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Abstract
Additive manufacturing is the process of building a three-dimensional object from a computer-aided design model, by
successively adding material layer-by-layer. This technology allows to print complex shape objects and is being rapidly
adopted throughout the aircraft industry, medical implants, jewelry, footwear industry, automotive industry, and fashion
products. The build orientation of 3D objects has a strong influence on many quality characteristics. In this paper, a many-
objective approach is applied to the Fin model, using the NSGA-II algorithm to optimize four conflicting objective functions
regarding the need for support structures, the build time, the surface roughness, and the overall quality of the surface. First,
a bi-objective optimization is performed for each couple of two objectives and some representative solutions are identified.
However, when applying many-objective optimization to the four objective functions simultaneously, some more orientation
angles are found as good optimal solutions. Visualization tools are used to inspect the relationships and the trade-offs
between the objectives. Then, the decision-maker can choose which orientation angles are more favorable according to
his/her preferences. The optimal solutions found confirmed the effectiveness of the proposed approach.

Keywords Additive manufacturing · 3D printing · Multi-objective optimization · Build orientation

1 Introduction

Additive manufacturing (AM) is a process that builds 3D
objects, from 3D model data, by adding layer-by-layer of
material. AM uses a wide variety of construction materials,
such as plastic, resin, rubber, ceramics, glass, concrete,
and metal. One of the greatest benefits of AM is the
production of a wide range of shapes. The reduction of
the development time of a prototype model in an additive
manufacturing process is one of the current challenges faced
by the manufacturing industries. Recently, AM is being
used to fabricate end-use products in several areas, such as
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aircraft, dental restorations, medical implants, automobiles,
and fashion products [1, 2].

The main concern in AM is the quality of the processed
part. Poor surface finish is one of the major limitations
in additive manufactured parts. It can be affected by
different factors, from pre-processing, processing, and post-
processing steps. The poor surface finish in AM processes
can be affected by the tessellation of the original computer-
aided design (CAD) model and the slicing procedure used
during the building process. Although a reduction in the
layer thickness may cause an improvement in the surface
roughness, it increases the build time. Post-processing
surface treatment results in additional build time and costs,
and leads to a degradation of the geometrical definition
of the model [3]. Some authors have demonstrated that an
optimized building direction can improve the surface finish
of an object [3–10].

The build orientation of a given part is a very important
factor that influences different parameters, such as the
staircase effect, the support volume, the support area, the
number of supports required, the build time, the surface
roughness, the surface quality, process planning, post-
processing, and cost [11]. Several works were presented by
different authors with the objective of obtaining the optimal
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build orientation of a 3D model in order to improve the
printing process of this model [12–14].

The work presented in [15] aims to find an optimal orien-
tation model that minimizes the amount of support material
needed to print the object. A smaller amount of support
material means a reduction in post-processing costs and an
increase in accuracy and surface finish. The minimization
of the support volume of 3D models was studied in [16].
Pereira et al. [17] optimized the object building orientation
and the need for supports generation, concluding that the
smaller the number of supports the better the accuracy and
smoothness of the surface of the object. Two global opti-
mization methods, electromagnetism-like algorithm (EM)
and stretch simulated annealing algorithm, were used to
find the best build orientation of four models, consider-
ing the staircase effect, support area, and build time can
be found in the study [18]. Matos et al. [19] performed a
single-objective work in order to obtain the optimal build
orientation, using the Genetic Algorithm (GA) and con-
sidering three objective functions, the volumetric error, the
support area, and the build time. In [20], an experimen-
tal study was carried out to optimize the build orientation
problem of six models using six quality measures. An opti-
mization model developed to improve the build orientation
based on the minimization of support structures can be
found in [21].

In a single-objective approach, a build orientation that
satisfies one or two criteria, but does not meet them
simultaneously, can be achieved. For instance, a good
orientation angle providing the construction of the object in
a fast time could lead to a big structure of supports affecting
the surface finish of the object. Thus, multi-objective
approaches have been developed to determine the optimal
object building orientation in the construction of CAD
models [22–24]. In this way, the build orientation problem
can be divided into two essential tasks. The first is based
on the identification of a set of alternative build orientations
for a 3D object. The second task is the application of a
multi-objective decision-making method, with the ability to
determine the best alternatives considering different options
[6, 25–27].

Vahabli and Rahmati [3] proposed a hybrid approach to
obtain surface roughness values for different build angles.
In this experimental research, they found that the larger
the build angle the greater the surface roughness; reducing
the layer thickness improves the surface roughness but
increases the build time. An aggregated artificial neural
network to investigate the simultaneous effects of layer
thickness and print orientation of porous structures was
developed in [28], thus verifying the compressive strength
and porosity of the layers. The particle swarm optimization
algorithm was used to approximate the Pareto front,
concluding that decreasing the orientation angles decreases

the delay time in moving to a new layer and also decreases
the compression force. In contrast, the porosity of the object
increases.

In [29], a bi-objective problem based on the amount
of supports and the surface roughness, using a Zooming-
Taguchi method, was optimized. The obtained results
showed that the proposed method produced a better part
build orientation compared to the conventional methods.
A multi-objective problem was presented in [30], where
the objectives were to minimize the support area, the
visual salience, the preferred point of view, and the
preservation of smoothness. They concluded that the
applied model was a success because it was able to
minimize the visual impact of the part. Brika et al. [31]
used the GA and considered mechanical properties, support
structures, surface roughness, build time, and cost in order
to optimize the build orientation. In [32], the GA was
used to optimize a weighted average of five normalized
evaluation criteria (build height, staircase error, material
utilization, surface area in contact with support structures,
and volume of support structures) based on their relevance
to the rapid prototyping process. They concluded that
the optimization of the considered parameters provided
significant improvements in part productivity, quality, and
economy during part fabrication.

Gurrala and Regalla in [33] applied the NSGA-II
algorithm to optimize the strength of the model and its
volumetric shrinkage, concluding that the shrinkage of the
part leads to increased resistance in the horizontal and
vertical directions. Ga et al. [34] proposed a multi-objective
strategy using a weighted sum method in order to reduce
the support volume, build time, and costs and improve the
surface quality. In [35], a multi-objective problem using the
Tchebycheff method with the EM algorithm was proposed
in order to minimize the area of the object in contact
with the supporting structures and the build time of four
3D models. A multi-objective optimization to estimate the
manufacturing cost and surface quality as a function of build
orientation is reported in [36]. An experimental study based
on a multi-objective optimization to evaluate the accuracy
of dentures using different printing directions is presented
in [37]. In [38], a multi-objective evolutionary approach is
proposed to automate the choice of an optimal orientation
in order to reduce the economic and environmental impacts
of AM production.

From the works mentioned above, it can be concluded
that the build orientation is a critical issue in AM. Moreover,
the object accuracy in AM is highly dependent on its
build orientation. The main goal of this paper is to
optimize the part build orientation problem considering
four criteria in order to provide the decision-maker the
optimal build orientations and their trade-offs in printing
the 3D Fin model. This work has a great contribution to
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the industry, since giving an adequate orientation in the
printing process can reduce the building costs and improve
the quality of the part. As far as we know, the build
orientation problem has not yet been addressed as a many-
objective optimization problem. In this paper, the many-
objective approach involves four objective functions to be
simultaneously optimized: support area (SA), build time
(BT), surface roughness (RA), and surface quality (SQ).

This paper is organized as follows. Section 2 introduces
several factors that can influence the quality of a produced
part. In Section 3, the many-objective approach is presented
as well as the 3D model to be studied. The results obtained
considering different bi-objective problems and the many-
objective problem are given in Section 4. Finally, Section 5
concludes the paper.

2 State of the art

2.1 Staircase effect

The quality of an object produced can be influenced by
many different parameters, in particular the layer thickness.
The number of layers required to construct an object affects
the printing speed and the final quality of the object. The
impact of layer thickness is more noticeable on curves and
angles and is less prominent on straight vertical walls, due
to the layer-by-layer nature of 3D printing.

The staircase effect occurs because different layers can
stay inside or outside the contours of the original models,
giving the perception of a layer, as can be seen in Fig. 1
(represented in two dimensions for a better visualization),
where the original model is represented by a semi-circle and
the layers displayed as rectangles. This effect results from
the representation of curved objects by layers and is verified
when the layer marks between the model surface and the
part surface become distinctly visible on the surface of the
parts. The error associated with the staircase effect is due
to the layer thickness and the slope of the part surface [39].
The maximum deviation between the model surface and the
printed object, caused by the staircase effect, is calculated

by the maximum deviation from the layered part to the CAD
surface measured in the normal direction to CAD surface.

The angle α is formed by the slicing direction d and
the model surface normal n, and on the layer thickness t .
Thicker layers and/or higher values of cos(α) will produce
larger values for cusp height (t cos(α)) and consequently a
more inaccurate surface appears [17, 24, 40].

2.2 Support area

The part orientation plays an important role in defining the
amount of supports required to sustain overhanging parts.
When adding a support structure to a part, the print time
will be longer since the support structure also needs to be
printed. In addition, the support structures can affect the
surface finish when the supports are removed.

The amount of supports can be measured by the support
area or support volume. The support volume is the volume
of the region that is between the layer under construction
and the platform of the 3D printer, and is computationally
very complex to calculate. The support area mainly affects
post-processing and surface finish and can be measured
through the total contact area of the external supports with
the object. Computationally, the support area is simpler and
more important than the support volume when it comes to
part accuracy [14, 18].

The support area can be mathematically formulated as

SA =
∑

i

Ai

∣∣∣dT ni

∣∣∣ δ (1)

where Ai is the area of each triangular facet i, ni is the
normal unit vector of each triangular facet i, d is the unit
vector of the direction of construction, and δ = 1 if dT ni <

0 otherwise δ = 0 [14].

2.3 Build time

The time required to create an object accurately is composed
of the time of the 3D printer to deposit the material layer-
by-layer plus the time for support removal and surface
finishing. The largest slice of time spent to build the object is

Fig. 1 Staircase effect scheme
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due to the deposition time, while the time to remove support
structures and finish the surface is only a smaller fraction of
the overall time [22].

In [14], the build time encompasses the precise time for
the platform to move downward during the construction of
each layer, which depends on the total number of slices of
the solid. On the other hand, the number of slices depends on
the height of the construction orientation of the object; thus,
the build time is proportional to the height of the model.
Therefore, minimizing the height and the number of layers
can decrease the build time of the solid.

The build time is given by

BT = max
i

(
dT v1

i , d
T v2

i , d
T v3

i

)
− min

i

(
dT v1

i , d
T v2

i , d
T v3

i

)
(2)

where d is the direction vector and v1
i , v

2
i , v

3
i are the vertex

triangle facets i.

2.4 Surface roughness

The surface roughness can be affected by factors such as
the layer thickness and the support structures [39, 41, 42]
and consequently by the part orientation. Furthermore, it
can affect the strength of parts during work performance
leading to poor product quality [43–46]. Several authors
have presented different approaches to define the surface
roughness [4, 6, 7, 47, 48]. One of the most accepted
strategies for the computation of surface roughness, given
a certain range of angles, is formalized in [9, 49]. In [5],
a review on surface roughness formulas and a combination
of strategies to evaluate the surface roughness value are
proposed.

The surface roughness for each triangle facet i, RAi , is
defined taking into consideration the build angle θ , and is
given by

RAi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

70.82
t

cos(θi )
, if 0◦ ≤ θi ≤ 70◦

1

20

(
90 RA70

i − 70 RA90
i + θi

(
RA90

i − RA70
i

))
, if 70◦ < θi < 90◦

117.6 t, if θi = 90◦

RA
θi−90
i (1 + w), if 90◦ < θi ≤ 135◦

1000

2
t

∣∣∣∣
cos((90 − θi ) − φ)

cos(φ)

∣∣∣∣ , if 135◦ < θi ≤ 180◦

(3)

where t is the thickness of the layer, θi = 90 − αi , αi

is the angle of the unit vector of the direction, and the
normal unit vector for each triangle facet i, RA70

i , and RA90
i

are the values of RAi when θi = 70◦ and θi = 90◦,
respectively. The w is a dimensionless adjustment parameter
for supported facets, φ is a phase shift in the range of
5◦ ≤ φ ≤ 15◦ depending on the layer thickness [5]. The
value 70.82 in the first branch of Eq. 3 refers to a value
inside the confidence interval (69.28 ∼ 72.36) used in [50],
w = 0.2 as proposed in [9] and φ = 5◦ as in [5].

The average surface roughness, considering the area of
the triangular facets, can be calculated by

RA =
∑

i (RAi Ai)∑
i Ai

(4)

where RAi is the roughness (in μm) of each triangular
surface i and Ai is the area of triangular facet i. The smaller
the RA values, the smoother the surface is.

2.5 Surface quality

The overall surface quality is one of the most studied
characteristics in 3D printing processes that can be affected
by the part orientation [10, 13, 40, 51]. Several studies
focused their work on the surface finish optimizing the
building time, accuracy, and stability of the part [24, 52].

One of the main issues affecting the surface finish is
the staircase effect (see Fig. 1) that is influenced by the
thickness of the layers. The smaller the layer thickness, the
smaller staircase effect, leading to a better surface finish.
This effect is related to the cusp height that is the maximum
distance between the part surface and the model surface
[53]. By using the cusp height, the surface quality can be
determined from the object geometry, build direction, and
layer thickness [20].

The global surface quality measure is defined by
integrating the cusp height over the entire surface and given
by

SQ =
∑

i |cos(αi)| t Ai∑
i Ai

(5)

where t is the layer thickness, αi is the angle between the
normal of the surface and the printing direction, and Ai is
the area for each triangle i.

3 Proposed framework

3.1 Many-objective approach

The optimization problem aiming to solve the build
orientation problem of a 3D CAD model is related to the
computation of the optimal slicing direction d , which is a
normalized vector (i.e., ‖d‖ = 1). In order to define the
build orientation problem of a model, it is only required
to consider the rotation angle θx of the model around x-
axis and θy around y-axis, because in 3D-printed layer
manufacturing the rotation of a model around the z-axis
does not affect the construction process. In this study, the
direction d = (0, 0, 1)T was considered as the slicing
direction after a rotation along θ = (θx, θy) angles, where
each angle is between 0◦ and 180◦.
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The mathematical formulation of the optimization
problem is given by

min {f1
(
θx, θy

)
, . . . , fk

(
θx, θy

)}
s.t. 0 ≤ θx ≤ 180

0 ≤ θy ≤ 180
(6)

where k is the number of objective functions and θx and
θy are the rotation angles along the x-axis and the y-axis,
respectively.

The object orientation in the AM process is one of the
key elements, which can have a significant effect on the
quality of produced object, support requirement, build time,
part stability, etc. The objective functions used in this study
are as follows: the support area, the build time, the surface
roughness, and the surface quality.

In this work, the elitist Non-dominated Sorting Genetic
Algorithm (NSGA-II) is used [54]. This is a multi-objective
genetic algorithm that mimics the natural evolution of the
species. Evolution starts from a population of individuals
randomly generated, where each individual represents
a potential solution of the multi-objective optimization
problem. In NSGA-II, each individual in the current
population is evaluated using a Pareto ranking and a
crowding measure. First, the best rank is assigned to all
the non-dominated individuals in the current population.
Solutions with the best rank are removed from the current
population. Next, the second best rank is assigned to all
the non-dominated solutions in the remaining population. In
this manner, ranks are assigned to all solutions in the current
population. The fittest individuals have a higher probability
of being selected to generate new ones by genetic operators.
NSGA-II uses a binary tournament selection based on
non-domination rank and crowding distance to select a
set of parent solutions. When two solutions are selected,
the one with the lowest non-domination rank is preferred.
Otherwise, if both solutions belong to the same rank,
then the solution with the higher crowding distance is
selected. Next, genetic operators such as recombination
and mutation are applied to create an offspring population.

Then, the two populations are merged together to form a
combined population that is sorted according to different
non-dominated fronts. If the size of the first non-dominated
front is smaller then the population size, all members of
this front are chosen for the new population. The remaining
members of the population are chosen from subsequent
non-dominated fronts in the order of their ranking.

The MATLAB� function gamultiobj provided in
the Global Optimization Toolbox [55] will be used in
order to approximate the Pareto fronts. The gamultiobj
function implements a multi-objective genetic algorithm
that is a variant of the elitist NSGA-II [54]. This function
provides a set of algorithm options related with customizing
randomization key properties, algorithm properties, and
termination criteria.

3.2 Fin model

Additive manufacturing uses 3D CAD files converted in the
form of a Standard Tessellation Language (STL) file, since
it is the industry standard file type for 3D printing. The
STL file format uses a polyhedral representation of a 3D
object based on triangular facets to represent the surfaces of
a solid model. To approximate the surface of a solid model,
triangular facets are used for the polyhedral representation
of a 3D object and the coordinates of the vertices in text
format are defined in the STL file. The STL files describe
only the surface geometry, not representing color, texture,
or other common attributes of the CAD model. The more
complex the model is, the greater the number of triangular
facets.

The 3D CAD model that will be used in this study is the
Fin model, as depicted in Fig. 2a. The model is symmetrical,
so different orientations of the model on the x-axis and
y-axis (keeping the z-axis fixed) can give the same build
orientation. The size of the Fin model is 121.5 × 53.9 × 16
(width × height × depth) in millimeter and the volume is
33.3 cm3. The number of triangles is 15,370, as can be seen
in Fig. 2b. A layer thickness of 0.2 mm was used in this
work.

Fig. 2 Fin model
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Fig. 3 Objective function
landscapes

Figure 3 shows the objective function landscapes for the
Fin model. It can be observed that all objective functions are
nonconvex with multiple local optima.

In order to know the optimal solution for each
objective function, the ga function from MATLAB Global
Optimization Toolbox� [55] that implements the Genetic

Fig. 4 Pareto front for the SA

vs. BT problem
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Table 1 Representative dominated and non-dominated solutions for
the SA vs. BT problem

Solutions θx θy SA BT

A 0.00 0.02 0.0940 53.9497

C 94.80 90.00 594.2050 121.5000

E 0.00 7.58 1841.1001 66.3335

H 90.00 180.00 2637.4021 15.9888

K 89.90 179.93 3542.0142 16.1397

Algorithm is used. GA is a stochastic, population-based
algorithm based on the natural selection process that mimics
biological evolution. GA randomly selects individuals from
a current population and uses them as parents to produce
the children for the next generations. Over successive
generations, the population “evolves” toward an optimal
solution randomly searching by mutation and crossover
among population members [56].

In this work, a population size of 50 individuals
and the maximum number of generations of 200 as
stopping criterion is considered, when running GA. The
optimal solution obtained for SA function is (θx, θy) =
(0.00, 0.00), that is equivalent to the solution (θx, θy) =
(180.00, 180.00). The angle (θx, θy) = (90.00, 180.00)

equivalent to (θx, θy) = (90.00, 0.00)) is the optimal
solution in terms of BT . For RA function, the solution

Table 2 Representative non-dominated solutions for the SA vs. RA

problem

Solutions θx θy SA RA

A 0.00 0.02 0.0940 27.9241

B 0.00 0.00 0.1313 17.0037

C 94.80 90.00 594.2050 15.1459

D 179.99 107.41 966.7508 14.9626

angle (θx, θy) = (0.02, 72.59), equivalent to (θx, θy) =
(179.98, 107.41), was obtained. The optimal SQ solution is
given by (θx, θy) = (θx, 90), representing all solutions for
which θx ∈ [0, 180] and θy = 90.

4 Optimization results

4.1 Bi-objective results

Firstly, six bi-objective optimization problems were for-
mulated for all possible pairs combinations of the four
objectives (the support area, the build time, the surface
roughness, and the surface quality):

– SA vs. BT - problem (6) with f1 = SA and f2 = BT ;
– SA vs. RA - problem (6) with f1 = SA and f2 = RA;
– SA vs. SQ - problem (6) with f1 = SA and f2 = SQ;

Fig. 5 Pareto front for the SA

vs. RA problem
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Fig. 6 Pareto front for the BT

vs. RA problem
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– BT vs. RA - problem (6) with f1 = BT and f2 =
RA;

– BT vs. SQ - problem (6) with f1 = BT and f2 =
SQ;

– RA vs. SQ - problem (6) with f1 = RA and f2 =
SQ.

The MATLAB� gamultiobj function was used
to solve the bi-objective optimization problems. The
population size and the maximum number of generations
was set to 50 (default value) and 600, respectively. Due
to the stochastic nature of the optimization algorithm,
30 independent runs were performed. By default, the
Pareto fraction is 0.35; therefore, in each run, 18 non-
dominated solutions are found (0.35× population size).
The Simplify 3D software (a 3D model printing simulator)
allows visualizing the solutions found for the Fin model
[57].

Thereafter, the results obtained for the SA vs. BT ,
SA vs. RA, SA vs. SQ, BT vs. RA, BT vs. SQ, and
RA vs. SQ problems are presented and discussed. In
all graphs, the sets of non-dominated solutions obtained
among the 30 independent runs are plotted with a blue
dot. It should be noted that most of these solutions are not
optimal and do not belong to the Pareto front. Thus, from
this overall set of solutions, the non-dominated ones were
determined and marked with a red circle defining the Pareto

front. Representative solutions are selected to discuss trade-
offs between objectives and identify the characteristics
associated with these solutions.

4.1.1 SA vs. BT

Figure 4 shows the Pareto front obtained for SA vs.
BT problem. Representative non-dominated solutions A
and H were selected. Dominated solutions C, E, and K
are also marked since they correspond to non-dominated
solutions when all objectives are optimized simultaneously
(see Table 6). Table 1 shows the orientation angles and
objective values for the representative solutions.

It can be observed that SA increases from solution A to
K. Solutions C, E, and K are dominated solutions when just

Table 3 Representative non-dominated solutions for the BT vs. RA

problem

Solutions θx θy BT RA

K 89.90 179.93 16.1397 39.2795

J 146.16 10.66 53.5297 19.7975

B 0.00 0.00 53.9148 17.0037

F 164.28 40.84 84.9517 16.8338

D 179.99 107.41 117.1316 14.9626
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Fig. 7 Pareto front for the BT

vs. SQ problem
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these two objectives are considered. Solution A dominates
solutions C and E since it is better in both objectives.
Solution K is dominated by solution H since it is worse in
both objectives.

In terms of orientation angles of the part, the part starts
with an orientation of (0.00,0.02) and, gradually, is rotated
until being totally laid down as it can be observed in Fig. 10a
and Fig. 10g.

4.1.2 SA vs. RA

Figure 5 depicts the Pareto front obtained for the problem
SA vs. RA and Table 2 shows the orientation angles and
objective values of the solutions pointed out in the graph.

All solutions from A to D are non-dominated solutions
in terms of these objectives. Solutions A and D are the
extremes of the Pareto front. Solutions A and B have similar
orientations and have values close to SA, although with very
different values of RA. Solution B is slightly worse than
solution C in terms of RA but considerably better in terms
of SA. These solutions are shown in Fig. 10a, b, and c.

4.1.3 SA vs. SQ

For the problem SA vs. SQ, just two non-dominated
solutions were found: A = (0.00, 0.02) e C = (∀θx, 90).
The first solution has fewer supports (SA = 0.0940) than

the second solution (SA = 594.2050), as can be seen in
Fig. 10a and b. Regarding the objective function SQ, there
is no major change in the value of SQ, but there is a small
improvement in the solution C, as it has a value of SQ =
0.0252, while the solution A has a value of SQ = 0.0705.

4.1.4 BT vs. RA

For the BT vs. RA problem, the selected representative
solutions are indicated in Fig. 6 and Table 3. All these
solutions are non-dominated in terms of the two objectives.

In Fig. 6, the solutions K and D are the extremes of the
Pareto front. There is an increase in the value of BT from
solution K to solution D, and, on the other hand, from K
to D a decrease in the value of RA is observed. Thus, the

Table 4 Representative non-dominated solutions for the BT vs. SQ

problem

Solutions θx θy BT SQ

K 89.90 179.93 16.1397 0.1356

I 155.30 3.23 53.4056 0.1088

A 0.00 0.02 53.9484 0.0705

E 0.00 7.58 66.3335 0.0705

D 179.99 107.41 117.1316 0.0370

C 94.80 90.00 121.5000 0.0252
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Fig. 8 Pareto front for the RA

vs. SQ problem
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objective functions BT and RA are, in this case, inversely
proportional. Moreover, solution B represents a significant
improvement on BT when compared with solution F at the
expense of a very small degradation on the RA value. So,
solution B is an efficient solution close to the elbow of the
Pareto front, representing a balanced trade-off. Figure 10j, i,
a, e, and c allow visualizing the supports needed for printing
the part.

4.1.5 BT vs. SQ

Figure 7 shows the Pareto front for the BT vs. SQ

problem. The selected representative solutions are all non-
dominated with exception of solution H. Table 4 presents
the orientations angles and the objective values for the
non-dominated solutions.

Solutions K and C are the extremes of the Pareto front.
It can be observed, from solutions K to C, an increase in
the value of BT and a small decrease in the value of SQ.
Solutions A and E have the same value as SQ, although
their orientations are similar, the values of BT are different.
Solution A requires fewer support structures providing less
time (BT ) to print the part when compared to solution E, as
shown in Fig. 10a and d. Figure 10a, b, c, d, h, and j show
a significant change in the orientation of the part.

4.1.6 RA vs. SQ

The Pareto front for RA vs. SQ problem is represented in
Fig. 8 pointing out the two non-dominated solutions C and
D. From Table 5, it is clear that there is a decrease in the
value of SQ and a small increase in the value of RA, from
solution D to solution C.

Figure 10b and c show a small change in the orientation
of the part, with solution C needing fewer supports for
printing, thus having a better surface quality (SQ) compared
to solution D.

4.2 Many-objective results

The many-objective optimization problem aims to optimize
the four objective functions simultaneously, considering
f1 = SA, f2 = BT , f3 = RA, and f4 = SQ. The

Table 5 Representative non-dominated solutions for the RA vs. SQ

problem

Solutions θx θy RA SQ

D 179.99 107.41 117.1316 0.0370

C 94.80 90.00 121.5000 0.0252
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Table 6 Representative solutions for the many-objective problem

Solutions θx θy SA BT RA SQ

A 0.00 0.02 0.0940 53.9484 27.9241 0.0705

B 0.00 0.00 0.1313 53.9148 17.0037 0.0705

C 94.80 90.00 594.2050 121.5000 15.1459 0.0252

D 179.99 107.41 966.7508 117.1316 14.9626 0.0370

E 0.01 7.58 1841.1001 66.3335 25.5034 0.0705

F 164.28 40.84 2107.7057 84.9517 16.8338 0.0807

G 162.15 43.15 2108.8774 88.6955 16.6365 0.0807

H 90.00 180.00 2637.4021 15.9888 39.3049 0.1355

I 155.30 3.23 2842.7707 53.4056 20.9137 0.1088

J 146.16 10.66 3138.6630 53.5297 19.7975 0.1202

K 89.90 179.93 3542.0142 16.1397 39.2795 0.1356

L 68.20 179.91 3808.8381 27.6618 28.9808 0.1458

MATLAB� gamultiobj function was used to solve this
many-objective problem with the same parameters used in
the bi-objective optimization, that is, population size is 50
and maximum number of generations is 600. The problem
was run for 30 times.

Table 6 presents all representative solutions selected
for the bi-objective and many-objective problems. These
solutions can be visualized in Fig. 10. All solutions
presented in this table are non-dominated for the many-
objective problem. Solution A has the lowest value of SA;
conversely, solution L has the highest value. For solution A,
the value of BT is greater than solution L, since the latter
is in a lying position, that is, the lower height of the part
(lower BT ), as can be seen in Fig. 10a and k. Regarding the
objective functions RA and SQ, there are lower values of
these in solution A, compared to the solution L, since the
fewer supports required (SA), the less the surface roughness
(RA) and the higher the surface quality (SQ).

The Pareto front for this many-objective problem is a
four-dimensional surface that can not easily be represented
in a single graph. Therefore, the graphs showing the 2D-
projections of the Pareto front are presented in Fig. 9.

In Fig. 9a–f, the representative solutions of Table 6 are
shown in terms of the 2D projections of the Pareto front.
It is possible to observe that the non-dominated solutions
C, E, and K are dominated solutions in the bi-objective
problem SA vs. BT (Fig. 4). Finally, solutions G and L were
only found in the problem of optimizing the four objective
functions simultaneously (Fig. 10).

4.3 Discussion of the results

The number of optimal solutions increases exponentially
with a growing number of conflicting objectives. As
expected, the solutions found for the single-objective

problem were also found by the algorithm for the bi-
objective and many-objective problems. These solutions are
the extremes of the Pareto optimal fronts. Moreover, the
Pareto optimal fronts of the bi-objective problems are the
extremes of the 4D-dimensional Pareto front of the many-
objective Pareto optimal front. So, some non-dominated
solutions of the many-objective problem are dominated
solutions of the bi-objective problems.

In the bi-objective optimization, some solutions were
found repeatedly for different combinations of two objective
functions. For the many-objective problem, additional
optimal solutions were found that can not be attained
using the bi-objective optimization. This highlights the
importance of considering all objectives simultaneously
nevertheless the increasing complexity of the resulting
multi-objective problem. Therefore, the number of Pareto
optimal solutions increases and, consequently, the difficulty
to choose between them also increases.

The ultimate goal is to provide to the decision-maker
several optimal alternatives and information about the trade-
offs. Visualization tools are crucial to give to the decision-
maker more understanding and insights about the problem.
Therefore, in order the complement the information given
by the Pareto front, path value graphs were plotted to help
the decision-maker to identify the relevant compromises and
differentiate between the representative solutions chosen
from the set of non-dominated solutions.

Figure 11 is the path value graph for the representative
solutions in terms of the objectives. The horizontal
lines represent the standardized objective values for the
different trade-off solutions. As expected, all horizontal
lines cross each other because they represent non-dominated
solutions. Since all objectives are being minimized, the
lowest standardized objective values correspond to the best
solutions. It can be observed that A and B are the best
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Fig. 9 Projected solutions of the
many-objective problem
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solutions for SA; H is the best solution in terms of BT ;
solution D has the best RA value; and C is the best
solution for SQ. This graph highlights the trade-offs and
also the similarity of solutions in terms of the objectives. For

instance, solutions C and D are very similar. Solution C is
better in terms of SA and SQ, but slightly worse in terms of
BT and RA. Solution E is a balanced compromise between
all objectives.
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Fig. 10 Visualization of the
representative solutions
presented in Table 6

Fig. 11 Graph for all objective functions for the Fin model
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Fig. 12 Graph for all orientations for the Fin model

Figure 12 is the path value graph for objectives in terms
of the representative solutions. The information in this graph
complements the graph from Fig. 11. It can be observed
that solution H has the best BT value, but it is very bad in
terms of SA, RA, and SQ. On the other hand, A and B are
the best solutions for SA and have reasonable values for the
remaining objectives. Again, it is possible to observe that
solution E has intermediate values of all objectives.

5 Conclusions

In this paper, a many-objective optimization approach
for the build orientation problem of the Fin model is
presented. The optimized building orientation aims to
reduce building costs and improve the quality of the model.
The greatest contribution in this work is to assist the
decision-maker in the 3D models orientation definition
taking into account different factors. Four quality measures
were considered: the total contact area of supports, build
time, surface roughness, and surface quality. Several
optimization problems were formulated and solved using
the NSGA-II algorithm implemented in the MATLAB�

environment.
Firstly, a bi-objective problem with combinations of two

objective functions was presented, SA vs. BT , SA vs. RA,
SA vs. SQ, BT vs. RA, BT vs. SQ, and RA vs. SQ.
Here, the Pareto fronts for each combination of functions
were shown and the representative non-dominated solutions
were identified. Then, a many-objective approach aiming
to optimize the four measures simultaneously, SA, BT ,
RA, and SQ, was proposed. Additional optimal solutions

were found that could not be attained using the bi-objective
optimization.

The 2D projections of the Pareto fronts of the many-
objective problem were provided in order to select repre-
sentative solutions. The results were analyzed using path
value graphs in terms of the objectives and representative
solutions to facilitate the identification of the compromises
between the objectives.

The effectiveness of the proposed approach was verified
allowing to find different optimal solutions considering the
different criteria based on the four quality measures. This
revealed a promising strategy to be taken into consideration
in the future, assisting the decision-maker to choose a build
orientation according to his/her preferences.

Finally, it was observed that, for all problems, the
Pareto fronts have nonconvexities and discontinuities. This
highlights the importance of formulating and solving this
kind of problems as multi-objective problems. Furthermore,
it is a very interesting issue for the industry, allowing to print
a 3D object in a short time, with reduced material waste and
with better surface finish.

In the future, multi-objective optimization using other
objective functions and testing more difficult models will be
performed.
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