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Abstract
As an additive manufacturing technology, selective laser melting (SLM) can form any complex metal parts, which has unpar-
alleled advantages compared to traditional processing methods. However, there are still some problems such as accuracy and
non-repeatability to overcome to apply SLM to production practice. The high-precision monitoring and degradation feedback
technology of SLM equipment is the future development direction. The real-time monitoring machine can repair itself and avoid
the tedious detection in the post-processing stage. The researchers mainly monitor the quality of the forming process by molten
pool signal, temperature signal, sound signal, and scanning track. The forming process is monitored using coaxial detection or
paraxial detection through a high-speed camera, pyrometer, and other equipment. This paper can provide theoretical support for
the SLM intelligent monitoring field.
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1 Introduction

Selective laser melting (SLM), similar to welding, is a kind of
layered production technology, which uses layered stacking to
produce complex metal parts. In the atmosphere of inert gas
(usually nitrogen or argon), the laser system selectively melts
the powder on the powder bed according to the predefined 3D
data model. The powder bed is deposited to a certain height
according to the preset layer thickness, and the metal powder
is evenly spread on the substrate by the scraper. The deflection
direction of the laser beam is controlled by the galvanometer
and f-θ field mirror to reach any position in the forming area.
The tools and fixtures are eliminated since the laser beam and
metal powder are used as manufacturing tools, and the advan-
tages of the short production cycle, high material utilization

rate, and low cost by using SLM [1]. In theory, SLM can form
any complex part and realize personalized customized service.
SLM molding parts can be widely used in medical, mold,
aerospace, ship, automobile, and other fields [2]. The sche-
matic diagram of SLM equipment is shown in Fig. 1.

After decades of development, SLM has made great prog-
ress and can meet the manufacturing of complex 3D parts in
most commercial fields. However, the quality of the SLM
parts is far from the commercial standard. SLM-
manufactured metal parts are difficult to be applied in actual
production without post-processing, especially in the medical
and aerospace fields with challenging quality and certification
requirements. One of the main standards is that the
manufacturing accuracy and forming quality related to the size
required by the final product are not up to the standard. The
industrialization of SLM is hindered by process instability and
non-repeatability. The lack of in situ monitoring and process
quality assurance is one of the main obstacles for SLM to be
widely used in the modern manufacturing industry [4, 5]. The
phenomenon ofmultiphysics involved in SLM is related to the
strong changes in heat and radiation transmission during laser
melting. Due to the uncertainty in the heat transfer process,
different modes of powder melting to solidification may occur
even in a single layer [6]. The effective thermal conductivity
of powder with the particle size of tens of microns is 5–10

* Dongju Chen
djchen@bjut.edu.cn

1 Mechanical Industry Key Laboratory of HeavyMachine Tool Digital
Design and Testing, Faculty ofMaterials andManufacturing, Beijing
University of Technology, Beijing 100124, China

2 Beijing Key Laboratory of Advanced Manufacturing Technology,
Faculty of Materials and Manufacturing, Beijing University of
Technology, Beijing 100124, China

https://doi.org/10.1007/s00170-020-06432-1

/ Published online: 3 March 2021

The International Journal of Advanced Manufacturing Technology (2021) 113:3121–3138

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-06432-1&domain=pdf
mailto:djchen@bjut.edu.cn


times that of air, and its heat transfer becomes insignificant
compared with the solidified specimen. The laser energy input
easily leads to a high-temperature gradient because of the poor
heat transfer effect of the powder. The high-temperature gra-
dient produces thermal stress, which will cause deformation
and even lead to molding failure [7].

There are many physical field phenomena in the SLM
forming process, such as gravity, buoyancy, surface tension,
capillary action, and the Marangoni effect. These phenomena
will have different effects due to different materials and
forming processes. More than 50 parameters affect the final
quality of SLM due to the unique molding process (solid-
liquid-solid), different powders, and process parameters [8].
These parameters can be divided into four categories: (1) pro-
cess parameters, (2) powder material properties, (3) powder
bed properties and recoding parameters, (4) molding environ-
ment parameters [9]. Most of them are predefined parameters,
and only a few of them are adjustable (adjustable parameters
include laser power, scanning speed, scanning hatch space,
spot diameter, layer thickness, scanning strategy, exposure
time, substrate preheating temperature, oxygen content, pres-
sure, and other parameters). The SLM molding process is
prone to produce internal defects due to many factors, but
the post-processing of defects is very difficult or even impos-
sible. Small changes in process conditions can lead to huge
differences in microstructure [10]. The defects and errors in
SLM can be divided into the following categories: (1) defects
caused by equipment, (2) defects caused by process, (3) de-
fects caused by model (or additive selection design), (4) de-
fects caused by powder [11].

The cross-scale forming process of SLM should be studied
using very precise time and space scales. From the micro-
level, the powder is melted by laser to form a molten pool,
and the stability of the molten pool directly determines the
quality and stability of the forming process [12]. Adjust the
process parameters in time to ensure the stability of the molten

pool according to the relevant information of the molten pool
(including the width or area of the molten pool). The molten
pool monitoring system can measure the temperature inside
and around the molten pool, which is usually used for the
development and comparison of multi-physical simulation.
In addition to the monitoring of the molten pool, the change
of the forming process caused by the change of process pa-
rameters also needs to be monitored and controlled. Spattering
is one of themost common behaviors that lead to defects in the
SLM forming process. The plasma produced by spattering is
mainly divided into droplet spatter produced by liquid metal
tearing and powder spatter formed when the non-molten metal
powder particles around the molten pool are blown away [13].
Plasma can be monitored by in situ induction, including the
amount of ejected material and the overall spattering behavior
[14]. Besides, it is necessary to monitor the effect of the melt-
ing track and overlap to ensure the stability of the forming
process. Defects such as internal pores of components are
related to insufficient fusion and local overheating of the melt-
ing track.Monitor the shape, thickness, and temperature of the
melting track to characterize the overall molding quality.
Compared with the three-dimensional model, the accuracy
of the molding process can be measured, and the existence
of internal defects can be determined [15]. Therefore, the in
situ quality control system should monitor and control the
whole forming process, including the gas atmosphere, molten
pool status, track shape, and temperature range.

SLM currently does not support in situ closed-loop control.
It is an important way to support the development of SLM to
monitor and control in situ by acoustic signal, optical signal,
thermal signal, and other signals. The current research is only
focused on the monitoring field, not the control field. But,
monitoring is the precondition of control, and the excellent
monitoring field can lay the foundation for the realization of
closed-loop control in the future. The ultimate goal of SLM
process monitoring is to effectively control the forming pro-
cess with real-time closed-loop feedback [16]. Carrying out
process-oriented real-time monitoring and feedback research
and correcting or repairing when building components are the
keys to ensuring high-quality SLM molding. For real-time
monitoring, the optical sensor, acoustic sensor, temperature
sensor, and other sensors are needed. The feedback circuit
adjusts the process parameters in real time according to the
signal collected by the sensor to obtain the required perfor-
mance. The current research focuses on high-speed camera
monitoring based on machine vision, sound monitoring based
on sound wave, temperature monitoring based on molten pool
thermal imaging, and component monitoring. It mainly mon-
itors the information related to the molten pool, including the
temperature, shape, area, spatters information, and element
evaporation. The dynamic relationship between the acquired
signal and process parameters is confirmed by system identi-
fication, and then, a stable robust controller is designed to

Fig. 1 Schematic overview of the SLM machine (reproduced from [3],
Copyright (2010), with permission from Elsevier)
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realize real-time feedback control. The ultimate goal of pro-
cess monitoring is to ensure the forming quality of parts and
reduce the dependence on expensive and time-consuming
post-process inspection. With fast response time and high-
resolution sensor, the variables and signals which are easy to
analyze in the forming process are monitored, and the collect-
ed information is managed and analyzed to make decisions.

For the monitoring research of laser wire-based directed
energy deposition (DED) processes, some documents give a
better explanation [17, 18]. There are many kinds of research
on visual monitoring [19] and temperature monitoring [20] of
electron beam melting (EBM) technology in the current re-
search, and monitoring equipment can be easily integrated
into the equipment of electron beam melting processes. The
accuracy and quality of SLM are higher than DED and EBM,
and the forming process is accompanied by sound, light, elec-
tricity, and heat conduction that are difficult to monitor. The
detection types include non-contact temperature measurement
(pyrometer and infrared imaging), machine vision imaging,
and low-coherence interferometry. Based on the sensor instal-
lation strategy, it can be divided into coaxial system and
paraxial system. In the coaxial system, the monitoring sensor
is placed in the laser path, and in the paraxial system, the
monitoring sensor is placed outside the laser path. Compared
with coaxial monitoring, paraxial monitoring can monitor the
forming process without changing the machine equipment.
The monitoring information provides detailed information
on various phenomena in the molten pool and forming process
with high-temporal and spatial resolution, which provides di-
rect support for process optimization. It can be concluded that
closed-loop control can ensure the stability of the forming
process by monitoring relevant information and combining
relevant data processing methods to develop optimization al-
gorithms based on machine learning.

2 Coaxial detection

2.1 Cameras and pyrometers for monitoring

The preliminary research combines the optical measuring de-
vice based on temperature distribution in the sintering area by
the camera with the online optical temperature monitoring
system based on the highest surface temperature of irradiation
point by the high-speed dual-wavelength pyrometer, as shown
in Fig. 2. The thermal radiation intensity of the surface of the
laser action area is recorded by a CCD camera or pyrometer at
one or two spectral intervals and is related to the thermal
radiation intensity of the blackbody simulator located in the
same surface area. The system integrates two types of sensors:
two-dimensional sensor digital CCD camera and single-point
sensor pyrometer based on the photodiode. In situ temperature
monitoring provides the possibility to optimize the forming
process of high-porosity powder [21].

To continuously monitor the surface temperature (the tem-
perature of the laser impact zone), Pavlov et al. used optical
fiber to connect the dual-range pyrometer (11, Fig. 3a) record-
ing the surface thermal radiation with the Phenix PM-100
optical unit (10, Fig. 3a). The results showed that the pyrom-
eter signal generated in the laser impact zone is sensitive to the
changes of the main operating parameters (powder layer thick-
ness, hatch spacing, scanning speed, etc.), and the device can
be used for in situ monitoring of molding quality. The influ-
ence of molding parameters on the structure and porosity can
be judged by the different signals generated by the pyrometer
[22]. To ensure that the intensity of LED scattering radiation
exceeds all other emissivities except the laser impact area, an
LED ring illumination system is used to illuminate the
forming area [23]. Doublenskaia et al. added a CCD camera
(560 × 760 pixels) to the device as shown in Fig. 3b. The CCD

Fig. 2 a Optical scheme of the system for temperature monitoring of the
SLSmachine: 1, working area; 2, focusing objective; 3, laser telescope; 4,
photodiodes; 5, digital video camera; 6, MCP; 7, prism with dichroic
coatings. b Monitoring system for the melting process: 1, fiber laser

output; 2, telescope; 3, 4, gradient dichroic beam splitters; 5, scanner
head; 6, 9, 18, dichroic beam splitters; 7, 10, 14, 15, 19, lenses; 12, 13,
17, filters; 8, 16, CCD camera; 11, LED; 20, pyrometer fiber (reproduced
from [21], Copyright (2010), with permission from Elsevier)
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camera (12, Fig. 3b) measures the thermal radiation from the
heat-affected zone (HAZ). Because the coefficient of thermal
conductivity of the powder bed is 20 times lower than that of
bulk material, the average temperature increases with the in-
crease of powder layer thickness. From a certain critical value,
the pyrometer signal and brightness temperature reach the
maximum value and stable value due to the disappearance of
the contact between the melted powder layer and the substrate.
Therefore, all laser energy is absorbed by the powder and
there is no heat loss in the substrate (as shown in Fig. 4).
Berumen et al. [25] used a coaxial monitoring system to mon-
itor the active construction area and allowed a resolution of
10 μm per pixel. The results showed that the temperature
gradient of the whole construction area can be identified by
the photodiode sensor.

Molten pool monitoring equipment can be used to monitor
the molten pool because the wavelength of the laser beam is
different from that produced by the molten pool. Craeghs and
Clijsters designed a coaxial monitoring system, as shown in
Fig. 5. The laser source is deflected to the F-θ field mirror
through the half mirror, and the F-θ field mirror focuses the
laser beam on the working area to melt the powder. The pow-
der melts to form a molten pool, and the radiation generated
by the molten pool is transmitted to the beam splitter through
the F-θ field mirror and the semi-mirror. The radiation sepa-
rated by the beam splitter is transmitted to the planar photodi-
ode and high-speed CMOS camera. Planar photodiodes cap-
ture laser radiation in a certain range of wavelengths, and
high-speed CMOS cameras are responsible for collecting pool
characteristics such as melt area, length, and width. The upper

Fig. 3 a Monitoring device with
integrated pyrometer. b
Monitoring devicewith integrated
pyrometer and CCD camera. 1,
fiber laser; 2, beam expander; 3,
laser beam/thermal signal sepa-
rating mirror; 4, scanner head; 5,
F-theta lens; 6, powder bed; 7,
mirror; 8, pyrometer lens; 9, fiber
tip; 10, optical fiber; 11, pyrome-
ter; 12, CCD camera (reproduced
from [22, 24], Copyright
(2010,2012), with permission
from Elsevier and Japan Laser
Processing Society)

Fig. 4 Variation of the pyrometer
signal and variation of the
maximum brightness temperature
in HAZ measured by CCD
camera with a powder layer
thickness (reproduced from
[24] with permission from Japan
Laser Processing Society)
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limit of the captured wavelength is set to 950 nm to avoid laser
induction (laser wavelength is 1064 nm), and the 780-nm
wavelength higher than the visible light threshold is set as
the lower limit. The system can distinguish the area of molten
powder and air hole and realize the real-time processing of the
molten pool image by using a field programmable gate array
cell. The results show that actual defects (after cutting speci-
mens or using X-ray CT scans) have good compatibility with
defects observed in situ by the coaxial monitoring system [3,
26]. The 3D reconstruction defect detected by the system is
almost the same as that detected by X-ray computed tomog-
raphy. Furthermore, they studied the response of the system in
dealing with different part geometry [27] and developed the
technology of mapping the molten pool data to the plane co-
ordinate system [28].

The temperature gradient of SLM determines the micro-
structure and mechanical properties of the parts. The proper
temperature gradient can form high-quality specimens, and
the poor temperature gradient distribution will lead to the
powder not melting (too low temperature) or element evapo-
ration (too high temperature). Therefore, it is necessary to
monitor the temperature during the forming process.
Yadroitsev et al. used a CCD camera coaxial optical detection
system equipped with a resolution of 782 × 582 pixels to col-
lect signals to monitor the temperature distribution in the mol-
ten pool, as shown in Fig. 6 [29]. To measure the brightness
and temperature of the laser-irradiated area, the monitoring
equipment projects the molten pool image with five times
magnification onto the CCD camera. With the increase of
laser power and exposure time, the maximum temperature of
the molten pool increases significantly. To visualize the dy-
namics of the molten pool, Lott et al. added an illuminating

laser beam (with a different wavelength from the intense laser
used for melting) during the forming process. The radiation
intensity of the molten pool will be higher when the illumina-
tion laser is added, so the camera can capture images at a high
sampling rate to enhance the visualization of the dynamics of
the molten pool. However, with the addition of the illumina-
tion laser, the temperature measurement cannot be carried out
because the incandescent radiation from the processing area is
smaller than that from the reflected illumination [30, 31].

2.2 In situ coherent diffractive imaging for monitoring

The study of powder-related state can reveal the key topolog-
ical information closely related to the final part quality. Low-
coherence interference imaging (in-line coherence imaging,
ICI) technology is used in the SLM process, which is robust
to deal with the interference of laser and radiation. ICI is a
low-coherence interference imaging technique closely related
to spectral-domain optical coherence tomography (SD-OCT)
[32]. ICI can allow high-speed microscale morphology mea-
surement, which can identify the physical state of the speci-
men (i.e., the relationship between powder, melt, and solidifi-
cation track) and the characteristics of unstable melt formation
caused by defects [33].

Neef et al. integrated sensors into SLM production units
based on ICI [34]. To overcome the limitation of static inter-
face monitoring, Jordan has developed a device based on ICI
to monitor the pool dynamics, as shown in Fig. 7. The system
consists of a low-power broadband light source, a high-speed
spectrometer, and an optical fiber Michelson interferometer
(Fig. 7a). Fiber-coupled broadband light emitted by SLD first
passes through the optical isolator to prevent reflection. A

Fig. 5 Schematic overview of the experimental setup to the monitoring system (Reproduced from [3, 28], Copyright (2010,2012), with permission from
Elsevier)
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50:50 beam splitter is used to split the light into the sample
arm and the reference arm. The light in the sample arm is
coaxially combined with the processing laser beam through
a dichroic mirror. Figure 7b–c shows the in-line coherent im-
aging monitoring systems integrated into two different selec-
tive laser melting systems. A common laser processing objec-
tive is used to focus the combined beam on the sample. The
imaging light is backscattered from the specimen and collect-
ed by the sample arm optical fiber. The light in the reference
arm passes through the fiber polarization controller and the
dispersion matching element to compensate for the polariza-
tion change caused by the single-mode fiber and the

dispersion caused by the optical element in the sample arm.
The light in the reference arm is reflected from the reflector
and coupled to the interferometer. The reflected light from the
sample arm and the reference arm is reflected by the beam
splitter and transmitted to the spectrometer. The relative opti-
cal path difference between the sample arm and the reference
arm results in the electric field phase difference, which leads to
the combined intensity spectrum (i.e., interferogram). SD-
OCT interpolation, Fourier transform technology, or single-
step homodyne filtering technique can be used to process the
collected signals. ICI technology is suitable for measuring the
pool strength, height, and longitudinal size along the

Fig. 7 The system of laser imaging processing. a The ICI system: SLD,
superluminescent diode (SLD); FC, coiled fiber; PC, polarization control-
ler; DC, dispersion compensating elements. b The system of melting pool
imaging for morphology measurements of the melt zone and surrounding

areas. c The system of laser processing control with coaxial imaging for
faster processing speeds (reproduced from [33], Copyright (2016), with
permission from Elsevier)

Fig. 6 The optical system for
temperature measurements
(reproduced from [29], Copyright
(2014), with permission from
Elsevier)
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monorail, so that different types of defects can be detected,
including spheroidization, lack of fusion, excessive melting,
and other surface irregularities.

3 Paraxial detection

3.1 High-speed camera for monitoring

In the coaxial monitoring system, the optical elements of the
laser beam melting system need to be retrofitted. Also, all the
monitoring systems cannot compare the monitoring results
with the quality of the final molding, only limited to the cur-
rent molten pool and its surrounding environment. The pro-
cess error can be monitored without changing the equipment
by using paraxial monitoring. Many scholars use the high-
speed camera or infrared camera to monitor the forming qual-
ity. The high-speed vision system is used to monitor the melt
state, while the low-speed but high spatial resolution camera
monitors the state of the powder layer or when it forms a track.
Due to the airtightness of the molding space, germanium or
B270 ultra-white glass is needed to close the molding cham-
ber [35].

Kleszczynski et al. [36] used a monochromatic CCD cam-
era system for visual detection and error analysis. The camera
(SVCam-hr29050, SVS-VISTEK GmbH) was installed out-
side the window of the machine, and the image in the molding
chamber is taken from the viewing angle. The tilt and shift
lenses (Hartbli Macro 4/120 TS Superrotator) help reduce
perspective distortion by moving the camera backward. The
camera uses a 36 × 24-mm Kodak 29 megapixel sensor (6576
by 4384 pixels, pixel size 5.5 μm by 5.5 μm). The structure
used to provide uniform illumination for the metal weld is
added to minimize the mirror reflection that will saturate the
camera CCD sensor to ensure the best imaging quality. It is
found that diffuse illumination can produce the best surface
image quality when the light source is close to the working
surface and back to the camera.

The imaging system can measure geometric features, so
it can be used to control the size accuracy. Jacobsmühlen
et al. used the system to detect the surface quality and
defects of specimens, and the results can be used for pro-
cess optimization [37]. When it is detected that the layer is
not completely covered by powder, the salient point can be
captured. With the increase of laser power, the outer region
increases, which makes the powder layer unable to cover
the rising region. These areas are detected and highlighted
by a white box (bottom). Reducing the laser power can
effectively improve the forming quality. Reducing the
hatch space will lead to higher energy input, resulting in
a poor molding effect and more white boxes. Then, they
developed image analysis and processing software to iden-
tify the lifting area of the whole powder bed. The

quantitative measurement method is used to analyze all
construction layers of the construction areas and parts. To
speed up the identification process and reduce the amount
of calculation, the powder layer image acquisition and im-
aging system were used to evaluate the processing behav-
ior of the supporting transition and overhanging structure
by measuring the total area of the rising area and the aver-
age area of the connected area [38]. The team monitored
the bulge area in the molding process, comparing the high-
resolution image after powder deposition with the high-
resolution image after melting. By comparing the high-
resolution image after powder deposition and the high-
resolution image after melting, using a stochastic gradient
descent classifier and a stereo matching problem descriptor
with an angular resolution of A = 20°, the cross-validated
F1-score (for the definition of F1-score, please refer to the
original literature.) can be reached 0.67 [39].

Hirvimäki et al. used a spectrometer to measure the spectral
content of the molten pool radiation, a pyrometer to measure
the temperature change of the molten pool, and a CCD camera
for active lighting. The visual information of the molten pool
in the process of processing under different scanning speeds,
layer thickness, and hatch spacing is obtained by using this
method [40]. Zhao et al. used high-speed X-ray imaging and
diffraction (as shown in Fig. 8) to monitor theprocess of laser
powder bed fusion. As shown in Fig. 9a, it can be observed
that the process starts with the melting of the Ti-6Al-4V pow-
ders around the laser spot and then the Ti-6Al-4V base. A
small cavity or depression area is formed as the powder moves
inside and outside the powder bed. A dome-shape metal struc-
ture without obvious structural defects is formed in the end.
As shown in Fig. 9b, the interaction between laser and metal is
much more violent than that in Fig. 9a. The balance of surface
tension and recoil pressure also governs the melting process
shown in Fig. 9a, but in the case shown in Fig. 9b, their
combined effects on the melt pool dynamics and powder mo-
tion are muchhigher [41]. The high-speed camera can be used
not only to monitor the molten pool but also to monitor the
powder spreading state and the forming continuity. Craeghs
et al. [42] constructed a monitoring platform using a visual
camera with a focus lens and three light sources. Two types of
defects caused by scraper are detected by the way of front
lighting: one is that the abrasion of the scraper will cause a
small scratch in the whole area and the other is that local
damage of scraper will cause a local deep scratch. He also
developed a system to monitor the status of the molten pool.
Through the monitoring of the molten pool area and the
length-width ratio of the molten pool, the input parameters
(laser power and scanning speed) of the molten pool can be
real-time feedback controlled. Due to the dynamic of the SLM
process, the processing rate of real-time feedback control
based on the high-speed camera must be at least about 10 kHz.
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Krauss et al. used a long-wave infrared (8–15 μm) camera
which was limited to 50 frames per second, and the time
constant of the sensor was 5–15 ms. Although the location
and size of the weld pool cannot be distinguished, defect de-
tection can still be carried out [38]. Bayle et al. used a mid-
infrared (3–5 μm) camera to capture the thermal image of the
SLM forming process area, and quantified the size and

splashing speed of plasma [43]. As shown in Fig. 10,
Repossini et al. used a high-speed machine vision system to
study the impact of spatter on the molding quality. The high-
speed camera captures images at a rate of 1000 frames per
second to capture the splashing behavior at a sufficient time
resolution. The results showed that splashing behavior can be
used to characterize the process stability. Identifying different

Fig. 8 Schematic of the high-
speed X-ray imaging and diffrac-
tion experiments on laser powder
bed fusion process at the 32-ID-B
beamline of the Advanced Photon
Source (reproduced from [41],
Copyright (2017), Open access)

Fig. 9 Dynamic X-ray images of
laser powder bed fusion processes
of Ti-6Al-4V. The laser powers
are 340 W for image group (a)
and 520 W for group (b), respec-
tively (reproduced from [41],
Copyright (2017), Open access)
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patterns of the spattering behaviour to classify the current
melting state through the research and modeling of splash
behavior [44], as shown in Fig. 11.

Furumoto et al. [45] monitored the melting process and so-
lidification process of metal powder by a high-speed camera
(recording speed of the high-speed video camera was
10,000 fps). The results showed that when the metal powder
is heated to form a melting zone, the laser irradiation zone
scatters circumferentially. The shape of the solidified structure
is affected not only by the surface tension caused by the melting
of the metal powder but also by the adhesion caused by the
wettability. Islam et al. [46] used a Baumer CMOS camera with

Cavitar CAVILUX diode laser illumination to monitor the
spheroidization during the molding process. The balling was
reduced by increasing the energy input. When the energy input
exceeds a certain value, the balling was visible again. The re-
search of Kruth et al. [47] found that the combination of high
laser power and high scanning speed can reduce the occurrence
of spheroidization. Criales et al. [14] used real-time thermal
imaging device to collect themelt and surrounding temperature.
It is possible to infer changes in the sizes of melt pools from the
thermal camera recording by observing the size of the measur-
able isotherms surrounding the actual liquidmelt pool. The re-
sult of image segmentation using liqui dus temperature as

Fig. 11 Scatterplot of spatter and the laser heated zone (LHZ) descriptors; blue crosses: under-melted, green squares: normal-melted, red circles: over-
melted (Reproduced from [44], Copyright (2017), with permission from Elsevier)

Fig. 10 Off-axial mounting of the
high-speed camera outside the
build chamber (reproduced from
[44], Copyright (2017), with per-
mission from Elsevier)
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threshold on single frame is shown in Fig. 12, where the molten
region is marked red and the cooler region is marked blue.

Krauss et al. [35] established a low-cost radiometer camera
for process monitoring and studied its sensitivity to process
deviation detection. The camera has a long-wave infrared
range (LWIR) and a sampling rate of 50 Hz. The device can
identify the deviation caused by process parameter drift or
random process error during the molding process and detect
the inner cavity and defect at the same time. However, the
monitoring range of the equipment is 160–120 mm, which
accounts for about 30% of the total forming area. To find
out the correlation between the temperature distribution, the
stability of the forming process, and the final product quality,
Krauss et al. studied the influence of scanning vector length,
laser power, and layer thickness and distance between parts on
the thermal distribution of specimen [48]. The key indicators
are assigned to every position of the current cross section of
the entire layer, as shown in Fig. 13. A three dimensional
quality report for key indicators can be generated through

stacking of individual layer data. Monitoring and evaluation
of solidification and layered deposition can help identify de-
fects in the early stages of the solidification process.

Krauss used thermal imaging equipment to monitor the
changes in thermal history caused by parameter changes
[49], as shown in Fig. 14a. The camera uses a 640 × 480-pixel
focal plane array and operates in the spectral range of 7 to
14 mm. Combined with a 50-mm lens, it can achieve a reso-
lution of about 250-mm pixels. Collect information about all
layers of part quality by monitoring the information of each
layer. The 3D quality report similar to the tomographic meth-
od is formed by deriving the quality index map of each layer
(as shown in Fig. 14b–e). The device can well evaluate the
thermal history of forming and associate with forming quality.

Abdelrahman et al. [50] described a device for monitoring
fusion defects of powder bed by using optical imaging technol-
ogy, as shown in Fig. 16. The system is equipped with a 36.3
megapixel DSLR camera (Nikon D800E) with an image size
up to 7360 × 4912 pixels. The device with multiple flash

Fig. 12 Thermal camera setup. a Side view of the laser powder bed
fusion (L-PBF) machine, custom door, andthermal camera. b CAD solid
model of L-PBF machine build chamber and custom viewport. c Optical

axis, plane of focus, and vertical iFoV projected on the build plane
(reproduced from [14], copyright (2017), with permission from Elsevier)

Fig. 13 Data processing to generate a visual quality report (reproduced from [48], Copyright (2014), with permission from Elsevier)
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modules is installed in the cabin of EOS M280, which can
obtain images after powder scattering and laser exposure.
Four photos are taken by flash 1–4 (the position of flash is
shown in Fig. 15) after repainting, and one photo is taken when
indoor lighting is turned on. The acquired image is segmented
by the binary template. The intentional defects are designed into
the parts at different positions, and then, the defects are detected
automatically. The results showed that the accuracy is high.

3.2 Sound collector for monitoring

The laser may be affected by the characteristics of the lens in
the Lagrange coordinate system when using coaxial monitor-
ing. The laser is easily affected by the angle and distance when
using paraxial monitoring, even if the strong signal is received
in the Eulerian reference frame. Acoustic sensors have many
advantages in SLM process monitoring due to their non-con-
tact, non-destructive and flexible nature, as shown in Fig.
16. Ye et al. [51] proved the feasibility of acoustic signal
quality monitoring through experiments. The features of the
collected signals are extracted, and then, defect detection is
carried out using the directed belief network (DBN) frame-
work. The formation of trajectory in the SLM forming process
is related to the sound signal, and the sound signal is related to
the change of splash particles. Therefore, the sound signal in
the forming process of SLM can be used to predict the
forming track of SLM.

4 Other in situ monitoring cases

Sigma Labs PrintRite3D is currently the most commonly used
quality control method for additive manufacturing quality as-
surance and process monitoring. The computer automatically
compares the similarities and differences between the cap-
tured images and the slices of the design model by processing
the acquired digital image. The program instructions will stop
the operation of the equipment when the gap is large, and the
equipment will continue to operate when the gap is not obvi-
ous but will send a warning. The warning can be used as an
inspection object in the quality inspection process after print-
ing. Leung et al. [52] used high-speed synchronous X-ray
imaging to monitor defects in laser additive manufacturing
and weld pool dynamics. By operating the high-speed syn-
chrotron X-ray imaging, as shown in Fig. 17, the basic phys-
ical phenomena of the molten metal deposition orbit are re-
vealed. Monitoring shows that laser-induced gas/steam jets

Fig. 14 aMeasurement setup. b live frame during the solidification process. cAccumulated key indicator. d Layer wise composition of key indicator. e
3D quality report (reproduced from [49], Copyright (2015), with permission from AIP Publishing)

Fig. 15 a The system of monitoring equipment. b 1–4, the location of
flashes; 5, the location of chamber lights (reproduced from [50],
Copyright (2017), with permission from Elsevier)
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promote the formation of melt traces and exposed areas. The
pore migration mechanism of the flow driven by Marangoni
was also found. X-ray imaging can be achieved with unprec-
edented time (a few tenths of a microsecond) and spatial res-
olution (a few microns) through a high-throughput X-ray
beam from a synchrotron radiation source.

5 Intelligent detection technology

Intelligent monitoring technology mainly combines on-site
detection and intelligent algorithms and usesmachine learning
or deep learning algorithms for image processing. The appli-
cation of deep learning algorithms in the SLM field can con-
trol product defects (such as pores and cracks) and ensure
product quality. The monitoring system using deep learning

Fig. 16 The system of acoustic signal acquisition (Schematic diagram)

Fig. 17 a The melt track morphology at three key stages of LAM. b The
formation of a molten pool and a denuded zone (yellow dotted line). c
Molten pool wetting. d Vapor-driven powder entrainment (orange dotted

semi ellipse). e Powder spatter (purple dotted circle). f Open-pore (pink
dotted line). All scale bars = 250 μm (reproduced from [52], Copyright
(2018), Open access)
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algorithms can monitor and control the parameters of the
molding process online to achieve real-time feedback.
Intelligent methods have been widely used in manufacturing
process monitoring and defect detection. Neural network
(NN) is the most studied method and has been used in detec-
tion scenarios such as welding defect identification [53]. Yuan
et al. [54] used an image processing algorithm based on a
convolutional neural network (CNN) to build the core frame-
work of the online monitoring system of SLM. More than
1000 videos collected in the experiment are trained by CNN
to identify the required quality indicators. It has been proved
that the algorithm can be applied in the process of processing
with high application reliability. Scime et al. [55, 56] devel-
oped an algorithm based on machine learning and computer
vision, as shown in Fig. 18, which can be well used as a post-
build analysis tool to enable the user to identify fault patterns
and locate areas in the final part that may contain macroscopic
(millimeter) defects.

The plasma produced in the forming process includes the
ionized gas from the atmosphere and the evaporated or ionized
metal from the powder bed. The plasma may absorb or refract
the laser radiation, thus affecting the energy absorption of the
melt [57]. The thermal radiation from the molten pool is usu-
ally in the visible to an infrared range (900 to 2300 nm), while

the plasma emission wavelength is in the near ultraviolet or
visible wavelength (400 to 650 nm), and the laser backward
reflection occurs in the laser wavelength 1060 to 1080 nm
[30]. Therefore, we can use different radiation wavelengths
to monitor the plasma. Repsini et al. confirmed that plasma
can be used as a feature for real-time adjustment of the SLM
process [44]. As shown in Fig. 19, plasma is mainly caused by
three sources, namely recoil pressure, the Marangoni effect,
and the heating effect of the molten pool. Different sources
lead to different splash patterns [58]. Grasso et al. [59] extract-
ed plume features from infrared video and constructed an
SLM molding zinc powder in situ monitoring system using
K-chart, forming an evaluation system for judging processing
quality. Yang et al. [60] proposed a maximum entropy dual-
threshold image algorithm based on a genetic algorithm
(MEDTIA-GA) to identify plasma. This method uses the
maximum entropy segmentation algorithm as the fitness func-
tion. The genetic algorithm will automatically find the global
threshold in a short time by maximizing the pixel information
entropy. The results showed that the new image processing
algorithm eliminates three types of segmentation errors (noise
sensitivity, splash adhesion, and splash omission), as shown in
Fig. 20. Compared with other algorithms, the MEDTIA-GA
method gives the most accurate feature of the splash.

Fig. 18 Flowchart of the machine learning process implemented (reproduced from [55], Copyright (2018), with permission from Elsevier)
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Fig. 19 Formation mechanisms of spatter (reproduced from [58], Copyright (2016), with permission from Elsevier)

Fig. 20 Comparison of image
processing: a the target images, b
triangle threshold segmentation
algorithm, c K-means clustering
algorithm, d Otsu’s method, e
MEDTIA-GA (the dashed white
curves indicate the occurrence of
errors) (reproduced from [60],
Copyright (2020), with permis-
sion from Elsevier)
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Kwon et al. [61] used a high-speed camera and field pro-
grammable gate array (FPGA) chip to form a molten pool
image acquisition system and used a deep neural network
framework to classify image data (refer to reference 61 for
details of neural network). The classification failure rate of
13,200 test images using the deep neural network is less than
1.1%, and this model can be used to infer the location that
caused the unexpected change in the microstructure. Velo3D
has developed the VELO 3D Assure™ intelligent inspection
system. The system first simulates the parts processing pro-
cess, generates processing strategies, and then goes through
various process controls to ensure the quality stability and
consistency of multiple parts processing. The system can de-
tect and mark process abnormalities and display corrective
actions to avoid repeated errors. Differences can be reduced
by real-time monitoring based on multiple sensors and ma-
chine algorithms.

6 Summary and prospect

Different behavior characteristics can be observed during the
SLM forming process, including the existing research on mol-
ten pool signal, temperature signal, sound signal, scanning
track, slice and powder layer, vibration of scraper system,
deformation of parts and base plate, etc. Some scholars use a
high-speed camera system, non-contact pyrometer, near-
infrared thermal CMOS camera, photodiode, and microphone
to collect the molding process signal. Acoustic emission tech-
nology and optical coherence tomography in situ non-
destructive testing system may be applied to SLM molding
monitoring. Data processing of monitored signals remains a
huge challenge. The monitoring process produces high-
frequency big data flow, which needs to use data infrastruc-
tures such as workstation, data storage, and analysis based
on the network system and centralized server. The defect
detection method based on deep learning is developed, and
data mining and statistical analysis are used for effective
data monitoring. The real-time processing of the monitored
data requires high pixel and high sampling frequency, such
as high sampling frequency of molten pool and track mon-
itoring and high-speed camera system to capture the high
pixel of melt change, which makes the real-time analysis
challenging. The current research is still to confirm the fea-
sibility of a monitoring method, but there is no relevant
report on the research of corrective or feedback control
measures.

There are still some obstacles in the robustness, stabil-
ity, and repeatability of SLM. The trial-and-error method
is still the mainstream research technology. The destruc-
tive method is used to test the performance of the speci-
men through the design of relevant experiments. In recent
years, researchers have shifted their research from

molding technology to molding processes. The monitor-
ing of molten pool, the tracking and planning of scanning
path, the monitoring of plasma, the monitoring of acoustic
signal in the forming process, and the temperature moni-
toring are mainly studied. The online monitoring technol-
ogy for SLM process can monitor the forming quality
online and in real time. The application of in situ moni-
toring technology can avoid destructive testing and high
off-line detection costs. It can achieve the goal of intelli-
gent and efficient forming by developing intelligent
equipment that can adjust SLM parameters (including
equipment parameters and process parameters) in real
time.

The research hotspot of SLM field detection and closed-
loop control technology is still in its infancy; many institutions
are actively carrying out this research. Many developed sys-
tems can better understand the mechanism by monitoring the
SLM forming process. Some coaxial monitoring systems have
been embedded in commercial SLM equipment, but further
research on feedback control strategy is needed to make full
and efficient use of these monitoring systems. Scholars use the
paraxial monitoring system to monitor the forming process
because some SLM equipment do not have coaxial monitor-
ing. Using paraxial monitoring usually requires higher mag-
nification, higher measurable temperature range and higher
acquisition rate. Machine vision and high-speed cameras are
used to identify processing errors of SLM, such as powder bed
conditions and geometric accuracy. However, the problems
such as limited resolution, limited monitoring range (unable
to track laser for monitoring), large amount of data brought by
monitoring, and limited real-time data processing capacity of
the computer need to be solved. To achieve effective closed-
loop control, it is necessary to develop efficient sensors, im-
prove the resolution of the monitoringmachine, and use work-
stations and other equipment to improve the ability of the
machine to analyze data. Few scholars put forward the control
strategy of corrective or reactive actions after defects are de-
tected. The SLM process is lack of robustness and stability,
which is a major problem worthy of great research and tech-
nological progress. The development of in situ monitoring
solution is the key to promote the industrialization of metal
additive manufacturing.
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