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Abstract
Referring to the error modeling technology used in precision machine tools, it is difficult for machine tool builders to understand
the effects of the theoretical modeling accuracy on the precision machining in the designing stages, where error components are
represented by parameters. Therefore, this study is proposed to overcome certain theoretical calculation errors for a parametric
form of volumetric error modeling and to examine verification method for judging the modeling precision. Based on the
mathematical theory, a novel optimized algorithm is presented, as well as its verification methods. With the two new methods,
it is effective to identify theoretical calculation errors and verify the accuracy of error modeling. Meanwhile, the proposed
algorithm, with a form grinding machine tool being as an illustration example, is tested and validated by means of numerical
simulations in the Matlab. The results reveal that the modeling accuracy of the error characteristic matrix is improved and
enhanced by the algorithm, and the two verification methods can check the veracity of parametric modeling precision in different
ways. Especially, the second method can check and isolate quantitatively the theoretical calculation errors. At the same time, it is
a theoretical guidance for choosing a suitable treatment to meet the accuracy of an error model represented by parametric
variables during iterations of the characteristic matrices. These two prediction veracity and uncertainty of the modeling precision
can be evaluated. Furthermore, the algorithm and checking methods can be extended to ultra-precision multi-axis machine tools.
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1 Introduction

As we all know, precision machining is a kind of manufactur-
ing technology targeted at high accuracy. It is not only given
priority to develop by many countries but also becomes a
standard to measure manufacturing level of a certain country
[1]. The integrated volumetric error modeling is one of the
effective ways to improve the machining accuracy. The inte-
grated volumetric error modeling is one of the effective ways
to improve the machining accuracy. It can be used with on-site
measurement, error compensation technology [2–5], and pro-
cess improvement method [6–9], which aims to establish the

relationship between error components caused by assembled
components and the resulting geometric errors, and to increase
the accuracy of a precision machine tool [10]. The technology
can describe the topological structure of MBS simply with
matrix on the basis of Houston-proposed [11] multi-body sys-
tem (MBS) and homogeneous transformation matrix (HTM)
theory [12]. However, in terms of some error analysis, a para-
metric form of volumetric error modeling is included certainly
if the technology is applied. Moreover, referring to crucial
geometric errors identification [13–16], it is getting more
and more important to reduce theoretical calculation errors
and enhance modeling accuracy. In such cases, it is still re-
quired to establish a volume error model represented by mul-
tiple parameter variables.

Error modeling technology mainly involves two computa-
tional tasks. For one thing, pure mathematical 4 × 4 character-
istic matrices are only adopted for the volumetric error model-
ing, where measurement values of the error components are
directly substituted into elements of the error transfer matrices.
Then, deviations for the tool relative to the workpiece are
available from error components after the iterations. For
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another thing, as for error components represented by para-
metric variables, the iterations of 4 × 4 characteristic matrices
are selected to establish a synthesis error model. According to
the measurement standards [17–19], a synthesis error model
with parameters, obtaining the total error effect in terms of
individual error components, is established to identify critical
geometric errors by various methods, such as decoupling geo-
metric error [20, 21], representing sensitivity coefficient
[22–24], separating the crucial geometric error [25–27],
checking volumetric error compensation [28–30], and im-
proving process [6–9, 21, 31–34] as well as selecting mea-
surement scheme [35, 36]. For example, Zhou et al. [32] have
studied the volumetric error theory and its compensation
method regarding a large five-axis CNC gear grinding ma-
chine tool. Firstly, by using iterations of characteristics matri-
ces where error components are represented by parameters,
geometric errors of the tool relative to the workpiece gear were
expressed as the position functions of motion errors in ma-
chine tool structures; then, geometric errors were decoupled
and compensated to each axis through the Jacobian matrix of
the machine tool; as a result, the machining accuracy of the
precision CNC machine tool was totally improved. Besides,
Chen et al. [37] put forward that a synthesis error model rep-
resented by parametric variables could be used for four-axis
CNC machine tool to improve machining accuracy of a cy-
cloid gear. During their research, some factors had an effect on
volumetric error modeling, such as working conditions, pro-
cessing measurements, and identification of crucial geometric
errors. If those factors are considered, the volumetric error
modeling inevitably involved the iterative solution of charac-
teristic matrices with error components represented by param-
eters, so that the accuracy and machining performance of tool
tip position could be enhanced by means of error compensa-
tion. Therefore, in case of error modeling technology applied
into precision machine tools, it is very important to establish a
volumetric error model represented by parameters before on-
site measurement and error compensation experiments.
Meanwhile, the veracity of modeling precision also plays a
significant role in synthesis error modeling for a machine tool.
In addition, Chen et al. [38], on the basis of MBS and HTM
theory, established volumetric error model with the parametric
variables for five-axis machine tool, and analyzed respectively
the sensitivity of volumetric error regarding 37 error compo-
nents. Consequently, their achievements are used for precision
designing and manufacturing successfully. Moreover, accord-
ing to MBS theory and error spatial morphology of S-shaped
test piece, Wang et al. [39] adopted a novel causation analysis
method and established tool axis surface parameterized error
model of a five-axis machine tool, aiming at improving design
accuracy. Finally, it can be seen that for MBS and HTM the-
ory, analysis and solution of theoretical calculation error are
essential works during iterations of the parametric transfer
matrices.

However, it is shown in this study that with the increase of
motion axes, the iterative computation and complexity are
raised gradually after a lot of analogy analysis in the early
stages of numerical simulations regarding volumetric error
models, where error characteristic matrices are represented
by parametric variables and error compensation experiments
have been performed [21, 32, 37]. Moreover, if small error
exists and higher-order terms are neglected, there are indeed
certain amounts of theoretical calculation errors in the accura-
cy of the volumetric error modeling with parameters. For in-
stance, given that real geometric value of errors caused by
measuring instruments and process improvements as well as
related working condition requirements is about 10−5, the
modeling precision of volumetric error model expressed by
parameters should be controlled to 10−6 at least to avoid the-
oretical calculation error brought by the decrease of modeling
accuracy. It is presented that application of current solutions
can only lead to an error modeling precision being equal to or
even lower than the numerical deviations [21, 32, 37].
Moreover, if motion axes of precision CNC machine tool
increase, the deviation for the error modeling precision
will be larger, and even exceed real value of error com-
ponents. That is to say, modeling accuracy is relatively
reduced. As a result, the precision mentioned above
would bring great uncertainty of theoretical calculation
errors. Besides, there is a lack of theoretical verification
method to judge if modeling accuracy is correct. Based on
those analyses, it is seen that modeling accuracy plays an
especially important role in error modeling technology
used for precision machine tool. In consequence, the pre-
cision above would lead to great uncertainty in error
modeling technology of precision machine tools and have
certain influence on its machining accuracy and perfor-
mance. Generally, elimination of current theoretical cal-
culation error in design stage is the core to keep accuracy
of error modeling and shall be paid attention to study
deeply. But, at present, there is no practical way to realize
it and researches on parametric modeling accuracy are in
great short. What’s more, verification method to judge
modeling precision is still in small number [2–6, 8,
10–17, 20, 21, 25–30, 32, 33, 35–39]. It is wished that
the design methods and conclusions of this study can be
an effective approach to optimize and verify the modeling
accuracy during the process of theoretical design and ver-
ification. Meanwhile, if some researchers are interested in
the technology, there is a hope that the methods and con-
clusions can serve their subsequent experiments better.
Additionally, from the perspective of geometric error
compensation, the increase of modeling precision and rel-
ative decrease of theoretical computation error have a
great influence on improving performance of precision
CNC machine tools and enhancing machining precision.
With the development of our knowledge and demand for
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precision machining technology, it is witnessed that dif-
ferent times or technical phases have various definitions
and standards. Among them, precision and ultra-precision
are symbols of two standards. On one hand, they are re-
lated to specific indexes [40, 41], such as machining size,
shape accuracy, and surface quality. On the other hand, it
is generally considered that if the ratio of accuracy to
machining size, namely accuracy ratio, reaches to 10−6,
the machining is called as ultra-precision work [1]. But,
for precision and ultra-precision machining targeted at
high accuracy, it is always required to improve machining
precision in complicated systems engineering for meeting
technical needs in different times. Moreover, although
experimenting is an effective way to proof theory, the
basis of experiment is still theoretical design and calibra-
tion. Besides, experiment itself involves many objective
factors, such as high cost, long period, and great uncer-
tainty. Hence, in the field of cost-effective manufacturing,
it is beneficial for technicians to learn about effects of the
theoretical modeling accuracy on the precision machining
in the early design stages, where error components are
represented by parameters.

To sum up, the overall goal of this paper is to overcome
certain theoretical calculation errors of volumetric error
modeling represented by parametric variables and examine
verification method for judging the accuracy of the modeling
precision in the early design stages. From the viewpoint of
mathematical theory, it is contributed to put forward an opti-
mized algorithm and the verification methods. With the new
mutual verification methods, it can realize the comparative
analysis of different algorithms, such as numerical, iterative,
and optimal as well as existing algorithm, which is not only
able to reveal certain theoretical calculation errors caused by
both the decrease of modeling precision and the lack of veri-
fication methods but also to demonstrate the effectiveness and
accuracy of the proposed algorithm for a SKMC-3000/20
CNC form grinding machine tool. This has already become
our research object and its error compensation experiments
have been carried out [32]. As a result, the theoretical calcu-
lation errors can be identified respectively and eliminated
largely by means of numerical simulations in the Matlab.
Moreover, this research further explores a theoretical guidance
in selecting appropriate treatment to achieve the modeling
accuracy for iterations of the characteristic matrices expressed
by parameters, with the consideration of working conditions.
Finally, in case of error modeling technology, the machining
accuracy and performance of precision machine tools can be
significantly improved regarding theoretical modeling
precision.

This studymainly includes five parts: Section 1-Introduction,
Section 2-Factors affecting accuracy of the error modeling,
Section 3-An optimized algorithm and the verification methods,
Section 4-Illustrating example, and Section 5-Conclusions.

2 Factors affecting accuracy of the error
modeling

To eliminate certain theoretical calculation errors, the factors
influencing the accuracy of error modeling are firstly analyzed
in the volumetric error modeling, where error components are
represented by parameters. The details are listed as follows:
1. Under different working conditions, the solutions to the

inverse matrix of the characteristic matrix would affect the
modeling accuracy during iterations.

2. Regarding iterations of the characteristic matrices, differ-
ent solutions have positive influence on modeling accura-
cy, such as effective removing of pseudo-inverse matrix
and accurate avoiding of iterations containing denomina-
tor polynomial as well as precise judgment and elimina-
tion of higher-order term.

3. Based on the small error hypothesis theory and given that
the contributions of high-order terms disappeared, it is
known that with the increase of motion axes, the iterative
computation and complexity of the volumetric error
modeling would add relatively, which have certain impact
on modeling accuracy.

Thus, in consideration of error modeling technology used
in precision machines tools, there are three reasons in this
study influencing modeling accuracy. However, the core is
the elimination of current theoretical calculation errors to en-
sure the modeling accuracy and how to guarantee the accuracy
is to be verified.

3 An optimized algorithm and the verification
methods

3.1 An optimized algorithm

Based on the small error hypothesis theory and the ignoring of
the high-order infinitesimal, a novel optimized algorithm is
proposed to eliminate the theoretical calculation errors in geo-
metric error modeling with parametric representation, with the
above influencing factors being considered. What’s more, the
algorithm has been applied for a patent. It includes the follow-
ing four aspects. (1) Preprocess the inverse matrices involved
in characteristic matrices under different conditions. If work-
ing conditions are ideal, the inverse matrices without the in-
finitesimal features are pretreated in ideal characteristic matri-
ces of inter-body stillness and motion. However, under
existing error conditions, the inverse matrices between ideal
and error characteristic ones of inter-body motion would be
performed with a pretreatment in a branch of topological
structure. The reason is that during the iterations of the inverse
matrix, some features are to be considered, such as the denom-
inator polynomials, the infinitesimal features, and the high-
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order terms. The infinitesimal features refer to the parametric
form of error components, such as angular errors (i.e., rotation
angle errors), straightness errors, and squareness errors, as
listed in Tables 2 and 3. (2) Removal of the denominator
polynomials under different conditions. Specifically, under
ideal conditions, the denominator polynomials are eliminated
during iterations of the inverse matrices, which are involved in
homogeneous coordinate transformation of ideal characteris-
tic matrices of inter-body stillness and motion. Under existing
error conditions, the same methodology can be used to re-
move the denominator polynomials of the inverse matrices,
which are correlated with the transformation of error charac-
teristic matrices of inter-body stillness and motion. (3) For
each error term element in the error characteristic matrix, ex-
pression for additive form of multiple products is converted
frommathematics to string. (4) The string representation, with
contributions of high-order terms being ignored in volumetric
error model, is obtained by judgment and removal of infini-
tesimal algorithms. Then, the above results are converted into
a compile command in the Matlab and a simplified volumetric
error model without higher-order terms approaches to a math-
ematical expression. Finally, the effect of the iterative solution
precision on the theoretical calculation errors can be eliminat-
ed by application of the algorithm.

3.2 Verification methods

For the purpose of better understanding, it is necessary to
define the following four algorithms: A-algorithm refers that
the real value is obtained by iterations of 4 × 4 characteristic
matrices, which merely consists of the numerical elements. B-
algorithm shows that the iterative solutions of the six error
term elements for error characteristic matrix, without ignoring
high-order terms, are transformed from the characteristic ma-
trices, where error components are represented by parameters.
C-algorithm presents that the iterative solutions of the six error
term elements for an error characteristic matrix represented by
parameters, with ignoring the contributions of high-order
terms, are severally deduced by current literature methods
[21, 32]. D-algorithm is with the same neglecting as C-algo-
rithm, but the iterative solutions are derived by the proposed
algorithm. The design principle is that the only difference is
lying on the solutionmethods. The random number groups are
converted from the conventional units to SI units and
substituted into parametric expression of each error term ele-
ment in error characteristic matrix sequentially, so as to obtain
the numerical solutions and to perform an analogy analysis of
modeling accuracy.

In the field of cost-effective manufacturing, the checking
mutual methods are proposed to judge and verify the model-
ing accuracy of the error term elements in two different ways.
Meanwhile, the methods have already been applied for pat-
ents. The first verification method includes the following:

firstly, the sampling method of one-dimensional distribution
is adopted to select at least five groups of one-dimensional
random, which correspond to the error components and are
converted from their conventional units to SI units. Then, with
fixed number of iterations, the simulation results are compared
among the iterative solutions of A-, B-, C-, and D-algorithm.
Finally, by adopting B-algorithm, the numerical deviations
without neglecting higher-order terms are obtained based on
A-algorithm. With the use of D- and C-algorithm, the numer-
ical deviations with ignoring the contributions of high-order
terms are obtained sequentially on the basis of A-algorithm.
The second verification method is described as following: first
of all, with sampling method of multi-dimensional distribu-
tion, the parametric forms of error components are taken as the
dimensions. A set of one-dimension random arrays is selected,
converted to its unit and matched with error components in
turns. Secondly, due to the increase of computational density,
the numerical solution and extreme value distributions are
obtained by different algorithms in statistics, with total num-
ber of iterations being matched with computer memory. Once
again, with the application of D- and C-algorithm, the numer-
ical deviations are used to analyze the accuracy of error
modeling and to be compared with the real values on the basis
of A-algorithm. Finally, on one hand, based on A- and B-
algorithm, means and standard deviations of the deviations
from B- and A-algorithm are obtained successively. On the
other hand, through adopting D- and C-algorithm, the varia-
tion laws of means and standard deviations are obtained re-
spectively on the basis of A-algorithm. The purpose is to
quantitatively separate the theoretical calculation errors of
the treatment methods by using different algorithms. It’s
worth noting that the numerical deviations above are applica-
ble to each error term element of an error characteristic matrix.

4 Illustrating example

4.1 Topological structure and volumetric error
modeling

The SKMC-3000/20 in the form of vertical layout is a five-
axis precision CNC machine tool with the configuration of
TTTRR, as shown in Fig. 1. The order of a transmission chain
of main kinematic pairs is simplified as workpiece gear (2),
rotary table (1), bed (0), X-axis guide rail (3), Z-axis guide rail
(4), grinding wheel deflection axis (5), Y-axis guide rail (6),
and grinding wheel (7). According to the HTM theory and its
topological structure, the characteristic matrices of the ma-
chine tool are divided into the two big categories for the vol-
umetric error modeling, as shown in Table 1. Since there is no
relative motion between grinding wheel and workpiece gear,
the characteristic matrices of them are expressed in terms of
the unit matrix.
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The error modeling mainly includes 38 error compo-
nents (i.e., 33 geometric errors, 3 linear displacements,
and 2 rotation angles), which are represented by parame-
ters and used as independent variables. In order to establish
a volumetric error model easily, relative principles and
assumptions need to be built herein [37]. Then, according
to MBS and HTM theory, homogeneous coordinate trans-
formation of main motion pairs is obtained respectively
under different conditions with the consideration of
Tables 1, 2, and 3 as well as Fig. 1. Under ideal conditions
(i.e., without error), the homogeneous coordinate transfor-
mation matrix T27 of grinding wheel coordinate system
relative to workpiece gear coordinate system is:

T27 ¼ T01sð Þ−1⋅T03s⋅T34s⋅T45s⋅T56s ð1Þ
In the presence of errors, the homogeneous coordinate
transformation matrix ΔT27 of grinding wheel coordinate
system relative to workpiece gear coordinate system is
shown as:

ΔT27 ¼ T01s⋅ΔT01sð Þ−1⋅ T03s⋅ΔT03sð Þ⋅ ΔT34p⋅T34s⋅ΔT34s
� �

⋅ T45s⋅ΔT45sð Þ⋅ ΔT56p⋅T56s⋅ΔT56s
� �

ð2Þ

It can be seen that ΔT27 is equivalent to that of T27

superimposed toE27. Namely, both grinding wheel coordinate
system and workpiece gear coordinate system contain error
components based on HTM [32]:

E27 ¼ ΔT27⋅ T27ð Þ−1 ð3Þ

In Eq. (3), set the error characteristic matrix E27 to be:

E27 ¼
1 −ηz ηy Px

ηz 1 −ηx Py

−ηy ηx 1 Pz

0 0 0 1

2

664

3

775 ð4Þ

where ηx, ηy, ηz, Px, Py, and Pz are respectively the rela-
tive position errors and rotation errors of both grinding
wheel coordinate system and workpiece gear coordinate
system along the X-, Y-, and Z-axis motion direction of
the machine tool after the characteristic matrices are iter-
ated. Then, with Eq. (1) to Eq. (3) being substituted into
Eq. (4), E27 can be described as the above. The six error
term elements of the parametric form of error characteris-
tic matrix, without neglecting higher-order terms, are set
to be 6E27 and those with ignoring the contributions of
high-order terms are expressed by 6E′

27. Since there is a
large amount of computation during iterations of the char-
acteristic matrices, the matrices 6E27 and

6E′
27 are obtain-

ed by the application of Matlab. However, after a lot of
numerical simulations, it is shown that the complexity of
iterations for 6E27 and 6E′

27 is constantly increasing with
the adding of motion axes. At the same time, 6E′

27 is built
under a condition with certain theoretical calculation er-
rors and modeling accuracy problems. Thus, it would
have a deeper influence on error compensation.
Moreover, there is a lack of verification method for judg-
ing accuracy of theoretical modeling precision of 6E27 and
6E′

27.

Fig. 1 The TTTRR-type five-axis gear profile grinding machine based on MBS and HTM theory: machine solid model and main kinematic chains. a
Squareness errors, b rotation angle errors, c linear displacement errors, d HTM, e MBS
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4.2 An optimized algorithm and the verification
methods

4.2.1 An optimized algorithm and its applications

In order to solve theoretical calculation error, the study firstly
analyzes factors affecting modeling precision and the causes
of theoretical error sources. Because there are iterations of the
inverse matrices in 6E27, including (T01s)

−1, (T27)
−1, and (T01s

·ΔT01s)
−1, set the inverse one of ideal characteristic matrix of

the inter-body stillness and motion to be N−1 under ideal con-
ditions, where (N1)

−1 = (T01s)
−1, (N2)

−1 = ((T01s)
−1 · (T03s ·

T34s · T45s · T56s))
−1, and (N3)

−1 = (T03s · T34s · T45s ·
T56s)

−1. The inverse one of error characteristic matrix of the

inter-body stillness and motion with errors is R−1, where
(R1)

−1 = (T01s · ΔT01s)
−1 and (R2)

−1 = ((T03s · ΔT03s) ·
(ΔT34p · T34s · ΔT34s) · (T45s · ΔT45s) · (ΔT56p · T56s ·
ΔT56s))

−1, thus:

N;Rf g⊇ N1;N2;N3;R1;R2f g ð5Þ
where the adjoint matrix is often used to solveN−1 and R−1 [42].
Take the inverse matrixR−1 as an example (similarly hereinafter):

R−1 ¼ 1

Rj j � R* ð6Þ

Meanwhile, the Cayley-Hamilton theorem is also
adopted to solve N−1 and R−1. Given that R−1 is an n-

Table 1 Schemes for error model
in numerical calculation machine Adjacent body Position transformation matrix and

motion transformation matrix
Position error transformation matrix and motion
error transformation matrix

0–1

C axis

T01p = I4 × 4 ΔT01p = I4 × 4

T01s ¼
cos γ −sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

2

664

3

775 ΔT01s ¼
1 −εzc εyc δxc
εzc 1 −εxc δyc
−εyc εxc 1 δzc
0 0 0 1

2

664

3

775

1–2

The gear setting

T12p = I4 × 4 ΔT12p = I4 × 4
T12s = I4 × 4 ΔT12s = I4 × 4

0–3
X axis

T03p = I4 × 4 ΔT03p = I4 × 4

T03s ¼
1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1

2

664

3

775 ΔT03s ¼
1 −εzx εyx δxx
εzx 1 −εxx δyx
−εyx εxx 1 δzx
0 0 0 1

2

664

3

775

3–4

Z axis

T34p = I4 × 4 ΔT34p ¼
1 0 szx 0
0 1 0 0

−szx 0 1 0
0 0 0 1

2

664

3

775

T34s ¼
1 0 0 0
0 1 0 0
0 0 1 z
0 0 0 1

2

664

3

775 ΔT34s ¼
1 −εzz εyz δxz
εzz 1 −εxz δyz
−εyz εxz 1 δzz
0 0 0 1

2

664

3

775

4–5

A axis

T45p = I4 × 4 ΔT45p = I4 × 4

T45s ¼
1 0 0 0
0 cos α −sin α 0
0 sin α cos α 0
0 0 0 1

2

664

3

775 ΔT45s ¼
1 −εza εya δxa
εza 1 −εxa δya
−εya εxa 1 δza
0 0 0 1

2

664

3

775

5–6

Y axis
T56p = I4 × 4 ΔT56p ¼

1 −sxy 0 0
sxy 1 −szy 0
0 szy 1 0
0 0 0 1

2

664

3

775

T56s ¼
1 0 0 0
0 1 0 y
0 0 1 0
0 0 0 1

2

664

3

775 ΔT56s ¼
1 −εzy εyy δxy
εzy 1 −εxy δyy
−εyy εxy 1 δzy
0 0 0 1

2

664

3

775

6–7

The grinding wheel

T67p = I4 × 4 ΔT67p = I4 × 4
T67s = I4 × 4 ΔT67s = I4 × 4
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order matrix in the number field of P, and then the char-
acteristic polynomial of R−1 is solved as following [43]:

f λð Þ ¼ λE−Rj j ¼ λn þ a1λ
n‐1 þ⋯þ anλþ an ð7Þ

It is seen that the two methods above all involve the para-
metric form of iterations for |N|, |R|, and their denominators.
So, it leads to larger iterative computation and great difficulty
in neglecting of higher-order terms. In order to solve these
problems, the detailed implementation process of the opti-
mized algorithm is proposed and shown in Fig. 2, where the
infinitesimal features refer to the parametric form of error
components, including straightness errors δij, angular errors
εij, and squareness errors Sii. In such cases, i represents linear
motion axis, and j is the linear motion axis and rotation axis.

1.1.1 Verification methods and their application

Here comes to the first verification method and its application.
In order to avoid systematic errors in random arrays, the rand
(5, 38) function is used to obtain one-dimensional random
arrays of five groups. Each group consists of 38 data corre-
sponding to 38 error components respectively (see Table 2).
Then, those random arrays are converted sequentially from
conventional units to SI units according to actual working
conditions (see Table 3). The analogy analysis of numerical
simulation is carried out through iterations of A-, B-, C- [32],
and D-algorithm. As shown in Fig. 3, the numerical solutions
of 6E27 are iterated by A- and B-algorithm and the numerical
solutions of 6E′

27 obtained by C- and D-algorithm, which are

Table 2 The correspondence between error components and random arrays with five groups

Groups εzx εyx εzx δxx δyx δzx x εzz εyz εxz δxz δyz δzz

1 0.9172 0.2858 0.7572 0.7537 0.3804 0.5678 0.0759 0.0540 0.5308 0.7792 0.9340 0.1299 0.5688

2 0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649 0.1576 0.9706 0.9572

3 0.9502 0.0344 0.4387 0.3816 0.7655 0.7952 0.1869 0.4898 0.4456 0.6463 0.7094 0.7547 0.2760

4 0.1966 0.2511 0.6160 0.4733 0.3517 0.8308 0.5853 0.5497 0.9172 0.2858 0.7572 0.7537 0.3804

5 0.1524 0.8258 0.5383 0.9961 0.0782 0.4427 0.1067 0.9619 0.0046 0.7749 0.8173 0.8687 0.0844

Groups z szx εzy εyy εxy δxy δyy δzy sxy szy y εzc εyc

1 0.4694          0.0119 0.3371 0.1622 0.7943 0.3112 0.5285            0.1656 0.6020 0.2630 0.6541 0.6892 0.7482

2 0.4854          0.8003 0.1419 0.4218 0.9157 0.7922 0.9595            0.6557 0.0357 0.8491 0.9340 0.6787 0.7577

3 0.6797          0.6551 0.1626 0.1190 0.4984 0.9597 0.3404            0.5853 0.2238 0.7513 0.2551 0.5060 0.6991

4 0.5678          0.0759 0.0540 0.5308 0.7792 0.9340 0.1299            0.5688 0.4694 0.0119 0.3371 0.1622 0.7943

5 0.3998          0.2599 0.8001 0.4314 0.9106 0.1818 0.2638           0.1455 0.1361 0.8693 0.5797 0.5499 0.1450

Groups εxc δxc δyc δzc εza εya εxa δxa δya δza γ α

1 0.4505                     0.0838 0.2290 0.9133 0.1524 0.8258 0.5383 0.9961 0.0782 0.4427 0.1067 0.9619

2 0.7431                      0.3922 0.6555 0.1712 0.7060 0.0318 0.2769 0.0462 0.0971 0.8235 0.6948 0.3171

3 0.8909                      0.9593 0.5472 0.1386 0.1493 0.2575 0.8407 0.2543 0.8143 0.2435 0.9293 0.3500

4 0.3112                      0.5285 0.1656 0.6020 0.2630 0.6541 0.6892 0.7482 0.4505 0.0838 0.2290 0.9133

5 0.8530                      0.6221 0.3510 0.5132 0.4018 0.0760 0.2399 0.1233 0.1839 0.2400 0.4173 0.0497

Table 3 Error components converted from the conventional units to the standardized units

Axis

Straightness

errors, m
Angular errors, °

Squareness
errors, °

Linear

displacement, m
Rotation angle, °

Rand (1, 38)×10-6 Rand (1, 38) ×10×(π/ (3600×180)) Rand (1, 38) ×10-3 Rand (1, 38) ×10×(π/180)

X δxx, δyx, δzx εxx, εyx, εzx x
Y δxy, δyy, δzy εxy, εyy, εzy sxy, szy y
Z δxz, δyz, δzz εxz, εyz, εzz szx z
A δxa, δya, δza εxa, εya, εza α
C δxc, δyc, δzc εxc, εyc, εzc γ
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respectively represented as following: {A-ηx, B-ηx,C-ηx,D-ηx},
{A-ηy, B-ηy, C-ηy, D-ηy}, {A-ηz, B-ηz, C-ηz, D-ηz}, {A-Px, B-Px,
C-Px, D-Px}, {A-Py, B-Py, C-Py, D-Py}, and {A-Pz, B-Pz, C-Pz,
D-Pz}. The results show that there is on obvious deviation

between the numerical solutions of 6E27 and those of 6E′
27

by using D-algorithm. However, C-algorithm has a certain
numerical deviation in comparison with A-, B-, and D-

Fig. 2 An optimized algorithm
for a five-axis CNC form grinding
machine tool

Fig. 3 Accuracy of error
modeling by using the first
verification method. a, b, c, d, e
Respectively presenting the
numerical computational results
in five groups
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algorithm. It is suggested that some theoretical calculation
errors do exist in the modeling accuracy.

In order to check the modeling accuracy further, 6E27 is
obtained by using B-algorithm and 6E′

27 achieved respective-
ly by adopting C- and D-algorithm. Then, the investigation is
performed based on A-algorithm and sequentially includes the
following: {B-ηx(A), B-ηy(A), B-ηz(A), B-Px(A), B-Py(A),
B-Pz(A)}, {C-ηx(A), C-ηy(A), C-ηz(A), C-Px(A), C-Py(A),
C-Pz(A)}, and {D-ηx(A), D-ηy(A), D-ηz(A), D-Px(A), D-Py(A),
D-Pz(A)}, as shown in Figs. 4, 5, and 6. It is guaranteed that
the numerical deviation of 6E27 is within 10−9 to 10−10 by
adopting B-algorithm. Meanwhile, some error term elements
have their numerical solutions iterated by B-algorithm been
the same as those by A-algorithm (Fig. 4 without notes,
similarly hereinafter). In particular, the forth random array

has the identical numerical calculation result of 6E27, no mat-
ter by A-algorithm or B-algorithm. Namely, the numerical
deviation between them is zero, so not shown in Fig. 4.
Consequently, the theoretical calculation errors above can be
ignored in error analysis. It is known in Fig. 5 that based on A-
algorithm, the deviations for 6E′

27 are obtained by C-algo-
rithm. For rotation error term elements of the interrelated error
components, the deviations are guaranteed to be 10−4–10−5;
for displacement error term elements, they range from 10−5 to
10−7. Hence, numerical deviations of some error term ele-
ments are in the same order of magnitude, even a few numbers
of them being larger than actually needed values. It is seen that
under actual working conditions, the theoretical numerical
deviations for error term elements of 6E′

27 do have an influ-
ence on the accuracy of error modeling. As illustrated in Fig.

Fig. 4 Deviations for B-
algorithm obtained by the first
verification method. a, b, c, d
Random arrays with five groups
sequentially

Fig. 5 Deviations for C-algorithm obtained by the first verification method. a, b, c, d, e Random arrays with five groups sequentially
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6, the numerical deviations for 6E′
27 by D-algorithm are guar-

anteed from 10−9 to 10−10, even some numerical deviations of
6E27 reaching to zero. The fact is that iterations of D-algorithm
and A-algorithm have micro-deviations caused by assumption
of small error and the neglecting of higher-order term as well
as the solution property of inverse matrix, leading to certain
amount of numerical deviations. However, the deviations
mentioned above are far smaller than those of the actually
needed values so it can be ignored normally.

In summary, according to the first verification method, the
accuracy of 6E27 obtained by B-algorithm is verified and en-
sured to be within a certain order of magnitude. Therefore, the
modeling accuracy of some error term elements for 6E′

27 ob-
tained by C-algorithm can be respectively guaranteed to be the
same order of magnitude as the actual values, but there are
indeed certain theoretical calculation errors during iterations.
6E′

27 is also verified with the application of D-algorithm. It is
seen that the certain theoretical calculation errors existing in
6E′

27 are actually eliminated. Meanwhile, the requirements for
modeling accuracy in a precision machine tool can be totally
met.

Now, the second verificationmethod and its application are
introduced. Firstly, with the sampling method of multi-
dimensional distribution, the 38 error components represented
by parametric variables are taken as dimensions to enhance
the calculation density. In order to comply with the univariate
approach, production way of random array is the same as that
of the first method. On the basis of the normrnd (38, 1) func-
tion, a set of one-dimensional random arrays is built.
Meanwhile, it is converted from conventional units to SI units
sequentially and storedwith the zeros (1, 38) function. Finally,
in order to perform the numerical simulation of the grid

sampling strategy in high-dimensional spaces, the random ar-
ray above is successively assigned to error components. It is
noteworthy that the maximum number of loop iterations
should be 3E17 for the frequently-used computer with an
8G memory. However, it is necessary to keep certain part of
memory for processing image data subsequently by Matlab.
Therefore, it is assumed that maximum loop iterations are all
3E16 in this study (i.e., 43046721, similarly hereinafter). As
shown in Fig. 7, in terms of numerical calculation results as
well as distribution of extreme values, 6E27 is obtained by A-
algorithm and B-algorithm, and 6E′

27 is obtained by D-algo-
rithm. Although there are smaller deviations, numerical calcu-
lation results all approach to each other and extreme values are
very close. However, 6E′

27 got by C-algorithm, 6E′
27 by D-

algorithm, and 6E27 by A-algorithm and B-algorithm respec-
tively have certain amount of numerical deviations in calcula-
tion results and extreme values. Take the error term element ηx
of 6E27 and

6E′
27 as an example. The numerical computational

results achieved by C-algorithm do have certain deviations
within the range of iterations in comparison with those by
A-, B-, and D-algorithm, as shown in Fig. 7a. Moreover, other
error term elements, including ηy, ηz, Px, Py, and Pz, have the
same problem. And, their conclusions are identical to those
got by the first method. Furthermore, the iterative results are
comparatively analyzed as the following.

For one thing, it is known that there are numerical devia-
tions from modeling accuracy between different algorithms.
So, it is required to quantify the theoretical calculation errors.
The first step is to obtain 6E27 by B-algorithm and 6E′

27 by C-
and D-algorithm respectively on the basis of A-algorithm. In
this case, the marking way is the same as that of the first
method. As shown in Fig. 8, the magnitude of deviation

Fig. 6 Deviations for D-algorithm obtained by the first verification method. a, b, c, d, e Random arrays with five groups sequentially
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within the iterations is identical to the conclusion made by the
first method in variation trend. Meanwhile, it suggests the
accuracy of modeling precision built by D-algorithm. Then,
in order to further analyze the changing rules of deviations
from extreme values, numerical computational results above
are separated and recorded as following: {Bm-ηx(A), Cm-ηx(A),
Dm-ηx(A)}, {Bm-ηy(A), Cm-ηy(A), Dm-ηy(A)}, {Bm-ηz(A),
Cm-ηz(A), Dm-ηz(A)}, {Bm-Px(A), Cm-Px(A), Dm-Px(A)},
{Bm-Py(A), Cm-Py(A), Dm-Py(A)}, and {Bm-Pz(A), Cm-Pz(A),
Dm-Pz(A)}. It is noted that deviations from the extreme values
of the error term elements, as shown in Fig. 9, are different
from the magnitude of the deviation in the above analysis.
With application of B-algorithm, the deviations of the maxi-
mum value for 6E27 are within 10

−9 to 10−13 and the minimum
deviations 10−9 to 10−10 on the basis of A-algorithm.

Similarly, if it changes to C-algorithm, the maximum devia-
tions of 6E′

27 range from 10−4 to 10−5 and the minimum de-
viations 10−5 to 10−9 (these data are unstable). Referring to D-
algorithm, the maximum deviations of 6E′

27 are from 10−8 to
10−13 and the minimum deviations 10−8 to 10−9. When it
comes to C- and D-algorithm, the final numerical computa-
tional results are obtained by using small error hypothesis
theory, neglecting higher-order terms, removing the denomi-
nator polynomial in the form of 1/|N| and 1/|R|, and selecting
the properties to solve the inverse matrices of characteristic
matrices approximately. Because of this, the results above
have some micro-deviations. Therefore, it can be concluded
that the deviations for 6E27 by adopting B-algorithm and 6E′

27

by using D-algorithm are at least one order of magnitude
smaller than the actual values according to the definition and

Fig. 7 Accuracy of error modeling with the second verification method. a, b, c, d, e, f The numerical computational results for error term elements ηx, ηy,
ηz, Px, Py, and Pz, respectively
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standard of precision machining [1]. Moreover, from the per-
spective of statistics, the deviations for D-algorithm are only
one order of magnitude larger than those by using B-algo-
rithm, with A-algorithm being considered. Meanwhile, for
some error term elements, the deviations are guaranteed to
be within the same level. It is suggested that the influence of
the micro-deviations present in C- and D-algorithm on

modeling accuracy can be ignored. What’s more, D-
algorithm is proved to have high accuracy, which reaches to
sub-micron and even nanometer level. Then, here comes a
problem. If C-algorithm is used on the basis of A-algorithm,
the numerical deviations of some error term elements in 6E′

27

are actually in the same level as those of the actual values. But,
several deviations order of magnitude are even larger than

Fig. 8 Deviations for B-, C-, and D-algorithm obtained by the second verification method. a, b, c, d, e, f Iterations for error term elements ηx, ηy, ηz, Px,
Py, and Pz, respectively

Fig. 9 Deviations of extreme
values from B-, C-, and D-
algorithm obtained by the second
verification method respectively
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those of the actual values. In other words, the modeling accu-
racy is reduced in effect. Moreover, the deviations of numer-
ical computational results obtained by adopting C-algorithm
are at least two orders of magnitude greater or smaller than
those of B-algorithm.

For another thing, the study is proposed to obtain the means
and standard deviations of numerical deviations quantitatively
by using different algorithms. Firstly, if B-algorithm is used
on the basis of A-algorithm and A-algorithm on B-algorithm,
it can lead to those values of 6E27. They are recorded respec-
tively as {B/A-ηx, B/A-ηy, B/A-ηz, B/A-Px, B/A-Py, B/A-Pz}.
Now take ηx as an example. As shown in Fig. 10a, those of
6E27 are guaranteed to be within 10

−10 to 10−16. So, it suggests
that the iterations of a volumetric error model represented by
parametric variables are correct without neglecting higher-
order terms. Then, based on A- and B-algorithm, those of
6E′

27 by adopting C- and D-algorithm are respectively de-
scribed as {C-ηx, C-ηy, C-ηz, C-Px, C-Py, C-Pz} and {D-ηx,
D-ηy, D-ηz, D-Px, D-Py, D-Pz}. Take ηx as an example to illus-
trate. As shown in Fig. 10 b and c, when C-algorithm is ap-
plied upon A-algorithm, the mean and standard deviation of
C-ηx are ensured to be 10−5 to 10−6. However, if D-algorithm
is used, those of D-ηx are within 10

−9 to 10−12. From the point
of mathematical statistics, it not only suggests that this method
is more stable and reliable than the first one but also verifies
that D-algorithm can produce a feasible and higher modeling
accuracy. What’s more, this method can improve the compu-
tation density, enhance the reliability of verification, check the
correctness of the first method, and expand the verification
scope of modeling accuracy. Nevertheless, it has a problem
of heavy calculation.

The second verification method can be extended to other
applications. With definition and standards of precision CNC
machine tool being upgraded and improved constantly, it also
can be used with the consideration of the changing rules of
iterations, the causes of the theoretical calculation error, and
the characteristics of the method. For example, through anal-
ogy analysis, the means and standard deviations of numerical
deviations could be used to separate quantitatively theoretical

calculation errors caused by various treatments. It can also be
used as a theoretical guidance for choosing suitable treatment
to meet the accuracy of an error model represented by para-
metric variables during iterations of the characteristic matri-
ces. In addition, for some special applications, such as ultra-
precision machining or measurement, it is required to consider
micro-deviations in theoretical computation. In such cases, B-
algorithm can be used on the basis of A-algorithm to obtain
the numerical deviations quantitatively. Then, they can be
used as micro-deviations in theoretical computation to make
error compensation.

5 Conclusions

In consideration of HTM andMBS theory, it is very important
to establish a volumetric error model represented by parame-
ters before measurement and error compensation experiments.
However, there are some theoretical calculation errors and
modeling accuracy problems in early designing stages.
Therefore, this study is intended to put forward a novel opti-
mized algorithm and its verification methods for improving
the accuracy of the parametric error modeling. Meanwhile, it
is performed with a detailed research about the effects of the
theoretical modeling accuracy in volumetric error model with
parameters on the precision machining. Based on the results,
conclusions have been drawn as following:

1. Referring to the error modeling technology used in preci-
sion machine tools, the study is presented with a novel
optimized algorithm. It can not only meet the needs of a
standard definition for precision machine tools but also
can eliminate theoretical calculation errors. As a result,
the numerical deviations can be at least one order of mag-
nitude lower than the actual values. Meanwhile, the nu-
merical deviations can be only one level higher than those
of the iterative results without ignoring the contributions
of high-order terms. As for parts of error term elements,
the same order of magnitude can even be reached

Fig. 10 Means and standard deviations of numerical deviations with the second verification method. a 6E27 by using B- and A-algorithm sequentially, b
6E′

27 by using C-algorithm, and c 6E′
27 by using D-algorithm
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respectively. In other words, the modeling accuracy of
this algorithm can reach to sub-micron and even higher.

2. The twomutual verification methods can be used to check
the accuracy of the parametric modeling precision. On the
one hand, although the first method has contingency
caused by random data, its calculation work is relatively
reduced. It can be applied to verify the accuracy of a
volumetric error model with parameter variables in the
related error modeling technology for precision machine
tools. On the other hand, the second has higher calibration
accuracy, but it has a large amount of computation. It can
be extended to perform verification in the error modeling
technology of both precision and ultra-precision machine
tools. Moreover, the second method can isolate quantita-
tively the theoretical calculation errors and be used as a
theoretical guidance for selecting an appropriate treatment
to meet the accuracy of the error modeling during itera-
tions of the characteristic matrices.

In a word, the optimized algorithm has relatively higher
modeling precision and the two verification methods can
check the veracity of parametric modeling precision in differ-
ent ways. Meanwhile, it is important to learn about the influ-
ences of theoretical modeling accuracy with error components
represented by parameters on the precision machining. In con-
sideration of the theoretical modeling accuracy, the precision
is improved and prediction veracity as well as uncertainty of
the modeling precision can be evaluated. In addition, they can
be also applied for the ultra-precision CNCmachine tools with
arbitrary multi-axis linkage. Finally, in the field of cost-
effective manufacturing, the design methods and conclusions
of this study can put forward an efficient way to optimize and
verify the modeling accuracy in the early design stages.
Meanwhile, some researchers interested in this technology
can also use them to perform subsequent experiments better.
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