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Abstract
Chatter is a kind of unstable vibration in high-speedmilling process, leading to poor surface quality of workpiece, significant tool
wear, and severe noise. In order to avoid these negative effects of milling chatter, the detection of chatter at early stage is highly
needed. In this paper, an early-stage chatter detection method based on variational mode decomposition (VMD) and difference of
power spectral entropy (ΔPSE) is presented. Considering that the existence of possible colored noise in the monitoring signals,
which might lead to the misjudgment of chatter detection, the signals monitored at spindle’s idling is utilized to identify these
noise components. In order to separate the needed chatter-sensitive sub-signals, VMD is utilized to decompose the original
signals into a series of intrinsic mode functions (IMFs), and the chatter-sensitive sub-signals are obtained by adding the IMFs
whose central frequencies are closed to the milling system’s natural frequency. After that, an adaptive filter is utilized to filter out
the harmonics of spindle-speed frequency and the identified colored noise components. Then, a dimensionless indicator is
designed, which is determined as the difference of power spectral entropy (ΔPSE) of signals without and with filtering. A series
of experiments are also performed, and the results indicate that the presentedmethodology can detect the chatter at early stage and
is applicable in different cutting conditions, which is very important in the practical application.
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1 Introduction

Milling chatter is one type of self-excited vibration and causes
some negative effects, such as poor surface finishes, unaccept-
able errors of workpiece, and machine tool’s damage [1]. In
order to avoid chatter, conservative cutting parameters such as
lower cutting depth are usually selected with stability lobe
diagram (SLD) in practical process [2]. However, a stable
milling process is difficult to be guaranteed due to the nonlin-
ear and time-varying behaviors of machining system, such as
the change of machining dynamics caused by temperature,
spindle speed, and tool wear, which might lead to the shift
of SLD, and the selected stable cutting conditions might

become unstable [3]. Therefore, the chatter detection and sup-
pression have been important issues in the machining opera-
tions. In order to suppress or deal with the chatter vibration
actively in machining, the chatter detection at early stage plays
an important role and is highly needed.

Nowadays, different chatter detection methods haven been
proposed by researchers. Overall, the chatter detection includes
the signal acquisition, signal processing, and chatter indicator
design. Due to the development of sensors, different kinds of
signals have been utilized for chatter detection, such as cutting
force signals [4–7], sound signals with acoustic emission
[8–11], acceleration signal with accelerometer [12–16], and
motor current [17, 18]. In addition, the machining surface im-
ages [19–22] are also utilized for the detection of chatter onset.
In fact, the monitoring signal directly affect the performance of
chatter detection, and the basic principle of chatter detection is
based on the fact that different signal components or charac-
teristics emerge in the signals when chatter happens, to hence a
higher signal-to-noise ratio should be guaranteed. However, in
practical application, the operating environments are quite
complicated, and some colored noise component cannot be
avoided, such as the significant noise caused by undesired
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vibration in machine tool and the operating vibration of needed
auxiliary equipment (cooling system, gas seal and so on). With
the existing methods of chatter detection, these significant
noise components are easily detected as chatter components
and should be carefully distinguished.

In order to obtain the chatter-sensitive signal component or
exact the features that reflect the signals’ fluctuation state,
different signal processing methods have been presented.
Due to the simplicity of calculation, time domain methods
which extract one or more features are widely applied in chat-
ter detection. Schmitz T L [3] calculated the variance of the
synchronously sampled audio signal to identify the onset of
chatter in milling. Van et al. [23] modeled the monitoring
signal with autoregressive moving average model and identify
the milling chatter by judging the model’s feature root. Ye
et al. [24] calculated the root mean square sequence of the
monitoring acceleration signal, and determined the ratio of
the standard deviation and the mean of the root mean square
sequence as indicator for chatter detection. Though the time
domain method is simple, misjudgment easily happen when
some sudden shock occurs and the threshold of selected indi-
cator is difficult to determine. Frequency domain methods are
also utilized to extract the features related to chatter compo-
nents from the signal in frequency domain. For example, Liao
[4] used fast Fourier transformation (FFT) to analyze the fil-
tered cutting force signals and identify the chatter frequency
components. However, due to the fact that the monitoring
signal is non-stationary during the development of chatter,
hence the traditional frequency domain method is not suitable.

Considering that the monitoring signal is non-stationary
when the cutting state shifts from stable to chatter, the time-
frequency methods have been widely utilized in recent years
to track the instantaneous state of machining operation.
Wavelet packet decomposition (WPD) is one of the time-
frequency methods utilized for the chatter detection in the past
few years [25–27] and shows an excellent performance.
However, the high-frequency resolution of WPD is poor,
and the wavelet base functions and number of layers of
WPD should be carefully selected. Empirical mode decompo-
sition (EMD) and ensemble empirical mode decomposition
(EEMD) are also widely used in chatter detection [15, 28,
29]. Liu et al. [29] proposed a chatter identification methods
by combining EMD andWPD, and the mode mixing problem
is solved with WPD. Shrivastava et al. [28] utilized EMD to
identify the most dominating mode which is pertaining to
chatter, and a statistical indicator was designed as the chatter
indicator. Due to the possible mode mixing problem, ensem-
ble empirical mode decomposition (EEMD) method is devel-
oped and also applied to the chatter detection. Ji et al. [15]
proposed a milling chatter detection method based on EEMD.
Wan et al. [30] utilized EEMD to identify the dominating
chatter frequency when chatter is detected. In addition, the
variational mode decomposition (VMD) method developed

by Dragomiretskiy et al. [31], which takes advantage of adap-
tive, quasi-orthogonal, non-recursive decomposition, has also
been widely utilized in different aspects. Liu et al. [32] pre-
sented a milling chatter detection method based on VMD and
the energy entropy was determined as the indicator of chatter.
Yang [33] utilized VMD to develop a reliable, real-time chat-
ter detection method, in which the parameters of VMD are
optimized.

In summary, different chatter detection methods have been
proposed extensively. However, some deficiencies still exist
in terms of the dependence on signal’s quality, the applicable
performance in different cutting conditions. Though the signal
quality can be guaranteed in most conditions, some colored
noise components still might exist in the monitoring signal,
which mainly come from operating environment of machine
tool and some complicated vibration caused by the machine
tool’s dynamics, and these components easily lead trouble to
the chatter detection when they cannot be neglected. In addi-
tion, in the above-mentioned chatter detectionmethods, a pop-
per threshold should be given and the threshold might not
work in different cutting conditions, due to the fact that the
designed indicators are directly or indirectly related to the
cutting conditions. Hence, a proper indicator, whose physical
meaning is independent on the actual cutting conditions, is
highly needed, which means the amplitude or the sudden
shock of monitoring signal do not affect the designed
indicator.

In this study, a milling chatter detection methodology
based on VMD and difference of power spectral entropy is
presented. Considering that the existence of possible colored
noise in the monitoring signal easily leads to the misjudgment
of chatter, the signals at spindle’s idling are utilized to identify
these noise components. In order to separate the needed
chatter-sensitive sub-signals, VMD is utilized to decompose
the original signal into a series of intrinsic mode functions
(IMFs), and the chatter-sensitive sub signals are obtained by
adding the IMFs whose central frequencies are closed to the
milling system’s natural frequency. After that, the adaptive
filter is utilized to filter out the harmonics of spindle-speed
frequency and identified colored noise components. Then, a
dimensionless indicator is designed, which is determined as
the difference of power spectral entropy (ΔPSE) of signals
without and with filtering. A series of experiments are also
performed, and the results show that the presented methodol-
ogy can detect the chatter well and is applicable in different
cutting conditions.

The rest of this paper is organized as follows. Section 2
analyzes the components of monitoring signal at different cut-
ting states in milling. In Section 3, the proposed methodology
is presented based on the signal’s characteristics discussed in
Section 2. More milling experiments under different cutting
conditions are performed, and the results are shown in
Section 4. Conclusions are drawn in Section 5.
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2 Signal component analysis for chatter
detection

Nowadays, different types of monitoring signals have
been utilized to detect the onset of chatter vibration in
machining, like vibration signals, sound signals, and force
signals [34]. Kuljanic et al. [35] compared different sen-
sors for chatter detection in milling process and found that
the vibration signals obtained with accelerometer showed
better performance. Though the selected sensor plays an
important role in chatter monitoring, the signal quality
directly determines the performance of chatter detection.
In this section, milling experiments are performed to ob-
tain the monitoring signals from stable to chatter, and then
the components of monitoring signals for chatter detection
are analyzed.

Figure 1 shows the experimental setup for milling ex-
periments, a 3-axis milling machine is utilized, and an
accelerometer (B&K4525) is attached to the spindle to
monitor the vibration during milling operations, and the
signals are recorded with a B&K data acquisition (DAQ).
During the milling experiments, an end mill cutter with
two flutes, diameter 4 mm, and overhang 30 mm is used.
In order to obtain the vibration signals at different stages,
a wedge-shaped workpiece shown in Fig. 2 is selected,
and then the axial cutting depth shifts from 0 to 8 mm
with a cutting length of 100 mm. The other cutting pa-
rameters are spindle speed 4800 rpm, radial cutting depth
1 mm, and feed rate 90 mm/min, and sampling frequency
is 4096 Hz. Before the cutting experiments, the natural
frequencies of milling system in each direction are also
identified with impact test at the tool tip position, and the
results are listed in Table 1.

The milling experiment results are shown in Fig. 3.
Figure 3a presents the recorded vibration signals, and it
can be found that the amplitude of vibration increases
slowly with a higher cutting depth and an obvious fluc-
tuation occurs in some stages of the signals. In order to
analyze the characteristics of monitoring signals, the
spectrum of signals at different stages are also shown
in Fig. 3b–d. Figure 3b illustrates the comparison

between the signals at stage A and stage B, and it can
be found that the harmonics of rotating frequency are
the main components in the signals, which are mainly
caused by the unbalance of spindle system, cutting ex-
citation, and possible misalignment between the stator
and rotor of installed motor. Meanwhile, some other
weak signal components (with frequency 1080 Hz,
1151 Hz, 1566 Hz, 1639 Hz and 1708 Hz) exist in
stages A and B. With traditional chatter detection, these
weak components (different with harmonics) are easily
detected as the onset of chatter during the milling.
However, due to the fact that these components also
exist in stage A (with spindle idling and no cutting),
these components are actually colored noise components
in the monitoring signals, and no chatter occurs in stage
B. In fact, the noise always exists in the machining
process, such as the cooling system for spindle, gas seal
of the spindle system, and other complicated vibrations
in the machine tool. Usually, these noise components
can be neglected when they are weak enough.
However, these colored noise components might easily
lead to misjudgment for the chatter detection when these
noise components are notable in the monitoring signals.
Fig. 3c shows the spectrum of monitoring signal at early
stage of chatter (stage C), where weak chatter compo-
nents emerge and the mentioned noise components still
exist. When the chatter is fully developed, as shown in
Fig. 3d, the chatter components become more obvious.
Hence, it is desired to detect the occurrence of chatter at
an early stage, where the chatter components begin to
emerge in the monitoring signal. By analyzing the dis-
tribution of chatter components in Fig. 3c and d, it can
also be found that the chatter frequencies are distributed
around the natural frequencies of spindle system, which
is consistent with the results claimed by Altintas [2].

Table 1 Identified natural frequency of milling system

Direction 1st natural frequency (Hz) 2nd natural frequency (Hz)

X 980 1424

Y 980 1409Fig. 1 Experimental setup: a schematic diagram and b photo of the
experimental setup

Fig. 2 Wedge-shaped workpiece for milling experiments
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3 Methodology

3.1 Noise component identification

Through the signal component analysis in Section 2, the noise
component in the monitoring signals easily disturbs the chatter
detection in practical application and should be identified and
filtered out. Hence, the method of adaptive identification of
noise components in the signals is presented firstly. Due to the
fact that noise components keep constant at different cutting
stages, it is intended to identify these components adaptively
with the monitoring signal when the spindle is idling (without
cutting).

Assume S0 = [s0(1), s0(2),⋯, s0(N)] is the obtained signals
with length N before the tool cut in, and the corresponding
Fourier transformation is the following

F ið Þ ¼ 1

N
∑
N

l¼1
slexp

2
ffiffiffiffiffiffi
−1

p
π

N

� �−l⋅i

; i ¼ 1; 2;…;N ð1Þ

and the root mean square value of F(i) is

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
F ið Þj j2

s
ð2Þ

Similar with 3σ criterion in [36], the spectrum components
that satisfy |F(i)| ≥ rG are identified as noise components
here, and r = 9 is utilized in this paper. Then the corresponding
frequency of noise components can be identified as

f 0 ¼
f s
N
⋅i ð3Þ

where fs is the sampling frequency.
When the first noise component is identified, reset

the corresponding Fourier transformation value as 0,
and repeat the above process until all the obvious noise
components are identified, and the flowchart is shown
in Fig. 4. Then, a series of noise components can be
identified adaptively, with the frequency series f0 = [f0,1,

Fig. 3 Signal component analysis for chatter detection: a monitoring signals in time domain, b comparison of signal’s spectrum at stages A and B, c
spectrum of signals at stage C, and d spectrum of signals at stage D
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f0,2,⋯]. It should be noted that the harmonics of spin-
dle speed frequency can also be identified with the
above process. In practical application, the harmonics
can also be determined with the information of spindle
speed.

3.2 Separation of chatter-sensitive band signal with
VMD

As analyzed in Section 2, when chatter occurs, the chat-
ter components usually distribute around the natural fre-
quency of spindle system. Hence, it is desired to sepa-
rate the chatter-sensitive sub-signals from the original
monitoring signals. Nowadays, different methods have
been utilized to decompose the signals into a series of
sub-signals with various bands, such as WPD [37, 38]
and EMD/EEMD [25, 39]. In this section, considering
that the VMD takes the advantages of small endpoint
effect and less mode mixing, the VMD method is uti-
lized to decompose the original monitoring signals and
separate the needed chatter-sensitive sub-signals for the
chatter detection.

In VMD [22] , a ssume tha t the s igna l s a re
decomposed to a series of intrinsic mode functions
(IMFs) with number K and each IMFs can be defined
as a series of amplitude-modulation and frequency-
modulation signals, which are expressed as

uk tð Þ ¼ Ak tð Þcos φk tð Þð Þ; k ¼ 1; 2;…;K ð4Þ
where Ak( t) is the instantaneous amplitude and
ωk(t) = φ'

k(t) is the corresponding instantaneous frequen-
cy. For an original signal segment x(t), the VMD pro-
cess is a constrained optimization problem:

min
ukf g; ωkf g

∑
K

k¼1
∂t σ tð Þ þ j

πt

� �
uk tð Þ

� �
e− jωk t

���� ����2
2

( )
s:t: ∑

K

k¼1
uk ¼ x tð Þ

(
ð5Þ

Fig. 5 Structure of adaptive filter

Fig. 4 Flowchart of noise components identification

Fig. 6 Spectrum of designed adaptive filter to move out the noise
components (shown in Fig. 3)

Fig. 7 Flowchart of developed chatter detection method
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By introducing penalty term α and Lagrange multiplier λ,
an augmented Lagrange function is obtained:

L ukf g; ωkf g; λð Þ ¼ α ∑
K

k¼1
∂t σ tð Þ þ j

πt

� �
uk tð Þ

� �
e− jωk t

���� ����2
2

þ x tð Þ− ∑
K

k¼1
uk tð Þ

���� ����2
2

þ λ tð Þ � x tð Þ− ∑
K

k¼1
uk tð Þ

� �� � ð6Þ

So the problem described in Eq. (5) is transformed into an
unconstrained problem (Eq. (6)). During the iterative solution
process, the bandwidth and center frequency of the IMFs are
continuously updated, and finally a series of narrow-band
IMFs are obtained.

With VMD, the signal segment S = [s(1), s(2),⋯, s(N)]
with length N can be decomposed to a series of narrow-band
IMFs u1, u2,⋯, uK, and the corresponding central frequencies
areω1 ω2 … ωK, respectively. In order to obtain the chatter-

sensitive sub-signals, these decomposed IMFs with a center
frequency near the milling system’s natural frequency are ac-
cumulated as new signals:

Sc ¼ ∑uk;c ð7Þ
where uk, c is the IMFs whose central frequency is in the
frequency band (ωl, ωh) andωl and ωh denote the upper and
down of concerned frequency band, respectively, and can be
determined by considering the distribution of milling system’s
natural frequency.

3.3 Signal filtering with adaptive filter

Though the chatter-sensitive sub-signals with VMD is
intended to improve the performance of chatter detection,
the harmonics of spindle speed frequency and noise compo-
nents discussed in Section 3.1 still affect the early-stage chat-
ter detection, due to the fact that the chatter components at
early stage are easily submerged by these undesired signal
components.

In order to move out these harmonics and noise compo-
nents, an adaptive filter is utilized to filter out these compo-
nents, with the structure shown in Fig. 5. s(n) is the input of
adaptive filter and denotes the nth time series in the original
signal segment Sc = [s(1), s(2),⋯, ].X(n) andesc nð Þ are called

Fig. 8 Chatter detection result: a signals in time domain, b indicator of ΔPSE, and c spectrum of signal at chatter detected moment

Fig. 9 Grooved workpiece
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the reference input and reference output of adaptive filter,
respectively. Here, the reference input X(n) takes the follow-
ing forms:

X nð Þ ¼ x1; x2;⋯; xm½ �T ð8Þ
where m denotes the number of frequency components that
needed to be filtered out and each element ofX(n) is expressed
as:

xi ¼ cos 2π f i⋅nTsð Þ; sin 2π f i⋅nTsð Þ½ � ð9Þ
where fi denotes the ith frequency component and Ts is the
sampling time interval.

Through the adaptive filter theory [40], the estimation of
signal components that needed to be filtered out can be de-
fined as:

bsc* nð Þ ¼ W nð Þ⋅X nð Þ
ð10Þ

whereW(n) denotes the weight vector. According to the prin-
ciple of signal superposition, the difference between sc(n) andbsc* nð Þ becomes the desired signal for chatter detection, when

the signal components that needed to be filtered out (bsc* nð Þ )
are well estimated. In order to obtain the optimal estimation ofbsc* nð Þ, least mean square (LMS) algorithm is utilized to

Fig. 10 Experiment result of test 1: a signals in time domain, b indicator of ΔPSE, and c spectrum of signal at chatter detected moment

Table 2 Parameters of
experiments with different cutting
conditions

No. of
test

Wokpiece Cutting parameters

Material Spindle speed
(rpm)

Feed speed
(mm ⋅min−1)

Axial depth
(mm)

Radial depth
(mm)

1 #1 7075 3600 30 0–8 1

2 #1 6061 4800 30 0–8 1

3 #1 7075 5400 90 0–8 1

4 #2 6061 4800 90 1 1

5 #2 7075 4800 90 3 1

2057Int J Adv Manuf Technol (2020) 111:2051–2063



update the weight vectorW(n), with the following expression:

W nþ 1ð Þ ¼ ηW nð Þ þ 2μesc nð ÞX nð Þ
m

ð11Þ

where η and μ denote the forgetting factor and step size, re-
spectively. In Fig. 5, q−1 denotes the shift operator, with
W(n) = q−1W(n + 1).

Figure 6 shows the proposed filter used to filter out the
identified noise components in Section 2. Obviously, it can
be found that the noise components can be well filtered with
the proposed filter. It should be noted that the harmonics of
spindle speed frequency components are also filtered out with
the presented adaptive filter by resetting the fi in Eq. (9), as
presented in the author’s previous work [41].

3.4 Indicator design for chatter detection

In milling chatter detection, one or more features which reflect
the milling state are usually extracted as indicators to distin-
guish the onset of chatter. Considering that the distribution
state of different frequency components in the signals can be
evaluated with the entropy, hence a specific indicator based on
the signal’s power spectral entropy is designed in this paper.

For the signal segment Sc = [sc(1), sc(2),⋯, sc(N)] with
length N, the corresponding power spectrum can be presented
with:

PS ωið Þ ¼ 1

2πN
S ωið Þj j2

ð12Þ

where S(ωi) is the ith FFT series of signal segment Sc and ωi

denotes the ith corresponding frequency series.
The probability density function for the unilateral power

spectrum power spectrum PS(ωi) takes the following expres-
sion:

Pi ¼ PS ωið Þ
∑

N
2b c

i¼1 PS ωið Þ
; i ¼ 1; 2;…;

N
2

� 	 ð13Þ

where N
2


 �
means round down and Pi is the probability density

of PS(ωi).
Next, the power spectral entropy of signal segment Sc can

be calculated and normalized by:

H ¼ −∑
N
2b c

i¼1 Pi⋅ln Pi þ δð Þ
ln

N
2

� 	 ð14Þ

Fig. 11 Experiment results of test 2: a signals in time domain, b indicator of ΔPSE, and c spectrum of signal at chatter detected moment
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where δ is a very small positive constant, which is used to
avoid the situation that Pi equals zero, and δ = 0.001 is
selected.

Hence the difference of power spectral entropy of signals
without and with filtering is designed as indicator of chatter
detection, with the following expression:

ΔPSE ¼ H−eH ð15Þ

where eH denotes the power spectral entropy of filtered signal
in Section 3.3.

The indicator ΔPSE reflects the trend of monitoring
signal during chatter detection process. Through the sig-
nal’s characteristics discussed in Section 2, when the cut-
ting state is stable, there are mainly harmonics, possible
colored noise components and white noise in the monitor-
ing signal segment, and only white noise exists when the
signal is filtered with the designed adaptive filter in
Section 3.3. Compared with the signal without filtering,
the distribution of signal, whose harmonic and possible
colored components have been filtered out, becomes more

uniform, which means eH is absolutely larger than H and
hence ΔPSE < 0. However, when chatter occurs and the
cutting state becomes unstable, chatter components exist
in the filtered signals and concentrated to a band related to

the milling system’s natural frequency, and compared
with the filtered signals, the original signals without fil-
tering are more uniform (as shown in Fig. 3c). Hence, the
power spectral entropy of signal without filtering is larger
than the filtered signals’ power spectral entropy and
ΔPSE > 0. With the above analysis, ΔPSE = 0 is inteded
to be a reasonable threshold for chatter detection.

3.5 Workflow of developed chatter detection method

Figure 7 shows the final flowchart of developed chatter detec-
tion method in this paper. The monitoring signals in Section 2
are utilized here to evaluate the performance of the proposed
method, and more experiments are performed in the next
section.

Figure 8 shows the results of chatter detection with the
monitoring signals in Section 2. During the chatter detection
process, each segment of the signal has a length of 512 sample
points. Through the results shown in Fig. 8b, it can be found
that the chatter is detected at about 32.6 s with the proposed
methodology. Weak chatter components also can be found
with the spectrum of signal when chatter is detected (shown
in Fig. 8c), which means the chatter can well be detected with
the presented method.

Fig. 12 Experiment results of test 3: a signals in time domain, b indicator of ΔPSE, and c spectrum of signal at chatter detected moment
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4 Experiments and discussion

For the chatter detection, it is desired to be applicable under
different cutting conditions, especially the designed indicator
and selected threshold. Hence, in this section more experi-
ments under different cutting conditions are performed to ver-
ify the performance of chatter detection with proposed meth-
odology in this paper. During the experiments, different ma-
terials of workpiece, spindle speed, feed rate, cutting depth,
are selected. In addition to the wedge-shape workpiece shown
in Fig. 2, a grooved workpiece with depth 5 mm is also uti-
lized (shown in Fig. 9). For the convenience of expression, #1
and #2 are utilized to denote the wedge-shape workpiece and
grooved workpiece, respectively. All the experiments are per-
formed on the experimental setup introduced in Section 2, and
the parameters of experiments with different cutting condi-
tions are listed in Table 2.

Figure 10 shows the result of test 1. The signals in time
domain are shown in Fig. 10a, and Fig. 10b is the ΔPSE
indicator for chatter detection. It can be found that the chatter
is detected at 52.5 s with the proposed methodology. The
spectrum of the signal section between 52 and 53 s is shown
in Fig. 10c, and there are chatter components in 800–1400 Hz,
which means the chatter exactly occurs.

Figure 11 shows the result of test 2. The signals in time
domain are shown in Fig. 11a, and Fig. 11b is the ΔPSE
indicator for chatter detection. It can be found that the chatter
is detected at 106.6 s with the proposed methodology. The
spectrum of the signal section at chatter detected moment
(shown in Fig. 11c), and there are chatter components in
800–1000 Hz, which means the chatter occurs exactly.

Figure 12 shows the result of test 3. The signals in time
domain are shown in Fig. 12a, and Fig. 11b is the ΔPSE
indicator for chatter detection. It can be found that the chatter
is detected at 12 s with the proposed methodology. The spec-
trum of the signal at chatter detected moment is shown in Fig.
12c, and there are chatter components in 800–1600Hz, which
means the chatter occurs exactly.

The results of tests 1–3 prove that the proposed methodol-
ogy with a thresholdΔPSE = 0 can detect chatter quickly and
accurately under different cutting conditions. In these experi-
ments, wedged workpiece is utilized, and the axial cutting
depth increases from 0 mm, and no significant shock occurs.
When the workpiece is a grooved workpiece, there is an in-
stantaneous shock at the moment of cut in, leading challenges
of avoiding misjudgment in chatter detection.

Figure 13 shows the result of test 4, the signals in time
domain are presented in Fig. 13a. During 0–1.3 s and 15.4–

Fig. 13 Experiment results of test 4: (a) signals in time domain, (b) indicator of ΔPSE, and (c) spectrum of signal with and without cutting
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19.9 s, the spindle system is running without cutting, and the
amplitude is small. Figure 13b is theΔPSE indicator extracted
through the proposedmethodology, and no chatter is detected.
Figure 13c illustrates the spectrum of signals without and with
cutting, and it can be found that no chatter components
emerge apart from the colored noise components in the mon-
itoring signals, which means no chatter occurs exactly. In
addition, though significant shock happens when the tool cut
in and cut out, in which moment that chatter might be easily
misdetected, the presented method still performs well.

Figure 14 shows the result of test 5, and the signals in time
domain are shown in Fig. 14a. During 0–1.2 s and 13.2–18.8
s, the spindle system is running without milling. Figure 14b is
the ΔPSE indicator extracted through the proposed method-
ology, and chatter is detected during the cutting process. In
order to verify whether chatter occurs, Fig. 14c illustrates the
spectrum of signals during the cutting, and it can be found that
chatter components emerge apart from the colored noise com-
ponents in the monitoring signals, which means chatter occurs
exactly.

The results of tests 4–5 prove that the proposed methodol-
ogy with a threshold ΔPSE = 0 is also applicable in the com-
mon cutting conditions, where sudden shock exists due to the
change of cutting depth, cutting in, and cutting out process,

and the possible misjudgment of chatter detection can be
avoided.

5 Conclusion

This paper proposes a new methodology for milling chatter
detection at early stage. Through the characteristic analysis of
monitoring signals, it can be found that some colored noise
components possibly exist, due to the vibration of cooling
system, gas seal, and some complicated vibrations in machine
tool, and these noise components are easily detected as chatter
with the existing methods. Considering that these noise com-
ponents always exist during the machining operation, the
monitoring signals at spindle’s idling state are utilized to iden-
tify the frequency of noise components. When chatter occurs,
the chatter components usually distribute in the band around
the milling system’s natural frequency; hence, the monitoring
signals are decomposed into a series of IMFs, and the chatter-
sensitive sub-signals are obtained by adding the IMFs whose
central frequency locates in the chatter-sensitive band. Due to
the fact that weak chatter components are usually submerged
by the harmonics of spindle speed frequency and identified
noise components at early stage of chatter, adaptive filter is

Fig. 14 Experiment results of test 5: a signals in time domain, b indicator of ΔPSE, and c spectrum of signal when chatter is detected
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designed to filter out the harmonics and noise components.
After that, the difference of power spectral entropy of the
signal without and with filtering (ΔPSE) is calculated as the
indicator for the onset of chatter, and a very simple threshold
ΔPSE = 0 is utilized. A series of milling experiments under
different cutting conditions are performed, and the results
show that the proposed method and determined threshold per-
form well in different cutting conditions, which is beneficial
for the practical application. The presented methodology can
also be applied in the chatter detection in turning or grinding
in the future.
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