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Abstract
Chatter is a kind of self-excited vibration which frequently occurs in high-speed milling processes, which induces severe
damage to both spindle tools and workpieces. In this paper, we introduce a new chatter detection technique using ordered-
neurons long short-term memory (ON-LSTM) and population based training (PBT). First, we conduct a large number of
milling experiments on a computer numerical control (CNC) milling machine with 4 accelerometers to get the dataset and
employ vanilla LSTM for chatter detection. Then, to interpret the performance on time series of recurrent neural networks
(RNN), a variation of LSTM named ON-LSTM is applied to chatter detection and a hyperparameter tuning method PBT
is used for training. Finally, we compare the trained ON-LSTM with the time-frequency spectrum of the original signals
obtained by short-time Fourier transform (STFT), and they show a certain degree of consistency.

Keywords Chatter detection · High-speed milling · ON-LSTM

1 Introduction

High-speed milling has been widely used in many
manufacturing fields due to its high efficiency and low
heat generation. However, a kind of fault named chatter
appears frequently because of self-excited vibration. Chatter
occurrence in a machining process has several severe
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adverse effects, such as poor resultant surface quality,
unacceptable inaccuracy, excessive noise, disproportionate
tool wear, and machine tool damage [1]. To eliminate the
damage chatter causes, scholars all over the world are
developing researches from 3 main aspects [2], which are
the analytical study of chatter stability [3], chatter detection
[4], and online active control [5].

Due to the tight coupling and highly time-varying
properties of the spindle system, engineers cannot guarantee
the accuracy of analytical studies, and chatter may still
occur within the stable zone of the stability lobe diagram
[6]. Online active control is an excellent solution for chatter,
which can eliminate the relative vibration between the
cutting tool and the workpiece by an external force and
works only after chatter occurrence, and some scholars also
utilize dynamic vibration absorber to control the vibration
[7]. However, even if we want to utilize active control
techniques, chatter detection techniques should also be
applied first to monitor the current condition. Compared
with analytical studies, chatter detection techniques work
regardless of the components’ coupling and parameter
identification of the spindle system, as well as the time-
varying properties. It is a more generative and efficient way
of chatter elimination in the industry.

The last two decades witness considerable growth in
chatter detection techniques based on various kinds of
signals such as acceleration [8], cutting force [9], and

/ Published online: 10 November 2020

The International Journal of Advanced Manufacturing Technology (2020) 111:3361–3378

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-06292-9&domain=pdf
mailto: chr@mail.xjtu.edu.cn
mailto: shifeis@stu.xjtu.edu.cn
mailto: yuke_wang@umail.ucsb.edu
mailto: boyuan@ucsb.edu
mailto: yufeiding@cs.ucsb.edu


acoustic signals [10]. Acceleration is the most widely
used signal in chatter detection because of its high
reliability and low economic cost. Dynamometers are
quite expensive, while noises can easily influence acoustic
signals. Therefore, we also employ acceleration in our
experiments.

Generally, chatter detection techniques can be divided
into 3 different groups according to algorithms they rely
on and the way they judge chatter occurrence. The first
type is a classical one and based on frequency domain
signal processing techniques such as the wavelet transform
(WT) [11], S-function transform [12], adaptive filter [13],
coherence function [14] and ensemble empirical mode
decomposition (EEMD) [15]. Unfortunately, frequency
domain based methods suffer poor resolution at the edge of
time axis where data are most recent and crucial, resulting
in poor performance in real-time chatter detection. The
second type is derived from the statistics theory, where
entropy methods such as the permutation entropy [16],
coarse-grained entropy rate [17], and approximate entropy
[18] try interpreting chatter from randomness point of
view. However, since weights for frequency bands and the
threshold for existence of chatter are empirical parameters,
entropy-based approaches are still facing challenges in
industrial applications. The third type is based on pattern
classification algorithms such as artificial neural network
[19, 20], fuzzy logic charts [21], and other machine learning
methods. These pattern classification algorithms have been
deployed in various machining processes, and they become
more potent as a result of the fast development of deep
learning.

As far as the authors know, the machine learning
techniques applied to chatter detection in milling are still
traditional ones, while deep learning methods have not been
introduced into this field yet. The main difference between
deep learning methods and traditional machine learning
methods is feature extraction. In previous chatter detection
work, the sensitive features have to be found manually,
which is a huge problem. The manually found features
may not be sensitive to chatter, and the extracting process
requires amounts of experience in both metal cutting and
signal processing. What’s more, sometimes, these features
only function well in certain circumstances and lack of
generality. The development of deep learning these years
provides an alternative of extracting features by the neural
network itself automatically.

The detection of chatter can be seen as a time series
classification task in which recurrent neural network (RNN)
has an advantage. Long short-term memory (LSTM) is a
RNN architecture first proposed in 1997 by Sepp Hochreiter
[22], and the LSTM setup mostly used nowadays is

described by Graves and Schmidhuber [23] referred as
vanilla LSTM [24]. LSTM is an effective and scalable
model for several learning problems related to sequential
data as handwriting recognition [25] and generation [26],
language modeling [27], and translation [28], speech
synthesis [29].

Although LSTM is great in sequence tasks and allows
different neurons to track information at different time
scales, it does not have an explicit bias towards modeling
a hierarchy of constituents. In other words, LSTM may
have acceptable accuracy in chatter detection, but it cannot
reveal the latent structure of time series, which causes less
interpretability. Recently, Yikang Shen proposed a variant
of LSTM named ordered-neurons long short-term memory
[30] (ON-SLTM), which introduces a new inductive bias
for RNN. In this way, the neural network gains the ability
to perform tree-like composition operations and may hold
hierarchical information of vibration signals.

In this work, a large number of cutting experiments
are conducted under different cutting parameters to obtain
the dataset involving signals in both normal and chatter
conditions. Within each cutting, the cutting depth increases
smoothly from 0 to 10 mm so that the chatter signals
can be obtained at their very beginning. First, vanilla
LSTMs with different dimensions are employed for chatter
detection, and the classification results are compared to
the photos of the resultant surface of workpieces. Then, to
reveal the latent structure of vibration signals, ON-LSTM
is trained with a novel hyperparameter tuning method
named population based training (PBT) [31]. Finally,
the hierarchical representation of the vibration signal is
captured by two newly designed gates in ON-LSTM,
master input and forget gate, and the learned hierarchical
information is compared to the frequency spectrum to
demonstrate the combination between them.

2 Chatter detectionmethodology based
on LSTM and ON-LSTM

In this section, we first bring some brief introductions to
the employed techniques, which are LSTM, ON-LSTM,
and PBT. Then we present two chatter detection techniques
based on LSTM and ON-LSTM separately. As LSTM
has excellent performance on sequences tasks, firstly, we
employ LSTM on chatter identification. Then, to explain
why RNN performs great in chatter identification and
to find the consistency between the trained network and
vibration mechanism, we employ ON-LSTM to reveal the
latent hierarchical structure. What’s more, PBT is used to
train ON-LSTM efficiently and adequately.
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2.1 Background theories

2.1.1 A brief introduction of LSTM

Let xt be the input vector at time t , N be the number of
LSTM blocks and M be the dimension of input vector. Wz,
Wi , Wf , Wo ∈ R

N×M are defined as input weights, Rz, Ri ,
Rf , Ro ∈ R

N×N are defined as recurrent weights, and bz,
bi , bf , bo ∈ R

N are defined as bias weights. In this way, the
forward pass process of a vanilla LSTM layer can be written
as

zt = g(Wzx
t + Rzy

t−1 + bz) (1)

it = σ(Wix
t + Riy

t−1 + bi) (2)

f t = σ(Wf xt + Rf yt−1 + bf ) (3)

ct = zt � it + ct−1 � f t (4)

ot = σ(Wox
t + Roy

t−1 + bo) (5)

yt = h(ct ) � ot (6)

where zt is the block input, it is the input gate, f t is the
forget gate, ct is the cell state, ot is the output gate, and
yt is the block output. σ , g and h are pointwise nonlinear
activation functions. The gate employs the logistic sigmoid
σ(x) = 1

1+e−x as activation function and the hyperbolic
tangent g(x) = h(x) = tanh(x) is used as the block input
and output activation function. Pointwise multiplication of
two vectors is denoted by �.

2.1.2 A brief introduction of ON-LSTM

In ON-LSTM, to enforce the update order and realize
a hierarchical structure, a new activation function is
introduced as:

ĝ = cumax(· · · ) = cumsum(softmax(· · · )) (7)

where cumsum denotes the cumulative sum. Based on the
cumax() function, a master forget gate fm and a master input
gate im are introduced as:

f t
m = cumax(Wfmxt + Rfmyt−1 + bfm) (8)

itm = 1 − cumax(Wimxt + Rimyt−1 + bim) (9)

where Wfm, Wim ∈ R
N×M are input weights, Rfm, Rim ∈

R
N×N are recurrent weights and bfm, bim ∈ R

N are bias
weights.

According to the properties of the cumax() activation, the
values in master forget gate will increase from 0 to 1 while
the values in master input gate will decrease from 1 to 0.

These two gates can realize high-level control for cell states
update. Based on the employed two master gates, a new
update rule for cell state will be:

ωt = f t
m � itm (10)

f t ′
m = ft �ωt + (f t

m −ωt) = f t
m � (ft � itm + 1 − itm) (11)

it
′

m = it � ωt + (itm − ωt) = itm � (it � f t
m + 1 − f t

m) (12)

ct = zt � it
′

m + ct−1 � f t ′
m (13)

ωt is the product of the two master gates and represents
the overlap of f t

m and itm. If some elements in ωt are larger
than 0, the corresponding neurons hold information which
should be updated partially.

2.1.3 A brief introduction of PBT

The basic latent idea for neural networks is to optimize
a group of parameters θ of a model f to maximize
a predefined objective function Q and the trainable
parameters θ are updated using an optimization procedure
such as stochastic gradient descent. PBT is an effective
way to optimize both the trainable parameters θ and the
hyperparameters h jointly. To make it clear, a function eval()
is defined to evaluate the objective function Q based on
the current trainable parameters θ . In this way, the process
of finding the optimal set of parameters that maximize the
objective function Q can be written as:

θ∗ = arg max
θ∈�

eval(θ) (14)

The trainable parameters θ are updated in an iterative
manner and in each step condition on the hyperparameters
h. In more detail, the update process of the trainable
parameters can be expressed as

θ∗ = optimise(θ | h)

= optimise(θ | (ht )
T
t=1)= step(· · · step(θ | h1) · · · | hT )

(15)

The solution of the parameters θ∗ is typically sensitive
to the choice of hyperparameters sequence h = (ht )

T
t=1.

Improperly chosen of a hyperparameters sequence will lead
to bad solutions. In practice, all ht are equal to each other
or according to a simple predefined schedule, where search
over multiple possible values of h is needed as shown in
Eqs. 16 and 17.

θ∗ = optimise(θ | h∗) (16)

h∗ = arg max
h∈HT

eval(optimise(θ | h)) (17)

In PBT, in order to perform such optimization efficiently,
N models are trained at the same time to reach the goal.
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These models hold different trainable parameters {θi}Ni=1
and hyperparameters {hi}Ni=1 forming a population P . Then,
the objective turns to find the optimal model across the
entire population.

2.2 Experiment configuration

To obtain a dataset of vibration signals for chatter detection
tasks, a number of milling experiments have been conducted
on a high-speed milling machine VMC-V5 as shown in
Fig. 1.

Chatter develops extremely fast from its very beginning
to severe vibration in a milling process. Therefore, it is
necessary to identify chatter as early as possible to avoid
the loss. Generally, two cutting parameters have a direct
relationship with chatter: spindle rotating speed and cutting
depth, and this relationship can be expressed by a stable
lobe diagram, as shown in Fig. 2. In Fig. 2, the region above
the curve is the unstable condition, while the region below
is the stable region. From the vertical view, as the spindle
speed keeps still, the cutting condition turns into chatter as
the cutting depth increases.

To get the signals where chatter just occurs, we customize
our workpieces with a slope. The workpiece material used in
our experiment is a kind of high strength aluminum, 2A12,
and it is widely used in aircraft structure, rivets, truck wheel,
screw elements, and other various structures. In this way,
the cutting depth increases linearly in a milling process, and
the increase of cutting depth results in increasing of cutting
force and vibration, which may cause chatter. It is known
that when the cutting condition is at the border between
unstable and stable regions, it is challenging to justify
whether chatter occurs or not. By placing this slope, signals
in the normal condition, the chatter condition and the border
are all collected. Holding signals under all kinds of cutting

Fig. 1 High-speed milling machine VMC-V5

Fig. 2 Stability lobe diagram [1]

conditions is a precondition for classifying all signals into
different categories accurately. Since we have plenty of
signals at the border between unstable and stable regions
in the training set, the trained neural network will have
the ability of identifying border signals. To obtain signals
under different situations, we carry out cutting experiments
under different spindle speeds and different cutting width
as listed in Table 1. Considering chatter conditions cause
more damage, we replace our milling tool after every three
chatter conditions. This can guarantee the milling tool in a
relatively healthy state.

The spindle rotating speed is selected within the range
from 6000 to 12,000 rpm. Cutting with a spindle rotating
speed below 6000 rpm may result in the process damping
zone, which we do not have an interest in. The highest
rotating speed is 12,000 rpm since the vibration and noise of

Table 1 Cutting parameters in high-speed milling experiments

Number Rotating speed Cutting width

1–15 6000 1.5, 1.7, 1.9, 2.1, 2.3,

2.5, 2.7*, 2.8, 3, 3.3,

3.4*, 3.5*, 3.6*, 3.7*, 3.8*

16–23 7000 1.8, 2.4, 2.9, 3*,

3.1, 3.2*, 3.3, 3.4*

24–30 8000 2.8, 3, 3.1*, 3.2,

3.3*, 3.4*, 3.5*

31–38 9000 2.8, 3*, 3.1, 3.2,

3.3*, 3.4, 3.5*, 3.6

39–49 10,000 1.8, 1.9, 2*, 2.1*, 2.2, 2.3*,

2.4, 2.5*, 2.6*, 2.7*, 2.8*

50–59 11,000 1.8, 1.9, 2, 2.1,

2.2*, 2.3*, 2.4*,

2.5*, 2.6*, 2.7

60-66 12,000 1.8, 1.9*, 2*, 2.1*,

2.2, 2.3*, 2.4*
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chatter are extremely severe, and we are afraid of accidents
happening at a larger rotating speed. The cutting width
with a superscript * means the cutting condition turns to
chatter from normal in one milling process while the cutting
width without a superscript corresponds to a complete stable
cutting process. It is shown that some certain cutting width
corresponds to chatter, but then a larger width corresponds
to stable cutting. This is caused by another phenomenon
called isolated islands, which is reported by B.R. Patel
[32]. Generally, as cutting depth increases, the unstable
zone will expand and some normal cutting scenes can turn
into chatter ones. However, it can become different when
isolated islands appear. The so-called isolated islands mean
in the stability lobe diagram, besides intrinsic lobes, some
small areas arise aside. With these islands, as the cutting
depth increases, the cutting condition can change from
chatter to normal and back to chatter again.

In our experiments, 4 accelerometers are placed on both
the spindle and the workpiece. Two accelerometers (IMI
608A11, with a sensitivity of 100 mV/g) are placed on
the spindle in both x- and y-directions. Two accelerometers
(PCB 333B50, with a sensitivity of 1000 mV/g) are
attached to the workpiece in both x- and y-directions. The
data acquiring device is ECON AVANTMI-7008, with a
sampling frequency of 24,000 Hz. The arrangement of
sensors is shown in Fig. 3.

From Fig. 3, we can see the slope on the workpiece with
a height of 10 mm, which means the cutting depth of each

Fig. 3 The arrangement of 4 sensors in a CNC milling machine

milling process begins at 0 mm and ends up with 10 mm.
The cutting tool is made of high-speed steel with 3 cutting
edges and 60 mm overhang. The feed rate of the spindle
is kept as 400 mm/min. Among all the cutting experiments
in Table 1, there is a total of 32 groups of stable milling
processes and 34 groups of milling processes ending up with
chatter.

2.3 LSTM based training and test

Recurrent neural network with LSTM appears to be one
of the most effective and scalable models for the majority
of learning problems related to sequential data. Graves
and Schmidhuber [23] originally described the most widely
used LSTM setup in the industry referred to as vanilla
LSTM, which consists of three gates defining the stream of
historical information, one cell representing the current state
and an output activation function. The LSTM block’s output
is recurrently connected back to the input of block in the
next iteration.

First, we need to label the signals before putting them
into training. According to both the frequency spectrum
and the resultant surface, signals are divided into normal
cutting parts and chatter parts. In a stable cutting process,
all signals are classified into normal parts. In an unstable
cutting process, chatter start time is defined according
to the change of frequency spectrum and the roughness
of resultant surface. Signals before chatter start time is
classified as normal parts while signals after chatter start
time are put into chatter parts.

Besides labels, the sequence length should also be
restricted before put into neural networks. In our experi-
ments, the sequence length is fixed as 250 and this value is
based on the spindle rotating speed and the sampling fre-
quency. The maximum and the minimum value of spindle
rotating speed is 6000 rpm and 12,000 rpm, and the sam-
pling frequency is 24,000 Hz, which means the maximum
number of sampled points within one rotation is 240 and the
minimum number is 120. In this way, the selected sequence
length covers at least one complete spindle rotation time
and we can realize chatter identification by a relatively short
time series.

The employed structure of LSTM for chatter identifi-
cation is shown in Fig. 4. As four sensors are used in
experiments, the dimension of input is 250*4. The first layer
is LSTM layer with a dimension of N and input is fed into
it successively. The last hidden state of LSTM is collected
as the input of second layer, which is a fully connected
layer with 10 cells and the activation function is RELU.
The learned feature with a dimension of 10 is fed into the
final layer which is also a fully connected layer which has
only one output with a sigmoid function. In this way, the
probability of chatter occurrence is obtained.
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Fig. 4 Network structure for chatter identification

2.4 ON-LSTM and PBT based chatter detection
methodology

Although LSTM has a great performance on chatter
identification, we have no idea why it works so well. To dive
in the work mechanism of recurrent neural network, ON-
LSTM is employed. In ON-LSTM, two new gates, master
forget gate and master input gate are introduced into LSTM
networks to reveal the latent structure within time series.
The neurons will be updated according to the overlap vector,
original forget gate and original input gate. For neurons
with higher rank than the overlap ones, the information
will be held still and no input will affect them. On the
contrast, the information in the neurons which have lower
rank than the overlap ones will be completely replaced by
the input information. The hierarchical structure within ON-
LSTM lies on the control of the update frequency. If one
wants to erase the information in high ranking neurons, the
information in all lower-ranking neurons should be erased
first.

However, new gates also introduce new network param-
eters which still need to be trained which may cause diffi-
culty in the convergence of network training. Therefore, we
employ PBT for model training. The goal is to optimize the
learning rate, which is one of the critical hyperparameters
during a model training process and we make a little change
from the original PBT to reduce training time. The complete
process for chatter identification based on ON-LSTM and
PBT is shown in Fig. 5.

The whole network structure we employed is similar with
that in LSTM where the only difference is to replace LSTM
cell by ON-LSTM cell. In ON-LSTM training, an improper
value of learning rate may lead to extremely long training
time. Therefore, to train the ON-LSTM network efficiently,
PBT is used where several workers with different initial
learning rates are employed into ON-LSTM training, which
forms a so called population.

To adjust the value of hyperparameters according to the
entire population, two strategies from the original PBT,
exploit and explore, are employed.

The goal of exploit is to desert the worst performed
worker, which holds inappropriate hyperparameter value,
so there is no need to continue training with current
hyperparameter. Therefore, in the exploit process, we
find the worker with largest training loss and replace its
hyperparameter value by that in the worker with lowest
training loss. In this way, we save training time by transform
the unpromising worker into the promising one and can find
out more optimal hyperparameter value.

The goal of explore is to extend the searching space for
current hyperparameter value. There is high probability that
current hyperparameter value is not the optimal one, so it
is rational to try new value around the current one. The
explore process can find new hyperparameter value to better
explore the solution space given the current solution, this
new value should not be so far away from the current one,
because the current one already has acceptable performance
and stability of the algorithm should be guaranteed.

The combination of multiple steps of gradient descent
using exploit and explore results in hyperparameter copy
and perturbation. The learning algorithms can benefit from
not only local optimization by gradient descent, but also
periodic model selection and hyperparameter refinement.

Besides these two strategies, we also introduce another
simple strategy and name it explode to make it harmony
with the aforementioned strategies. The goal of explode
is to fire several workers to save training time. It is a
straightforward trick and in our training the explode process
fires bad performance workers after a preset times of exploit
and explore. A complete training process is shown in Table 2
and a flow chart is shown in Fig. 6.

Being trained based on PBT, the network will converge
quickly and finally only one worker will be selected as
the working model. In our case, the hyperparameters are
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Fig. 5 The complete process for chatter identification based on ON-LSTM and PBT

restricted to learning rate, and ten workers are employed
as the population which are initialized as 0.0001, 0.0003,
0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, and 0.1
respectively in line 1 of Table 2. If there are more than
one worker in population, we run the circulation from line
3 to line 10. In line 3, we define the times of training
in each explode process as 20, which means we perform
explode operation each 20 epochs of training. From line 4

Table 2 A complete training process by population based training

A training method by modified PBT

1:Initialize workers with different hyperparameters

2:While more than one worker in population:

3: For each train in training times in a explode process:

4: For each worker in population:

5: Optimize parameters with current hyperparameters

6: Calculate current performance

7: Exploit

8: For each worker in population and not in exploit:

9: Explore

10: Explode

11:Return the surviving worker and its trained parameters

to line 6, we optimize the parameters of network in each
worker by Adam and the corresponding learning rate in each
worker for one epoch, and calculate the training loss for
each worker. Then in line 7, the learning rate of the worker
having best performance will replace that of the worker
having worst performance. Next in lines 8–9, the learning
rate in each worker except the replaced one will change
to a new value according to Gauss distribution, the center
of which is the current learning rate and variance is ten
percent of the current learning rate. Then in line 10, after
specified times of epochs, half of the worker holding worse
performance will be deserted (round down if not integer).
The training lasts until there is only one worker left and the
trained parameters of this worker are returned.

The next thing we want to know is that how the network
learns the knowledge from the original signals. To infer the
latent structure of one segment of time series, at each time
step, we compute an estimate of master forget gate value d̂ t

f

and master input gate value d̂ t
i :

d̂ t
f = E[dt

f ] =
Dm
∑

k=1
kpf (dt = k)

= Dm −
Dm
∑

k=1
f tk′

m

(18)
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Fig. 6 A complete training process based on modified PBT

d̂ t
i = E[dt

i ] =
Dm
∑

k=1
kpi(dt = k)

= Dm −
Dm
∑

k=1
itk′
m

(19)

where pf is the probability distribution over split points
associated to the master forget gate and Dm is the size of the
hidden state.

In ON-LSTM, we use the master input gate and the
master forget gate to sequence the cells, but we cannot
obtain the current information level from these two gates
directly. When we feed raw data into a trained neural
network, we can get a series of number by the cumax
function representing the level for every at each time node.
Then we use a synthesis of forget gate, input gate and two
master gates to control the information flow of both input
and existing information. The synthesis is denoted by it

′
m and

f t ′
m , and they have a dimension of cell numbers.

Since each cell represents an information level, we can
use expectation of a cell representing current information
level among all cells. In statistics, it is a sum of
multiplications of current cell and its corresponding
probability. Mathematically, it can be obtained by the
number of cells subtracted by the sum of the synthesis. In
this way, Eqs. 18 and 19 are obtained.

d̂ t
f and d̂ t

i are estimated hierarchical level at time t for
master forget gate and master input gate separately. Large
value of d̂ t

f corresponds to a high forget level and large

value of d̂ t
i corresponds to a low input level. In this way,

we can get two sequences representing the hierarchical level
at each sampling time, which are d̂f = (d̂1

f . . . d̂ t
f . . . ) and

d̂i = (d̂1
i . . . d̂ t

i . . . ), where L is the segment length. Then,
these two sequences are transformed into time-frequency
domain by

Xf (t, f ) =
∫ ∞

−∞
ω(t − τ)d̂f (τ )e−j2πf τ dτ (20)

Xi(t, f ) =
∫ ∞

−∞
ω(t − τ)d̂i(τ )e−j2πf τ dτ (21)

where ω() is the window function. The STFT results of the
two master gates are compared to the STFT results of raw
data to get interpretation of network working mechanism.
What’s more, to make it more clear, we also create a
so called mixed master gate value, which represents the
difference between master input gate and master forget gate.

3 Experiments and results

3.1 Dataset preparation

The raw signals collected from the 4 sensors in a milling
process is shown in Fig. 7. From the top to the bottom, these
four subplots correspond to acceleration of spindle at x-
direction, acceleration of spindle at y-direction, acceleration
of workpiece at x-direction, acceleration of work piece at
y-direction. In Fig. 7, the acceleration of spindle keeps a
relatively stable magnitude, because the spindle is always
rotating at a specified speed even without cutting and the
imbalance of the spindle itself causes some vibration. The
vibration of the workpiece is caused by its movement with
the holder and the cutting force, so the termination of cutting
can be seen clearly from the two bottom subplots at around
18.2 s.

Among the researches of chatter identification, frequency
domain methods are widely used to observe the onset of
chatter. In our experiments, we obtain the start time of
chatter based on both frequency spectrum and resultant
surface of the workpiece. Short-time Fourier transform
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Fig. 7 Signals from the 4 sensors in a milling process (spindle rotating speed = 6000 rpm, cutting width = 1.5 mm)

(STFT) is employed to get the frequency spectrum of every
milling process as shown in Fig. 8.

However, frequency domain based methods have two
inherent flaws for online chatter monitoring which they
cannott overcome. The first problem is the signal length and

resolution. For online chatter monitoring, the time series
closest to current time is most valuable, but time-frequency
methods need a relatively long time series for analysis and
the most valuable fragment is squeezed to the very side.
If so, the frequency resolution will become pretty poor at

Fig. 8 Frequency spectrum of the workpiece at x-direction (spindle rotating speed = 6000 rpm)
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Fig. 9 Resultant surface of the workpiece with different cutting width

the chatter start time. The reason is time-frequency methods
usually has poor frequency resolution at the edge of time
axis, and this is disastrous for online chatter monitoring.

The second problem is the indicators. After transforming
the signal into frequency domain, we still need to define the
criteria of chatter occurrence. Sensible indicators and their
threshold value need to be found in this procedure. This can
be a hard task since specialized knowledge in both metal
cutting and signal processing is needed. If the indicators
are inappropriate, it will increase the difficulty of chatter
identification. Sometimes, machine learning techniques are
also employed for this pattern recognition task.

Deep learning based methods can handle such problems.
The core strength of deep learning methods is that they can
handle time series with very short length, because raw time
series are fed into neural networks directly and they can deal
with any length. In our experiments, the segment length is
fixed as 250 while the sampling frequency is 24,000 Hz, so
the proposed chatter identification method can accomplish
its task within the sampling time 0.0104 s. As for the second
problem, neural networks can take raw time series as input
and output the classification results directly. Therefore, deep
learning methods have the natural ability of finding the most
sensitive indicators. Since deep learning based methods can
handle the two weaknesses of the traditional ones, they are
more promising and become more popular.

Fig. 10 Log training loss with different LSTM dimensions

The spindle rotating speed in Fig. 8 is 6000 rpm, which
means the frequency of rotation is 100 Hz. Since the
cutter we used has 3 edges, the cutting frequency will
be 300 Hz. In Fig. 8a, the three frequency components
with the lightest color are 300 Hz, 600 Hz, and 900 Hz,
which are the cutting frequency and its harmonics. After
metal cutting, these 3 frequency components disappear as
expected. Figure 8b shows an unstable cutting situation,
where after 10 s frequency spectrum becomes much more
obscure then before. Several new frequency components
appear which are called chatter frequency components. We
can distinguish chatter scenes from normal scenes easily
from Fig. 8 because we already have the whole-length
signal. For online chatter detection, frequency domain based
methods perform undesirable.

The resultant surface of the workpiece under different
cutting width is shown in Fig. 9. The whole surface keeps
smooth in normal cutting condition as shown in Fig. 9a.
However, in Fig. 9b, as a result of the increase of cutting
width, the cutting force and the vibration of the workpiece
become severe. As cutting depth increases, the cutting
condition changes from normal to chatter where the surface
is extremely rough. While chatter, the severe vibration and
the enormous heat generation lead to fatal damage to cutting
tools, and life of the spindle system and even the whole
machine tool will decrease a lot.

In our experiments, we only obtain signals from high-
speed milling processes. Therefore, the trained neural
network can only be applied into chatter identification in
high-speed milling operations. We focus on high-speed
milling because it is becoming a popular manufacturing
method and chatter can easily occur during high-speed
milling. If signals in normal milling processes are also fed
into training dataset, the obtained neural network will have
the ability of chatter identification for normal milling.

3.2 Chatter detection based on LSTM

We select two milling processes to test the performance of
trained network which are No. 37 and No. 65 in Table 1,
while the other cutting experiments are used as the training
dataset. In this way, there are totally 116,555 normal
sequences and 19,518 chatter sequences in out training
dataset. LSTM layers with a dimension of 32, 64, and128
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Fig. 11 Predicted chatter probability by LSTM

are all employed and the optimizer is Adam. The loss in
training dataset in these three situations is shown in Fig. 10.

Training loss decreases dramatically in the first several
epochs and becomes gentle then. When the dimension of
LSTM gets larger, the convergence of network seems faster
because of larger capacity, but there is a latent problem of
overfit. The trained network is then utilized to predict the
cutting condition for signals in the test set. The output of the
last sigmoid layer is shown in Fig. 11.

Figure 11 shows the prediction result of the trained
LSTM network. In the first row, the spindle rotating speed

Fig. 12 Resultant surfaces of the test set

is 9000 rpm and the cutting width is 3.5 mm. At the
beginning of cutting, the probability of chatter remains 0
because the cutting process is under normal condition at
first. Then at around 9 s, the probability of chatter increases
up to 1 and the cutting condition turns to chatter. The
probability of chatter is extremely close to either 0 or 1
at all time especially in Fig. 11b, which means the trained
network classifies the signals definitely and LSTM has a

Fig. 13 Learning rate in a complete training process (ON-LSTM
dimension = 32)
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Fig. 14 Loss in a complete training process (ON-LSTM dimen-
sion = 32)

great performance in chatter detection task. Another thing
is, LSTM network performs best when its dimension equals
64 since the value of chatter probability is closer either to
0 or 1. In this way, we can draw a conclusion that LSTM
network with dimension of 32 is underfit while LSTM
network with dimension of 128 is overfit.

Figure 12 shows the resultant surface of test set which
holds the consistency with the predicted result. Although
LSTM network performs good in chatter identification, it

works like a black box and we cannot tell why it performs
good and how it analyzes signals.

3.3 Chatter detection based on ON-LSTM and PBT

In ON-LSTM training, we employ PBT to realize faster
convergence of network parameters. Figure 13 shows the
learning rate of each worker in a complete training process
and Fig. 14 shows the training loss where the dimension of
ON-LSTM layer is specified as 32 in both figures.

The three training strategies in PBT, exploit, explore, and
explode, can be seen clearly from the plot. The y axis is
expressed in log scale using natural logarithm since the
learning rate in workers crosses a wide range especially
at the initial state. In the first 20 epochs, workers with
larger learning rates have better performance than those
with smaller learning rates as shown in Fig. 14, so some
workers with small learning rates change into large ones
as shown in Fig. 13, which is called exploit. The reason is
that at the beginning of training, large learning rates can
help the network converge more quickly. After each epoch,
every worker tries to find another learning rate near the
current value except the changed worker. This operation is
called explore and it can expand the learning rate range and
benefit the training process. After 20 epochs of training,
5 workers with worse performance are deserted, which is
called explode. Similarly, after 40 epochs 2 more workers

Fig. 15 Predicted chatter probability by ON-LSTM
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Fig. 16 Signals from sensors and master gates in one segment (spindle rotating speed = 9000 rpm, cutting width = 3.5 mm)

are deserted, after 60 epochs 1 more worker is deserted and
after 80 epochs still 1 more worker is deserted. When the
training is at epoch 80, only 1 worker survives.

From Fig. 13, the learning rates are large at first and then
fall down gradually as the effort of the strategies in PBT.
This accords with intuition. For an untrained network, the
parameters inside it are far from the optimum value, so they
need a relatively large learning rate to converge quickly. As
the parameters getting trained, they become closer to the
optimum value and if a large learning rate is still used, they
may just jump over the optimum value and reach another
hillside causing non convergence. Therefore, as training
goes on, we need a smaller learning rate.

The predicted chatter probability by ON-LSTM is shown
in Fig. 15. The results can reflect the cutting condition
clearly where the cutting condition is normal at first, then
turns to chatter and at last back to normal again. The
computation time is important in chatter identification, since
chatter usually develops within 0.1 s and the computation
time should less than time length of one sample for practical
application. In our experiment, the length of input data is

250 while the inference time for one sample is 3.72 ×
10−4 s. As the sampling frequency in our experiments is
24,000 Hz, the sampling time for one sample is 1.04 ×
10−2 s. Therefore, the computation time is much shorter
than the sampling time and also short enough for chatter
identification.

Although LSTM and ON-LSTM have great performance
on chatter detection, we still have no idea how these
recurrent neural networks work and why they have the
ability for such tasks. To dive in and get interpretability
of the performance of trained ON-LSTM, we estimate the
signal hierarchy by probability of master gate value.

Different from the vanilla LSTM, the calculation of
current cell state is by the master forget gate and the master
input gate. To comprehend the working mechanism inside
ON-LSTM, we transform the two parts of Eq. 13 into
another form separately in Eqs. 22 and 23.

zt � it
′

m = zt � it � ωt + zt � itm − zt � ωt

= zt � it � ωt + zt � (itm − ωt)
(22)
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Fig. 17 Short-time Fourier transform results (spindle rotating speed = 9000 rpm, cutting width = 3.5 mm, ON-LSTM dimension = 32)

ct−1 � f t ′
m = ct−1 � ft � ωt + ct−1 � f t

m − ct−1 � ωt

= ct−1 � ft � ωt + ct−1 � (f t
m − ωt)

(23)

By the transformation above, the two parts in Eq. 13 are
divided into two subparts separately. The first part denotes
the incoming information while the second part indicates
the inherited information, and each part is a sum of two
items. The first item is a element-wise multiplication of zt ,
it and ωt . Different from vanilla LSTM, ωt is added to the
multiplication besides zt and it . ωt means the overlapping
part of the master input gate and the master forget gate,
and it can apply both limitations from them. In this way,
only information whose hierarchical level is both higher
than current forget level and lower than current input level
is flowed into current cell states. In the second item, zt is
multiplied by the deference between itm and ωt , it accepts
information from input directly and blocks information
according to the master input gate and the overlap. From the

above, the hierarchical structure of input data is analyzed by
the master gates. It is similar in the second part of Eq. 13.

From itm and f t
m, we can learn the hierarchical level

at current time point. However, what we intend to get is
the hierarchical level of whole time series, so a way of
calculating the wave of hierarchical level is needed. We
estimate the value of current hierarchy by the expectation
in Eqs. 18 and 19 in the manuscript. We mark the
hierarchical level of master gates by numbers and calculate
the expectation of the master forget gate and the master
input gate separately. By combing the expectations, the gate
value series are obtained.

Figure 16 shows the original signals from 4 sensors and
the estimated hierarchical value in master forget gate and
master input gate at the same time. In ON-LSTM, master
forget gate and master input gate are used to learn the latent
structure of the signals. Larger value of master forget gate
means that the current cell should forget more information
at that point and larger value of master input gate means
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Fig. 18 Short-time Fourier transform results (spindle rotating speed = 9000 rpm, cutting width = 3.5 mm, ON-LSTM dimension = 64)

the current cell should remember more information at that
point.

Some waves can be seen from the value of the two gates
but the result is still obscure.

Since the length of one segment is to short, fast Fourier
transform (FFT) works bad for these signals. Thanks to
the flexible operation on sequences of recurrent neural
networks, we can feed the whole signal into the trained
ON-LSTM network to find latent structure. By doing this,
we can get the master forget gate value and the master
input gate value with the same length of the original signal.
Stilling taking the first scheme as an example, where spindle
rotating speed is 9000 rpm and the cutting width is 3.5 ‘mm,
STFT is applied to the signals in the 3rd sensor channel,
the Master Forget Gate value, the Master Input Gate value

and the mixed Gate value. The transform results are shown
in Figs. 17, 18, and 19, which can present the mechanism
of ON-LSTM much clearer, and the dimension of the
ON-LSTM layer is 32, 64, and 128.

In Figs. 17, 18, and 19, the spindle rotating speed is
9000 rpm, which means the cutting frequency is 450 Hz
as our cutter has 3 edges. The cutting frequency is crucial
in a milling process because generally it has the most
energy and it is produced directly by the cutting force.
This cutting frequency and its several multiplies can be
seen clearly in every subplot and this means the master
gates learn to trace the cutting force under both normal and
chatter conditions. Since the cutting force will be extremely
different when chatter occurs, this ability is very helpful for
chatter identification.
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Fig. 19 Short-time Fourier transform results (spindle rotating speed = 9000 rpm, cutting width = 3.5 mm, ON-LSTM dimension = 128)

Besides this, the master gate also learns energy change
when the condition turns to chatter. When chatter occurs,
large amount of energy will burst because of the self-excited
vibration. We can see in these frequency spectrums that the
color turns lighter at certain time, which means the energy of
the whole signal gets larger and this phenomenon indicates
chatter. This ability of ON-LSTM network means it can
learn the rapid increase of the magnitude of raw signals.

The most important thing is about the chatter frequency.
The chatter frequency components only appear when chatter
occurs and they have very complex mechanism which
is still a hot research topic. The chatter frequency is
critical in chatter identification because it is a unique
frequency component and related directly to the forming
mechanism of chatter. Usually, the chatter frequency is not

an accurate frequency but is several frequency bands. In
the STFT result of the original signal, four new frequency
components appear which we can see clearly. The first one
is around 2100 Hz, the second one is around 2600 Hz, the
third one is around 3000 Hz and the last one is around
3400 Hz. If the ON-LSTM network can learn these chatter
frequencies, it obviously will have the ability to realize
chatter identification, because these chatter frequencies are
the intrinsic quality of chatter which has a relationship with
the natural frequencies of the whole spindle system.

The two master gates learn most of the chatter
frequencies, and some of them are clear while some of them
are obscure. The master input gate learn the least. It learns
the first and the third chatter frequency in Fig. 17 but only
learns one chatter frequency in Figs. 18 and 19, which are
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both the second chatter frequency. The master forget gate
works better, it learns 3 chatter frequency in Figs. 17 and 19
and 2 chatter frequencies in Fig. 18. The best learner is the
mixed gate, it learns all 4 chatter frequencies in Figs. 17
and 19 but only 2 chatter frequencies in Fig. 18.

The reason why mixed gate is the best learner is also
an interesting thing. The master input gate and the master
forget gate do the job of sequencing the cell according
to ordered information level. Input data is controlled by
the master input gate, where low-level cells are easily
influenced and high-level cells ban more information. The
master forget gate manages the existing information, where
information of low-level cells is abandoned frequently and
high-level cells hold more stable information. The estimated
master input gate and the estimated master forget gate
are expectations of current master input gate and master
forget gate of all cells. They represents the level of input
information and existing information separately. The mixed
gate value is obtained by estimated master input gate value
minus estimated master forget gate value. By subtracting
estimated master forget gate from estimated master input
gate, we can extract a synthesis of both input and existing
information level. Taking periodical signals for example,
when a new period comes, we should forget and input
more information in more cells at the same time. Therefore,
overall consideration of both the master input gate and the
master forget gate has more strength in revealing the chatter
frequency.

For a long time, we regard recurrent neural network as
a black box and do not know why it performs so good
in sequence tasks. These STFT results can explain this
problem to a certain extent. The results of ON-LSTM
build a bridge between the neural networks and the fault
mechanism of rotating machine, and the networks may
even help human understand the fault mechanisms in the
future.

4 Contribution

In this paper, two kinds of recurrent neural network, LSTM
and ON-LSTM are first applied to chatter identification
in high-speed milling. The performance is good and the
combination of network and fault mechanism is detailed.
The main contributions are listed:

1. To detect chatter at the very beginning, workpieces
with a custom slope are used for cutting experiments.
Large amounts of experiments are done under different
spindle rotating speed and cutting width to obtain
signals in both normal and chatter conditions with 4
accelerators. Signals are pre-classified according to the
STFT results and the resultant workpiece surface.

2. A LSTM network is built for chatter identification with
different internal dimensions and the sigmoid function
is used for classification at the end. The signals are
divided into quite small segments which means chatter
detection can be realized only by a quite short time
series. Two cutting processes are selected as test set and
all LSTM networks have great performance on chatter
identification task where the LSTM with dimension of
64 performs best.

3. An ON-LSTM network is built for chatter identification
and to find the latent hierarchical structure of the
signals. PBT with 3 strategies, which are exploit,
explore, and a newly introduced one explode, is used for
model training. The trained network performs well on
test set. The STFT result of master gates shows great
consistency with those of original signals and reveal the
latent structure of the original signals, which gives an
explanation of why recurrent neural network performs
well.
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