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Abstract
This paper presents a novel method to identify the squareness errors of computer numerical control (CNC) machine tools based
on double ball bar (DBB) measurements. A series of spherical S-shaped paths are proposed to measure the squareness errors,
instead of the generally used circular detection paths since the presented method requires only one experimental setup, and three
translation axes are linked, which is more convenient and comprehensive. In this article, the coordinate transformation method
and the method for dividing experimental paths evenly are used to solve the asynchronization between actual motion and DBB
sampling process. The experimental data is then combined with the product of exponential (POE) model to calculate the three
CNC machine tool squareness errors and applied to a spherical spiral testing path with the compensation of the diagnosed errors.
The effectiveness of the method is verified by comparing the experimental results before and after the compensation.
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1 Introduction

Multi-axis computer numerical control (CNC) machine tools
are currently widely used to manufacture parts with complex
features. The part quality mainly depends on the machining
accuracy of the CNC machine tools, which is affected by the
tool errors. By measuring and compensating various geomet-
ric errors of CNCmachine tools, it is possible to improve their
performance.

Geometric errors are one of the critical factors responsible
for machine tool errors and are divided into two categories:
position-dependent geometric errors (PDGEs) and position-
independent geometric errors (PIGEs). The former, PDGEs,
are mainly caused by the defects of the components, while the
latter, PIGEs, are caused by the part-dependent machining
errors and the assembly errors. In the error modeling process,

PIGEs are treated as constants and remain constant regardless
of the position changes. In a three-axis machine tool scenario,
the PIGEs of the translational axes are mainly the squareness
errors between the three translational axes. That means the
difference between the reference straight line inclination of
the functional point trajectory (reference trajectory) in a linear
moving component with respect to its corresponding principal
axis, and about the reference trajectory of another linear mov-
ing component with respect to its corresponding linear motion
principal axis [1].

The machine tool geometric errors are generally caused by
the dimensional errors, shape errors of the components in the
tool kinematics chain, and the misalignment of their position
references [2]. Aiming to establish an accurate mathematical
relationship between the basic error terms of each machine
tool component and the final machining error, it is necessary
to model the geometric errors systematically. Various model-
ing methods were developed to mitigate the problem, such as
Homogeneous Transformation Matrices (HTMs), Denavit-
Hartenberg (D-H) matrix, screw theory, and product of expo-
nential (POE). Kim et al. [3] analyzed the linear displacement,
rotation, and squareness errors of the machine tool translation-
al axes and established the corresponding geometric error
model. The authors applied the fourth-order homogeneous
error matrix based on the small-angle hypothesis. Chen et al.
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[4] established the volume error model of the five-axis ma-
chine tool based on rigid body kinematics and HTMs. Jiang
et al. [5] used the HTMs to establish a comprehensive error
model for a five-axis machine tool to represent its PIGEs. It
can be concluded that most of the modelingmethods are based
on rigid body kinematics and HTMs. However, in order to
apply those methods, it is necessary to define the local coor-
dinate system for each axis, making the modeling very te-
dious. Thus, it is important to establish a universal geometric
error model in the global coordinate system to improve the
modeling method generality.

The screw theory based on Chasles’ theorem [6] is a math-
ematical tool used to simulate the CNCmachine tool kinemat-
ics. The typical screw theory calculation method is the result
of the exponential formula. The kinematics model based on
the screw theory is also known as the method based on POE.
The advantage of the screw theory method is that it can de-
scribe the rigid body motion globally, meaning that there is no
need to establish a local coordinate system (as in the HTMs
method). Building on the screw theory, Moon et al. [7] pro-
posed an inverse Jacobian matrix approximate error compen-
sation method to compensate for the machine tools error. Fu
et al. [8] used a calculation method based on the POE to
predict the five-axis machining errors caused by geometric
errors; the resulting research is of great significance for geo-
metric error modeling using the POE theory. For this reason,
this paper aims to identify the machine tool squareness errors
by using the POE theory to establish the machine tools model.

There are many methods available to measure the machine
tool errors, mainly including both the direct and indirect mea-
surements. Additionally, some of the methods were developed
to measure geometric errors. The direct measuring instru-
ments include the high-precision linear encoder [9], step
gauges [10], and laser interferometers [11]. Their indirect
counterparts are R test [12], double ball bar (DBB) [5], cutting
test pieces [13], and SAMBA [14]. Due to their higher effi-
ciency, indirect measurement methods have received more
attention in recent years. Weikert [15] used R test equipment
to measure the three-dimensional error along the circular or
spherical path. The errors were separated from the rotation
axes and then used to estimate the five-axis machine error.
Fu et al. [8] used laser interferometers to measure both the
CNCmachine tool squareness errors and the squareness errors
between the translational axes. However, adjusting the optical
paths is a lengthy process, requiring expertise in setting the
laser measurement accessories. Guo [16] used Renishaw
checking gauge to detect the squareness errors in the XY
and YZ CNC machine tool planes. The squareness error can
be evaluated with a single measurement, but the positioning
process accuracy and efficiency can make the method time
consuming. Hong et al. [17] used R test equipment to perform
the error identification of both the rotational and translational
axes. However, the errors between these two axes had to be

separated. Xing et al. [14] used the SAMBA to measure the
positioning errors of the translational axis, but the measure-
ment process lasted 194 min and required repeated testing.
Jiang et al. [5] used the DBB to measure the PIGEs of rota-
tional axes. Xu [18] identified the 18 PDGEs of the transla-
tional axis by non-integer exponential method using DBB.
However, in the experiment process, the experimental data is
obtained by using different DBB lengths and adjusting the
installation angle many times. This undoubtedly affects the
obtained data and cannot directly indicate the correctness of
the recognition results, which is an indirect reference. Finally,
Lee et al. [19] used the DBB to measure the spherical devia-
tion and squareness errors.

The demand for CNC machine tools testing is increasing.
Some other equipment needs to be measured in steps. For
example, the laser interferometer needs to be repeatedly
installed to measure the errors of the machine tool [11, 20].
Li [21] measured the geometric errors of the translational axes
by using the 13-line method through the laser interferometer.
However, the process is complicated and requiring operational
specialties. Additionally, a laser tracker is a good means of
testing the dynamic performance of a CNC machine tool.
Nonetheless, the testing results need to be more accurate com-
pared with the machine tool resolution. DBB is widely used in
the diagnostic testing of CNCmachine tools, mostly due to its
simple structure and straightforwardness, thus simplifying the
testing process. For this reason, this article uses the DBB for
experimental measurement. In the past, the squareness error
measurement mostly used the method of two parallel motions
of three translational axes. The required measurements were
then performed in the plane trajectory, which is a circular error
[19]. In order to better illustrate the impact of machine tool
errors on the accuracy, the authors have presented a novel test
condition, aiming to simplify the measurement experiment.
Through one experimental setting, the three translational axes
are linked to perform error identification in the spherical tra-
jectory, meaning that three CNC machine tool squareness er-
rors can be identified at one time. The joint movement of the
three translation axes was proven to have sufficient influence
on the tool accuracy. Thus, when using the DBB for error
detection, it is necessary to solve the DBB acquisition rate
and machine tools operation asynchronicity. Only when syn-
chronous and coordinated motion is achieved, the data is con-
sidered valid. This article adopts the coordinate transformation
method and the method for dividing experimental path evenly.
Finally, the acquisition rate is synchronized with the machine
tool operation, guaranteeing the data validity.

In this study, a novel method for measuring the squareness
error is proposed. It is different from the previously known
circular path–based method as the tool moves together with
three translational axes under the spherical trajectory. The
second section briefly introduces the POE model; based on
the POE error definition method, a CNC machine tool error

2774 Int J Adv Manuf Technol (2020) 111:2773–2785



model is established. The experimental design, including the
installation of DBB, is presented in the third section. The
experimental path and the error solution are proposed in the
same section. In the fourth part, the NC compensation method
is used to correct the tool path trajectory, aiming to verify the
three squareness errors obtained in the spherical spiral path.
Finally, the conclusions are presented in the fifth section.

2 Machine tool error modeling

2.1 Target machine tool

The machine tool used in the experiment (please see Fig. 1)
has three translational (X, Y, and Z) and two rotation axes (B
and C). The machine bed is connected to the Z-axis and X-
axis, while the B-axis is located above the Y-axis. Finally, the
C-axis is located above the Z-axis.

The CNC machine tool includes two kinematic chains: the
workpiece and the tool chain. The global coordinate system is
established and positioned on the workbench (Fig. 2). The tool
kinematic chain is bed—X-axis—Y-axis—B-axis—tool,
while the machine tool kinematic chain is bed—Z-axis—C-
axis—workpiece. In this paper, the B- and C-axes of the ma-
chine tool remain static, meaning that only the translational
axis errors will be considered.

2.2 Basic theory of the POE model

The kinematic machine tool modeling based on POE is pre-
sented in this subsection. A movement of the rigid body mov-
ing between two positions can be divided into two parts: ro-

tation and translation. Thus, the twist bξ can be used to repre-
sent the motion of a rigid body:

bξ ¼ bω v
0 0

" #
ð1Þ

where v = [v1 v2 v3]
T, bω is a skew-symmetric matrix. If

ω ¼ ω1 ω2 ω3½ �T , then the twist bξ can be expressed as:

bξ ¼ 0
ω3

−ω3

0
−ω2

0
ω1

0

ω2

−ω1

v1
v2

0
0

v3
1

264
375 ð2Þ

Furthermore, a six-dimensional twist vector coordinate can
also be given to represent a twist:

ξ¼ ωT vT
� �T¼ ω1 ω2 ω3 v1 v2 v3½ �T ð3Þ

As noted earlier, when using a twist to represent the mo-
tion, both the rotation and translation are included. The vari-
able ω represents the direction vector of the rotation axis,
while v represents the position vector of the translation axis
relative to the reference system. Finally, ξ is used to represent
the unit twist transformation.

The twisted exponential matrix is a common homogeneous
transformation matrix, represented by variable T; usually

T ¼ ebξθ, where θ is the amount of exercise. If ω = 0, the rigid
body has only translational movement, and its transformation
matrix can be expressed as:

T ¼ e
bξθ ¼ I3�3 vθ

0 1

� �
ð4Þ

where the matrix I3 × 3 is the identity matrix. If ω ≠ 0, a rota-
tional motion exists and the transformation matrix can be
expressed as follows:

Z-axis

B-axis

C-axis

Fig. 1 Solid model of a five-axis CNC machine tool

B-axis

Y-axis

X-axis

Machine bed

Z-axis

C-axis

X-axis

X

Y

Z

Fig. 2 Target five-axis CNC machine tool topology
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e
bξθ ¼ ebωθ I3�3−e

bωθ

� �
ω� vð Þ þ ωωT vθ

01�3 1

24 35 ð5Þ

For the analysis of the kinematic mechanism position,
Eqs. 4 and 5 are used to represent the unit twist transforma-

tion. When ω ≠ 0, θ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1

2 þ ω2
2 þ ω3

2
p

is used to represent

the rigid body rotation angle. On the other hand, if ω = 0, θ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v12 þ v22 þ v32

p
is used to represent the translational

distance.
The POE matrix can be used to represent the forward kine-

matics model of an open-chain robot. For an n-DOF robot
mechanism, its forward kinematics can be expressed as fol-
lows [8]:

T ¼ e
bξ1θ1 � ebξ2θ2 � ebξ3θ3…e

bξnθn � T0 ð6Þ

where T0 represents the initial transformation matrix, and
Eq. 6 is a POEmodel; therefore, Eq. 6 can be used to establish
the CNC machine tool error model.

2.3 Error model

The POE model is applied to establish the CNC machine tool
error models, as it can express both the rotational and transla-
tional movements of each axis, while also introducing geo-
metric errors. When the rotational axis is at rest, there is no
geometric error. The 21 geometric errors of the translation axis
include 18 PDGEs and 3 PIGEs. According to previous re-
search [22, 23], PDGEs and PIGEs have a different effect on
the machine tool accuracy. Andolfatto has shown that PIGEs
account for around 86% of the errors, while PDGEs account
for the remaining 14% [22]. Thus, it can be concluded that the
PIGEs have detrimental influence on machine tool accuracy.
For this reason, this paper is focused on the analysis of the
translational axis PIGEs.

The three squareness errors of the machine tool represent
the angular deviation between each two translational axes.
This error representation method is established with respect
to the so-called relative error notation [24]. The relative
error notation simplifies the description of the kinematics
model compared with the absolute error notation given in
ISO 230-1 [1]. According to relative error notation, three
squareness errors of the translational axis need to be iden-
tified to evaluate the geometric accuracy of the NC machine
tool. For translational axes, there are three squareness er-
rors. Since the actual and the nominal axis do not coincide,
the angle between the two axes is not 90°. It should be noted
that PIGEs are labeled with the letter S, followed by a two-
character subscript. The squareness errors are defined as
follows (as shown in Fig. 3):

& the X-axis is defined to align with the reference coordinate
system. Thus, for the X-axis, there is no squareness error;

& the plane through X-axis and the actual Y-axis is called the
reference X-Y plane, meaning that there is only square-
ness error Sxy for actual Y-axis;

& for the actual Z-axis, there are two squareness errors, Syz
between Y-axis and Z-axis, and Sxz between X-axis and
Z-axis.

Additionally, the Z-axis includes another error—the linear
zero positioning error of the axis. However, since the said
error occurs along the nominal direction of the axis and can
be compensated by adjusting the numerical parameters, ac-
cording to ISO 230-1 [1] it can be ignored.

In actual measurement, one axis should be selected as the
main reference; in this paper, the authors selected the X-
axis (Fig. 1). Therefore, the X-axis itself has no squareness
error and the three squareness machine tool errors Sxy, Syz,
and Sxz are measured using the X-axis as a reference. ISO
230-1 [1] specifies that the squareness error direction meets
the right-hand screw rule. In other words, if the right-hand
screw rule is met by turning from the position of the average
actual axis to the position where the average axis and its
ideal counterpart coincide, the sign is positive; otherwise, it
is negative.

The geometric errors of the three translational axes are
described next. The translational axes only include transla-
tional motion, meaning that six-dimensional twist vector co-
ordinates can be expressed as:

ξ¼ ωT vT
� �T¼ 0 0 0 Sx Sy Sz½ �T ð7Þ

where S ¼ Sx Sy Sz½ �T represents the translation axis
movement direction, and the exponential matrix of the trans-
lation axis is equal to:

O X

Y

Z

90˚+Syz

90˚+Sxz

YiZi

Zx

Zy

Sxy

Fig. 3 Squareness errors of the translational axis
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bξ ¼ I3�3 S

0 1

� �
¼
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0

0
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0
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1
0

Sz
1

2664
3775 ð8Þ

Within the field of the CNC machine tools, the six-
dimensional twist vector coordinates of the X-axis can be

expressed as ξx¼ 0 0 0 1 0 0½ �T , while the six-
dimensional twist vector coordinates of the Y- and Z-axes
are expressed as

ξy ¼ 0 0 0 0 1 0½ �T ,
ξz ¼ 0 0 0 0 0 1½ �T . The resulting exponential
matrix can be written as follows:

e
bξx ¼ 1

0
0
1

0
0

0
0

0
0

X
0

1
0

0
1

264
375 e

bξy

¼
1
0

0
1

0
0

0
0

0
0

0
Y

1
0

0
1

264
375 e

bξz

¼
1
0

0
1

0
0

0
0

0
0

0
0

1
0

Z
1

264
375 ð9Þ

For the Y-axis of the CNC machine tool, in the ideal case
(no error), the six-dimensional twist vector coordinate can be

expressed as ξyi ¼ 0 0 0 1 0 0½ �T . However, due
to the existence of squareness error, the actual six-dimensional
torsion twist coordinate should be taken as

ξys ¼ 0 0 0 Sxy 0 0½ �T . Finally, the actual expo-

nential matrix of the Y-axis is given as:

e
bξys ¼ 1

0
0
1

0
0

0
0

0
0

ySxy
0

1
0

0
1

264
375 ð10Þ

The X-axis ebξxs is an identity matrix since it is based on the
X-axis, Z-axis squareness errors are based on the Y-axis error
modeling method; there is no error, and six dimensions twist
vector coordinates can be expressed as

ξzi¼ 0 0 0 0 0 1½ �T . However, because of the exis-
tence of squareness error, the actual six dimensions twist vec-
tor coordinates should be deduced

ξzs ¼ 0 0 0 Sxz Syz 0½ �T ; therefore, the actual in-
dex matrix of Z-axis is represented as:

e
bξzs ¼ 1

0
0
1

0
0

0
0

0
0

zSxz
zSyz

1
0

0
1

2664
3775 ð11Þ

According to the topological machine tool structure, the
ideal POE model order is Y→X→ Z expressed as:

T i ¼ ey
bξyi � exbξxi � e−zbξzi ð12Þ

In Eq. 13, x, y, and z represent the moving distance of the
translational X-, Y- and Z-axes, respectively. The coordinate
value of the Z-axis is negative since the global coordinate
system is located on the machine table. In practice, while also
considering the geometric error, the actual POE model Ta can
be expressed as:

T a ¼ e
bξy � ebξys � ebξx � ebξxs � e

bξz � ebξzs� �−1

ð13Þ

3 Experimental design

3.1 Experimental settings

In this section, a novel measuring method is proposed to mea-
sure the three CNC machine tool squareness errors by using
DBB through a specific test path. The parameters are shown in
Table 1.

As shown in Fig. 4, two precision DBB test balls are
attached to the two tool cups. One tool cup is mounted on
the workbench fixture, while the other is located in a spin-
dle tool holder. Before the experiment, the machine tool
probe was used to locate the base of the workpiece tool
cup. Then the cross sliding platform (additional fixture) is
fine-tuned to adjust the position of the workpiece tool cup.
This can effectively avoid the installation error of the work-
piece tool cup and ensure that the coordinate system of the
base position coincides with the coordinate system of the
machine tool.

As shown in Fig. 5, the measuring coordinate system
origin is set on the workpiece tool cup center. Its X-, Y-,
and Z-axes are coinciding with the directions of the ma-
chine tool motion axes. The experimental paths 1 and 2
are illustrated in Fig. 5 in pink and blue, respectively. In
measurement paths 1 and 2, the placement of the DBB is
shown in Fig. 5. The coordinate system O-XYZ is the basic
coordinate system, and O″ is the origin of the auxiliary
coordinate system. Path 1 (marked as a pink curve) illus-
trates that the spindle drives the DBB from the negative of
the X-axis to its positive. Path 2 (marked as a blue curve)
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also shows that the spindle drives the DBB from the nega-
tive of the X-axis to its positive, but in a different direction
of the Y-axis. The nominal DBB length is 100 mm.

3.2 Experimental measurement path equalization
method

Before the experiment, the machine is preheated accord-
ing to the standard preheating procedure. One end of the
DBB is placed at the measuring coordinate system origin,
while the other is placed 100 mm away from the origin.
The measuring path first carries out the initial position of
the DBB level with the negative direction of the X-axis
(coordinate system O-XYZ). During the experiment, the
machine tool X-axis moves from − 100 to 0 mm and 0 to

100 mm. The Y-axis moves from 0 to 50
ffiffiffi
2

p
mm, 50

ffiffiffi
2

p
to

0 mm, 0 to - 50
ffiffiffi
2

p
mm, and finally, from - 50

ffiffiffi
2

p
to

0 mm. The Z-axis moves from 0 to 100 mm, followed
by the movement from 100 to 0 mm. As shown in
Fig. 6, the red line is measurement path 1, and the blue
line is measurement path 2. In order to ensure that each

cutter location points are located on a spherical trajectory
with radius R = 100 mm, the cutter location points of the
machine tool must satisfy the following expression:

X 2 þ Y 2 þ Z2 ¼ 1002 ð14Þ

It can be seen from the oblique 45° view of the nega-
tive X-axis trajectory (please see Fig. 6), the tool position

trajectory is located in a 50
ffiffiffi
2

p
radius semicircle (2D co-

ordinate system o-xy). The auxiliary view is shown in the
dotted line, and the actual motion trajectory is shown
using the solid line. Therefore, the positional relationship

between the x- and y-axes can be obtained from x2 þ y2

¼ 50
ffiffiffi
2

p	 

2.

As shown in Fig. 6, the coordinate points (x, y) on the
2D coordinate system of o-xy are transformed into the 3D
coordinate points (X, Y, Z). In the coordinate transforma-
tion, the rotation transformation matrix along the Y-axis is
obtained by rotating the Y-axis by 45°. It is expressed as:

Y

X

Z

100 mm-100 mm

Measurement path 1
Measurement path 2

R''=100 mmO''

O

Fig. 5 Experimental measurement paths

Table 1 Experimental parameters

Device Items Value Unit

Double ball bar Type Renishaw QC20-W

Standard length 100 mm

Resolution 0.1 μm

Extension bars 50, 150, 300 mm

Measurement range − 1 ~ +1 mm

Sampling rate (maximum) 1000 Hz

Machine tool Type DMU 80 T

Traverse of X-axis 880 mm

Traverse of Y-axis 630 mm

Traverse of Z-axis 630 mm

CNC system Heidenhain iTNC 530

Fig. 4 Setting of the DBB on the machine
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Rot θy
	 
 ¼ cosθy 0

0 1
sinθy 0
0 0

−sinθy 0
0 0

cosθy 0
0 1

264
375; θy

¼ −45=180� π ð15Þ

The translation transformation matrix is located 50 mm to
the positive semi-axis of the X-axis and 50mm to the negative
semi-axis of the Z-axis; therefore, the 2D coordinate system
coincides with the 3D coordinate system. As shown below,
the coordinate (X, Y, Z) is:

X
Y
Z
1

264
375 ¼

cosθy 0
0 1

sinθy 50
0 0

−sinθy 0
0 0

cosθy −50
0 1

264
375 X 0

Y 0

Z 0

1

2664
3775 ð16Þ

where (X′, Y′, Z′) is the auxiliary view coordinate point. After
the coordinate transformation, the 3D coordinate points con-
stitute the experimental code.

3.3 Synchronous sampling of machine tool motion

Since the DBB data acquisition speed is constant, it is critical
to ensure the uniform machine tool movement. The synchro-
nization of machine movement and sampling can be achieved
by the equal path division, as shown in Fig. 7. When a single-
line of G code is used to express the motion of multiple axes,
the feed rate specified in this G code is the tangential direction
of the complex motion of the multiple axes. Although the feed
rate is a constant value, the feed rate in tangential direction
may fluctuate according to the shape of the motion path [25].
The experimental path in this paper consists of several discrete
points, providing sufficient points on the synthetic motion
path of the three translational axes. Since the DBB collects
data at a constant sampling rate (1000 Hz), the distance be-
tween adjacent points of the DBB should be less than the

resolution of the LVDT (linear variable differential transform-
er) in the DBB, which in this case is 0.1 μm. Therefore, for the
convenience of calculation, this method divides the experi-
mental path coordinate points into 1000 parts. Figure 7 shows
that two adjacent coordinate points are equidistant, satisfying
the synchronization of the acquisition rate and machine
movement.

In order to make the experimental data more comprehen-
sive and the error calculationmore accurate, four experimental
groups were carried out. The four experimental paths are
shown in Fig. 8. Figure 8 a shows that the cutter location point
starts from point − 100 mm (X-axis), and finally reaches the
position of + 100 mm on the same axis. Figure 8b shows that
the cutter location point starts at coordinate − 100 mm (Y-
axis), and finally reaches the position of + 100 mm on the
same axis. The additional three groups of experiments per-
formed path planning with the first group.

3.4 Error calculation

Following its collection, the experimentally obtained DBB
data requires error calculation. According to the comprehen-
sive error model proposed in the second section (Eq. 13), the
second- and higher-order terms are approximated and ignored
as small angles. The resulting simplified equation is written as
follows:

T
0
a ¼ T a � 0 0 0 1½ �T

¼
xþ ysin Sxy

	 

−zsin Sxzð Þ

y−zsin Syz
	 

z
1

2664
3775 ð17Þ

where x, y, and z are the coordinate points after the path is
evenly divided.

Since the DBB measurement path and the acquisition error
variation are all carried out in the spherical coordinates, the
equation is established by using the relation with the sphere

X

Z

y

x

Y

o

O
45°

-50

xo

-100 mm

+100 mm

Measurement path 1
Measurement path 2

mm

y
Oblique 45° view

250 mm

2

Fig. 6 Experimental
measurement path of the spherical
trajectory
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radius. The relationship between T
0
a and LDBB data can be

expressed as:

LDBB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

actual þ Y 2
actual þ Z2

actual

	 
q
−100 ð18Þ

where X 2
actual, Y

2
actual, and Z2

actual correspond to the first

three rows of T
0
a, respectively, and LDBB is the data col-

lected by the DBB. The LDBB data is also used to estab-
lish the overdetermined equations. Equation 18 is used to
determine the relationship between the measurement data
and the geometric errors, with the higher-order error terms
eliminated [26]. The pseudo-inverse method is used to
solve the three translation axis errors. Since the DBB data
is composed of the clockwise and counter-clockwise data,
the three translation axis squareness errors are calculated
based on the clockwise and counter-clockwise DBB data
in the experimental paths (see Fig. 9).

Due to the influence of the machine tool thermal stability
and similar factors, the slight differences in the clockwise and
counter-clockwise DBB data collection are expected.
Furthermore, the three squareness translation axis errors

(shown in Fig. 9) are compared by using clockwise and
counter-clockwise data. The results were similar, and the NC
compensation can be performed separately.

4 Compensation through modifying NC data

4.1 Proposed compensation path

The compensation experiment was based on a spherical
spiral path, while the compensation was performed by
modifying the NC data. The compensation method effec-
tiveness was evaluated by comparing the error data detect-
ed by the DBB before and after the compensation.

Tsutsumi et al. [27] and Zargarbashi et al. [28] designed a
circular path measurement method for identifying PIGEs of
CNC machine tools. This method enabled the authors to ef-
fectively identify some PIGEs of CNC machine tools.
However, the test paths are special trajectories in a limited
processing area. For this reason, the measurement results were
used to distinguish the individual machine tool errors, rather

Fig. 7 Achieving path sharing after coordinate transformation

Fig. 8 Experimental measurement paths. a Starting from X-axis. b Starting from Y-axis
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than combining as many errors as possible to reflect the over-
all accuracy. Lee et al. [19] defined the spherical error as the
range of maximum radial deviation around the least square
sphere, which is jointly affected by the accuracy of all the
three translation axes. The machine tool accuracy is then
expressed by quantifying the influence of each translation axis
accuracy. However, to explore the spherical error, the circular
paths in the three planes generated through the joint motion of
the two translation axes were combined into the spherical
surface. Unfortunately, it could not reflect the three translation
axes linkage situation more effectively. Ding [29] uses the
same paths for both error measurement and compensation
using a DBB, and the residual error will inevitably be reduced.
Instead, in this paper, two different spatial paths lying on the
sphere are used for error measurement and error compensa-
tion, which effectively avoids the above weakness.

The path used in this experiment is the spherical spiral
trajectory. Through the form of three translation axes link-
age, all the error combinations are considered; therefore, it

is more comprehensive. Since the trajectory is on a spher-
ical surface, the spherical coordinate system was used to
describe the spherical spiral more conveniently and direct-
ly. The coordinate system origin was placed at the sphere
center; the resulting coordinate system is shown in
Fig. 10.

A spherical coordinate system is a 3D orthogonal co-
ordinate system that uses spherical coordinates (γ, θ, φ) to
indicate the point position in a 3D space. The figure
shows the geometric meaning of spherical coordinates: γ
represents the distance from the origin to point P, φ is the
angle between OP and Z-axis, whereas the azimuth be-
tween the projection line of OP on the XY plane and
the X-axis is denoted as θ. The spherical coordinate equa-
tion of the spherical spiral is written as follows:

ρ ¼ γ; θ ¼ t � 180� k; t∈ 0; 1½ �; θ∈ 0; 0:5½ �;φ
¼ t � 360� n� k ð19Þ
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Fig. 9 Comparison of squareness
errors of the DBB clockwise and
counter-clockwise

Fig. 10 Spherical coordinate system Fig. 11 Spherical spiral experimental measurement path
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where γ is the radius of the sphere; n is the number of the
spiral rotations; k is the sphere height coefficient (in a
hemisphere, k = 0.5).

The experimental path of the compensation experiment is
shown in Fig. 11. The experimental device is installed as
defined in Section 3. One end of the DBB is set at the coor-
dinate system origin, while the other end departs from the
negative semi-axis of the X-axis (− 100, 0, 0) and reaches
the final position of the positive semi-axis of the Z-axis (0,
0, 100) three times around the sphere.

Through the spherical surface spiral path, the experimental
data collected by the DBB is the variation of the sphere radius;
therefore, the deviation range of the sphere radius is under the
influence of the three translation axes. In this paper, the ex-
perimental path used in both error measurement and error
compensation experiments is spherical. Thus, it is different
from the previously used circular path. The comparison be-
tween the two is shown in Fig. 12. Figure 12a shows the
experimental paths including the motion of two linear axes.
Figure 12b is the three-axis linkage experiment compensation
path proposed in this paper. The three translational axes are

coordinated along the spherical spiral path, so that the change
of the spherical radius is affected by the three translational
axes.

In Eq. 19, the value t ranges between 0 and 1, and is
divided into 361 parts. The value k is 0.5 in the hemi-
sphere, and the number of the spherical spiral turns n = 3.
Calculation using the above parameters found that the
acquisition points could not be made uniform, and there
were only 361 path acquisition points. The motion points
were unable to synchronize machine motion with the
DBB acquisition rate. The shortest distance between the
two cutter location points on top of the sphere is
0.436 mm. The experimental path is divided into one mil-
lion points, and adjacent meeting the distance between the
two points is 0.436 mm. Furthermore, the adjacent points
with a distance of 0.436 mm between the two points were
found; 1446 coordinate points could satisfy the DBB ac-
quisition rate and the machine tool synchronization, con-
stituting the experimental path code. Figure 13 shows the
distance comparison between the two points before and
after the path is equally divided.

Measurement path

Double ball-bar

X

Z
Y

(b)

Measurement path

Double ball-bar

(a)

X

Y
Z

Fig. 12 Comparison of experimental paths. a Circular paths. b Spherical path

Fig. 13 Comparison of distances between two points
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4.2 Experimental error compensation procedure and
results

After the paths are evenly divided, the original path code for
acquisition rate synchronization is obtained. The three square-
ness errors obtained in Section 3 are included in the overall
machine tool error model to generate the actual operation code
containing errors. The error values are found by subtracting
the average G code from the actual running code. The obtain-
ed error values were then added to the original path code to
generate the compensated G code. The machine tool error
calculation and NC compensation process are shown in
Fig. 14.

Figure 14a gives the incorporation of the machine tool
errors into the ideal error model of the machine tool. The
actual error model helps to establish the equations containing
the three squareness errors. The next step is to carry out ex-
periments through the evenly divided experimental path, and
the experimental data were substituted into the actual error
model of the machine tool. The overdetermined equations
were established and solved using the pseudo-inverse method.
Finally, the three squareness errors of the machine tool were

obtained. Figure 14b is a flowchart of NC compensation pro-
cess including two experiments. The comparison experiments
are constructed as two routes: the left route is the NC code that
has not been compensated after equalization of the spherical
path; the right route is the second experiment that the errors
have been compensated for by the solved squareness errors.

The experimental installation is identic to the error mea-
surement experiment shown in Section 3.1, meaning that the
second installation is not needed. Before the experiment, the
machine must be preheated according to the pre-defined
preheating procedure. Both experiments were performed
using the average and the compensated G code, whereas the
DBB collected data were compared, aiming to verify the com-
pensation effectiveness. The comparison results are shown in
Fig. 15.

The error of the data collected by the DBB with the trajec-
tory angle can be seen in Fig. 15; it shows the difference in the
DBB collected data before and after the compensation. The
blue line represents the original machine tool geometric errors
(the data collected byDBB before compensation), whereas the
red line represents the data collected by DBB after using the
NC compensation method. It can be seen that the NC com-
pensation method reduces the geometric errors, while the re-
sidual errors cannot be compensated. The residual error is
caused by position-dependent geometric errors (PDGEs) and
other error sources, such as dynamic and thermal errors. For
this reason, the machine tool still has some residual errors.
Different from Lee’s work [30], he uses a DBB to construct
a virtual regular tetrahedron within the workspace of a ma-
chine tool and measures the length of the six sides to evaluate
the scale and squareness errors of the machine tool. Although

Machine tool NC code

after path sharing
Error data compensation

machine NC code

NC-Code for Equal Path

Machine tool ideal error model

Machine tool errors

Equation containing three

squareness errors

Machine tool actual error model

Three squareness errors of

the machine

Pseudo-inverse method“S” path experiment data

Into the overall error model

of the machine tool

Experiment with uncompensated

spherical spiral NC code

Experiment on NC code of

spherical spiral after compensation

Comparison of two

experimental data

(a) Machine tool error solving (b) NC compensation

Fig. 14 Machine tool error calculation and NC compensation flowchart

Fig. 15 Comparison of the DBB data after spherical spiral path
compensation (unit: mm)

Table 2 Comparison of geometric errors of machine tools (unit: mm)

Maximum error
before
compensation

Average error
before
compensation

Maximum
residual error after
compensation

Average residual
error after
compensation

− 0.03118 − 0.02083 − 0.01306 − 0.00575
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the maximum deviation after the final compensation is re-
duced, some compensated results increase rather than de-
crease. In this paper, the maximum and average error values
before compensation and the residual errors after the compen-
sation are shown in Table 2.

Based on the presented table and figures, it can be concluded
that the difference in the error detection data of the DBB before
and after the error compensation is significant; the overall error
compensation effect is improved. Therefore, the spherical spiral
experiment has verified that the spherical S-shaped path can
effectively detect the machine tool squareness error.

5 Conclusions

The contribution of this paper is to propose a novel method for
measuring the machine tool squareness error. By experimen-
tally comparing the states before and after the compensation,
the authors have proven the effectiveness of the squareness
error detection method using the proposed spherical S-shaped
paths. Some conclusions are given as follows:

& In the previous studies, the error was measured on planar
circular paths, carrying out multiple experimental mea-
surements, while the error measurements and experimen-
tal verification in this article are carried out in spherical
coordinates. The presented method does not require re-
peated installation settings, and three translation axes are
linked. Thus, the presented method is convenient and
gives results promptly.

& The article uses different methods to solve the problem
that the DBB acquisition rate is not synchronized with
the machine tool movement.

& In this paper, the spherical spiral paths are proposed for
error compensation. It is different from the method of
using the original path for experimental compensation ver-
ification in the reference.

& By experimentally comparing the states before and after
compensation, the residual error after compensation is
75% less than that before compensation. Therefore, the
effectiveness of measuring the squareness error by spher-
ical S-shaped paths is verified.
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