in Table 2.

5.1 Sudden early failure modeling

Among the failure data collected, there are 32 sudden failures,
the failure frequency is shown in Table 3, and the failure
proportion is shown in Fig. 9.

It can be seen from Table 3 and Fig. 9 that in the
sudden early failures of the CNC machine tools, com-
ponent function loss, reduced machining accuracy, parts
damage and liquid, gas, oil leakage are the main failure
modes, which account for 45.28% of the total failures.

In this paper, the failure number of component function
loss is the most, so its sudden early failure model is built by
the proposed method, as shown in Fig. 10.

5.2 Progressive early failure modeling

5.2.1 Failure trend test

Analyzing the failure data in Table 2, we can get the change
trend of machine tool failure number and cumulative average
failure number with time, as shown in Fig. 11.

As can be seen from Fig. 11, the cumulative average failure
number of machine tools shows a trend of non-monotonic
change, specifically, the failure rate first decreases and then
increases, and the corresponding failure interval time increases
first and then decreases. In the early failure period, the number
of machine tool failures is obviously more, and the time be-
tween two adjacent failures is smaller, which indicates that the
machine failures occur frequently during this period.

In order to further make a clear judgment on the change of
machine tool failure with time, the failure data in Table 2 is
preprocessed by formula (2), and a TTT diagram is obtained
by formula (3) as shown in Fig. 12.

Fig. 18 Reliability index function
of machine tool 5. a Failure
intensity function of machine tool
5. b Average cumulative failure
number function of machine tool
5. c Instantaneous mean time
between failure function of
machine tool 5. d Cumulative
mean time between failure
function of machine tool 5. e
Cumulative failure intensity
function of machine tool 5. f
Reliability function of machine
tool 5
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It can be seen from the comparison between Figs. 5 and 12
that the failure intensity of the machine tools conform to the
“bathtub curve”, so BBIP model can be used to describe the
failure occurrence process.

5.2.2 Parameter estimation and test

Assume that the failure process of these eight machine tools
can be described by the BBIP model with the same parame-
ters, and the maximum value of its log-likelihood function is
l0. Under this assumption, the corresponding model parame-
ters can be obtained by Table 2, formula (27) and formula (31)
as shown in Table 4.

In fact, the failure process of these eight machine tools may
not be completely the same considering the different
manufacturing process and using environment of machine
tools, and the different technology and quality of operators.

Suppose that the eight machine tools have different failure
model parameters, and the maximum value of their respective
log-likelihood function is li (i = 1, 2,…, 8). The parameters of
each machine tool can be obtained by Table 2, formula (27),
and formula (31), as shown in Table 5.

In order to verify which of the above two hypotheses is
more suitable to describe the failure process of machine tools,
this paper uses the method proposed in literature [43] to test
the two hypotheses. The test process is as follows:

H0 (zero hypothesis): The BBIP model parameters of
each machine are the same;
H1 (alternative hypothesis): The BBIP model parameters
of each machine are different;

IfH0 is correct, the likelihood ratio statistic should obey the
chi-square distribution with 4 freedom degrees approximately.
The likelihood ratio statistic can be obtained from formula
(40) as follows:

Λ ¼ −2 l0− ∑
8

i¼1
li

� �
ð40Þ

Substituting the data in Tables 4 and 5 into formula (40),
Λ = 10.40. According to the quantile table of chi-square dis-
tribution, the critical value p = 9.4877 when the significant
level is 0.05 and the freedom degree is 4. There isΛ > p, soH0

Fig. 19 Reliability index function
of machine tool 6. a Failure
intensity function of machine tool
6. b Average cumulative failure
number function of machine tool
6. c Instantaneous mean time
between failure function of
machine tool 6. d Cumulative
mean time between failure
function of machine tool 6. e
Cumulative failure intensity
function of machine tool 6. f
Reliability function of machine
tool 6
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should be rejected, which means that the BBIP model param-
eters of different machine tools are different.

5.2.3 Goodness of fit test

Substituting the data in Tables 2 and 5 into formula (32), the
evaluation values of the goodness of fit for each machine tool
can be obtained as shown in Table 6.

It can be seen from Table 6 that Pi > 0.9 (i = 1, 2, ..., 8),
which indicates that the parameter models obtained are better
for fitting the failure data. Therefore, the model can be used to
describe and analyze the failure process of the machine tools.

5.2.4 Early failure period

It can be seen from the above analysis that the failure process
of 8 machine tools cannot be described by the BBIP model
with the same parameters. In order to reflect the error between
the early failure period obtained by the same parameter model
and the early failure period obtained by different parameter
models, the data in Tables 4 and 5 are substituted into formula
(15), then the early failure period of each machine tool can be

obtained as shown in Table 7 and the visual representation of
the error can be obtained shown in Fig. 13.

The “-” in the error column in Table 7 indicates that the
early failure period of machine tool obtained by the same
parameter model is smaller than the early failure period ob-
tained by the different parameter model.

It can be seen from Table 7 and Fig. 13 that the early failure
periods of different machine tools are not the same. If the same
parameter model is used to calculate the early failure period of
each machine tool, it will inevitably bring errors in the calcu-
lation results, which will adversely affect the subsequent early
failure analysis. It can also be seen from Table 7 and Fig. 13
that the early failure period calculated by the same parameter
model and different parameter models are quite different,
which also proves that the H0 hypothesis should be rejected.

5.3 Reliability evaluation and correlation analysis

5.3.1 Reliability evaluation

The data in Table 5 is sequentially substituted into formula (12),
formula (22), and formula (33) to formula (36), and the reliability

Fig. 20 Reliability index function
of machine tool 7. (a) Failure
intensity function of machine tool
7. (b) Average cumulative failure
number function of machine tool
7 c Instantaneous mean time
between failure function of
machine tool 7. d Cumulative
mean time between failure
function of machine tool 7. e
Cumulative failure intensity
function of machine tool 7. f
Reliability function of machine
tool 7
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index function of each machine tool can be obtained as shown in
Figs. 14, 15, 16, 17, 18, 19, 20, and 21, respectively.

From Figs. 14, 15, 16, 17, 18, 19, 20, and 21, it can be seen
that the reliability indexes of each machine tool change with
time. We can know that in the early failure period, the overall
trend of the failure intensity is decreased, and then increases
with time from Figure (a), Figure (c), Figure (d), and
Figure (e). It can also be seen from the comparison between
Figure (c) and Figure (d) that the value ofMTBFc is lower than
the value of MTBFs at the same time due to the early failure.

5.3.2 Failure correlation analysis

For CNC machine tools, when a failure occurs, its reliability
will inevitably change, and the performance of products can-
not be “restored as new”, which will affect the occurrence of
its latter failure.

In order to find the relationship between the former failure
and the latter failure, the correlation between them should be
analyzed. In this paper, only the first three failures of the tested
machine tools are analyzed as an example. The data in Table 2

are substituted into formula (37) to formula (39) in turn, and
then ρpxy, ρsxy, and ρkxy are obtained as shown in Table 8.

In Table 8, ρ(i, j) represents the correlation coefficient be-
tween the i-th failure and the j-th failure of the machine tools.

It can be seen from Tables 1 and 8 that the relationship
between the first failure and the second failure of the machine
tools is moderate correlation, and the relationship between the
second failure and the third failure is significant correlation, so
it can be considered that the second failure of the machine
tools has a significant impact on its third failure, while the
relationship between the first failure and the second failure
may be a more complex nonlinear relationship that needs to
be further analyzed.

Fig. 21 Reliability index function
of machine tool 8. a Failure
intensity function of machine tool
8. b Average cumulative failure
number function of machine tool
8. c Instantaneous mean time
between failure function of
machine tool 8. d Cumulative
mean time between failure
function of machine tool 8. e
Cumulative failure intensity
function of machine tool 8. f
Reliability function of machine
tool 8

Table 8 Correlation coefficient between failures

Correlation coefficient ρ(1, 2) ρ(2, 3)

ρpxy 0.7547 0.9347

ρsxy 0.6667 0.9762

ρkxy 0.5000 0.9286
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The relationship between the first failure and the second
failure ρxy can be obtained as follows:

ρxy ¼ a0 þ ∑
2

k¼1
akcos kωtð Þ þ bksin kωtð Þ½ � ð41Þ

The coefficients in formula (41) and the fitting effect can be
obtained by MATLAB, as shown in Table 9.

It can be seen from Tables 1 and 9 that there is a strong
correlation between the first failure and the second failure.

The relationship between the fitting function and the failure
data can be obtained by formula (41) and Table 9 as shown in
Fig. 22.

It can be seen fromTable 9 and Fig. 22 that there is a simple
or complex correlation between the former failure and the
latter failure of machine tools, and the occurrence of the for-
mer failure will have an important impact on the latter failure.
When establishing a failure model for CNCmachine tools, the
correlation between failures should be taken into account so as
not to affect the accuracy of the analysis results.

6 Conclusion

Early failure seriously restricts the improvement of the quality
of CNC machine tools. The existing research on early failure
of CNC machine tools lacks a clear definition of early failure

and does not classify early failures according to their different
characteristics and assumes that all early failures obey the
unified distribution. At the same time, the characteristics of
early failure of CNC machine tools are not considered when
establishing the early failure model. When analyzing multiple
CNC machine tools, it is assumed that they have the same
model parameters. In addition, the relationship between the
former failure and latter failure is not considered when estab-
lishing the early failure model of CNC machine tools. The
above reasons make the final early failure model of CNC
machine tools not appropriate and accurate.

To address those problems, the early failures of CNC ma-
chine tools are divided into sudden early failures and progres-
sive early failures herein, and they are strictly defined.
Considering the unpredictability of sudden early failures, the
analysis model of this kind of early failure is established by
5M1E method.

According to the randomness of progressive early failures,
the failure occurrence time rather than failure interval time is
taken as the analysis data, and the mathematical model of
progressive early failures is established by BBIP method.

Machine toolsmade in China are analyzed as an example, and
the conclusion that different product failures of the same model
could not be analyzed by the same parameter model is obtained.
The reliability of the product is also evaluated by its instanta-
neous reliability indexes and cumulative reliability indexes. The
relationship between the former failure and the latter failure of

Table 9 Failure data fitting
parameters and effect Coefficient a0 a1 b1 a2 b2 ω Fitting effect

Value 636.60 220.20 39.35 218.50 21.03 0.02815 0.9502

Fig. 22 Relevance between the
first failure and second failure of
machine tools
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CNC machine tools is discussed by simple correlation and com-
plex correlation. It is concluded that the occurrence of the former
failure will have an important impact on the latter failure.

The research results lay a foundation for the accurate es-
tablishment of CNC machine tool early failure model. The
accuracy of the early failure model is the premise of the early
failure mechanism analysis and early failure elimination mea-
sures establishment.

Therefore, the method proposed in this paper not only en-
riches the existing early failure analysis methods, but also
provides a basis for shortening the early failure period of
CNC machine tools and improving their reliability.
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