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Abstract
Non-uniform rational B-spline (NURBS) curve has been widely used in manufacturing systems. A good interpolator can help the
system to improve the contour accuracy and get smooth dynamics performance, but it is hard to get a balance between the
interpolation performance and computational load. As the derivative and curvature of NURBS curves used in manufacturing
systems are high-order continuous, it is possible to predict a desired interpolation arc length based on the relationship of historical
feed chord length and its corresponding arc length in one interpolation cycle. Therefore, this paper proposes a novel interpolation
method, which consists three stages. Firstly, a NURBS curve is split into several high-order continuous segments based on its
degrees and control points. Secondly, a predictionmodel based onNewton’s divided differences interpolation equation is derived
from the relationship of interpolated chord length and its corresponding arc length, so that the target arc length of the next
interpolation cycle can be predicted. Finally, target parameter u of every interpolation cycle is calculatedwith Taylor’s expansion,
whose values are corrected by iteration, and then the position of the target interpolation point can be achieved. Performance of the
proposed algorithm is tested and compared with other methods, and the simulation results show the proposedmethod can achieve
smaller velocity fluctuation with low computational load.

Keywords NURBS interpolation . Feedrate fluctuation . Arc length prediction . Taylor’s expansion

1 Introduction

Non-uniform rational B-splines (NURBS) has been widely
used in the designing of free-form surface, as it can offer an
exact uniform representation of analytical shapes as well as
free-form parametric curves and surfaces [1, 2]. However, as a
kind of parametric curve, there is no analytic relationship be-
tween its parameter u and the corresponding arc length, so it is
difficult to design a high accurate and real-time interpolator
with small feedrate fluctuation.

Therefore, NURBS interpolator is always a research
hotspot in the last decades, and many interpolation algorithms
have been proposed in order to get better performance [3–5],
which can be divided into three categories: approximation
method, fitting method, and feedback method.

Approximation is first proposed by Koren et al., where
time-based Taylor’s expansion is used to approximate the
NURBS curve [3]. Different algorithms are developed based
on this idea after that [6–8]. Runge-Kutta [9] and Adams-
Bashforth [10] methods are also used in order to improve
the approximation accuracy. However, truncation errors are
inevitable for these methods in practice, so feedrate fluctua-
tions are also inevitable, although high-order terms can im-
prove the accuracy, which means more computational load
and worse real-time performance.

Fitting method can also be called remapping method, and
Cheng et al. employs a high-order polynomial spline to fit the
relationship of arc length and the curve parameter u [11]. Liu
et al. proposed a quartic equation-based interpolation algo-
rithm, which can reduce the feedrate fluctuation for NURBS
curves to satisfy the command feedrate [12]. This method can
get a direct relationship between the parameter and arc length,
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but the fitting operation is time-consuming, and large amount
memory is required, so it is not suitable for real-time
interpolation.

Feedback parametric interpolation is an improvement of
the approximation method proposed by Lo [13], which em-
ploys an iterative way to approximate a desired point. Cheng
et al. proposed a real-time predictor–corrector interpolator, the
feedrate command error can fall within the specified tolerance
with a predicted initial value and iteration [14]. Zhao et al.
proposed a feedback interpolator with arc-length compensa-
tion and the feedback correction, good efficiency and accura-
cy can be achieved with their method [15]. These feedback
methods can get desired feedrate fluctuation with enough

times of iteration, but the iteration time is uncertain, so it is
also not suitable for real-time interpolator [16].

In Summary, there is always a tradeoff between the com-
putational load and the desired performance. An interpolator
with high accuracy, high efficiency, and small feedrate fluc-
tuation is still a big challenge for motion control systems in
practice [17].

Therefore, an interpolation method based on Taylor’s
expansion with arc length prediction and feedback cor-
rection is proposed in this paper. Firstly, a NURBS
curve is split into several continuous segments, and
the velocity profile is generated based on the arc length
of every segment. Secondly, a prediction model is
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derived from the relationship of the previous arc length
and the corresponding feed length in one interpolation
interval. As derivative and curvature of NURBS curves
used in CAD/CAM system are continuous, the arc
length can be predicted with this model and the com-
mand feed length. Finally, the value of parameter u is
calculated with Taylor’s expansion method and
corrected by iteration, so that the target position with
small feedrate fluctuation can be achieved from the
parametric equations.

The rest of this paper is organized as follows. Section 2 is
the introduction of Taylor’s expansion-based NURBS inter-
polation and the analysis of feedrate fluctuation. Section 3 is
the details of the proposed online interpolation method. The
simulation results are given in Section 4. Conclusions are
summarized in Section 5.

2 Interpolation of NURBS curve

As a non-uniform rational B-spline curve, NURBS curveC(u)
can be expressed as in Eq. (1)

C uð Þ ¼
∑
n

i¼0
Ni;p uð ÞPiwi

∑
n

i¼0
Ni;p uð ÞPi

; u∈ 0; 1½ � ð1Þ

where the index i=0, 1,…, n, Pi is the set of control point,wi is
the set of corresponding weight of Pi , (n+1) is the number of
the control points, and p is the degree of the NURBS curve.

Ni,p(u) is the B-spline basis function defined on the non-
uniform knot vector U={u0 ,u1 ,⋯,un+p+1}. The B-spline ba-
sic function Ni,p(u) is defined as

Ni;0 uð Þ ¼ 0 if ui < u≤uiþ1

1 otherwise

�
Ni;p uð Þ ¼ u−ui

uiþp−ui
Ni;p−1 uð Þ þ uiþpþ1−u

uiþpþ1−uiþ1
Niþ1;p−1 uð Þ

The interpolation of NURBS curve can be divided
into two stages: pre-processing and online interpolation.
In pre- processing, a NURBS curve is split into several
continuous segments based on its degree and control
points. In online interpolation stage, the parameter u is
derived with Taylor’s expansion or other interpolation
algorithms, and then the position of the target interpo-
lation points can be obtained. The process is in Fig. 1.

2.1 Pre-processing of NURBS curve interpolation

NURBS curve is the linear combination of a series of
B-spline basis functions, so it is (p-k) times continuous-
ly differentiable at a knot of multiplicity k for a p de-
gree curve [14]. The continuity degree of the curve at
each knot can be achieved by its degrees and knot vec-
tor. So that an NURBS curve can be divided into sev-
eral separate segments of infinitely differentiable spline
base on the orders of its continuity and number of con-
trol points.

Two examples with repeated knot vector values and mul-
tiple control points are shown in Fig. 2 where P={P1,P2,…P7}
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(a)NURBS curve with repeated knot vector elements (b)NURBS with multiple control points

Fig. 2 Division of second-degree
NURBS, (a) NURBS curve with
repeated knot vector elements, (b)
NURBS with multiple control
points

2097Int J Adv Manuf Technol (2020) 111:2095–2104



are control points of the NURBS curve. Both of these two
curves are second degree. In Fig. 2 (a), knot vector is U=[0,
0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 1], and in Fig. 2 (b), control
points P3=P4. These two curves both can be split into two
smooth segments with the abovementioned method.

It is necessary to get the accurate arc length of the split
continuous segments first before velocity scheduling and

interpolation. The arc length of the NURBS curve between
[a, b] can be expressed as in Eq. (2)

s ¼ ∫ba‖C
0
uð Þ‖du ð2Þ

where ‖ ∗ ‖ denotes the vector norm and ‖C′(u)‖ is the norm of
the first-order derivative of C′(u).

Fig. 5 relationship of chord
length, curvature and arc length
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However, there is no analytical relation between the arc
length and its parameter for NURBS curve, as in the case of
lines and circles, so a numerical integration method Simpsons
rule is adopted considering the computational accuracy and
load. The approximate arc length s(a, b) of a segment of
NURBS curve on the interval [a, b] can be expressed as

s a; bð Þ ¼ C að Þ þ 4C
aþ b
2

� �
þ C bð Þ

� �
b−að Þ
6

For a specified tolerance ε, if the condition in Eq. (3) is
satisfied, then the approximation is within the given tolerance
of the true arc length.

js a1; b1ð Þ þ s a2; b2ð Þ−s a; bð Þj
10

< ε ð3Þ

where [a1 ,b1] and [a2 ,b2] are the intervals split from [a, b]. If
the condition in Eq. (2) cannot be satisfied, the subintervals
should be further refined.

2.2 Interpolation based on Taylor’s expansion

Arc length of NURBS is in a nonlinear relationship with its
parameter u, so its interpolation algorithm is much more com-
plex than linear and circle interpolation. The interpolation of
NURBS is a process of computing a proper parameter value u
to satisfy that the feed length in an interpolation interval is
equal to the command velocity.

The feedrate V(t) of can be defined as

V tð Þ ¼ dC uð Þ
dt

����
����

where u(t) is a monotone increasing function of time in the
NURBS interpolation, then the equation as in Eq. (4) can be
derived

V tð Þ ¼ dC uð Þ
dt

����
���� ¼ dC uð Þ

du
; ⋅;

du
dt

����
���� ¼ dC uð Þ

du

����
����⋅ dudt ð4Þ

therefore, the first-order derivatives of u(t) can be achieved
as in Eq. (5).

du
dt

¼ V tð Þ
dC uð Þ
du

����
���� ð5Þ

the second-order derivatives of u(t) can be achieved as in
Eq. (6).

d2u
dt2

¼
V2
k

dC uð Þ
du

;
d2C uð Þ
du2

� 	
dC uð Þ
du

��� ���4 ð6Þ

Table 1 Newton backward
difference formula Step Value 1st-order divided

quotient
2nd-order divided
quotient

3rd-order divided quotient

k-3 λk-3
k-2 λk-2 ∇λk-2=λk-2-λk-3
k-1 λk-1 ∇λk-1=λk-1-λk-2 ∇ 2λk-1=∇λk-1-∇λk-2

=(λk-1-λk-2)-( λk-2-λk-3)

=λk-1-2λk-2+λk-3
k λk ∇λk=λk-λk-1 ∇ 2λk =∇λk-∇λk-1

= (λk-λk-1)-(λk-1-λk-2)

=λk-2λk-1+λk-2

∇ 3λk =∇ 2λk-∇ 2λk-1
=( λk-2λk-1+λk-2)-(λk-1-2λk-2+

λk-3)

= λk-3λk-1+3λk-2-λk-3

C(uk)
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B
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B2
Bn

Fig. 6 Process of getting target
feedrate fluctuation
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The algorithm based on the first- or second-order Taylor’s
expansion method is one of the most used methods to obtain
the value of parameter u. Therefore uk+1 can be calculated
with Taylor’s expansion.

ukþ1 ¼ uk þ T
du
dt

� �
u¼uk þ

T2

2

d2u
dt2

� �









u¼uk

þ o T3
� � ð7Þ

where T is the interpolation interval. Substituting Eq. (5) into
(7), then uk+1 can be derived. If the interpolation interval is
small enough, the higher order infinitesimal in Taylor’s ex-
pansion can be neglected, and the first-order Taylor’s expan-
sion can be derived as in Eq. (6)

ukþ1≈uk þ VkT
dC ukð Þ
du

����
����

ð8Þ

More accurate result can be achieved with second- or even
higher-order Taylor’s expansion, and the-second order
Taylor’s expansion is shown in Eq. (9).

ukþ1≈uk þ VkT
dC ukð Þ
du

����
����
þ

VkTð Þ2〈 dC uð Þ
du ; d

2C uð Þ
du2 〉





u¼uk

dC uð Þ
du

��� ���4
u¼uk

ð9Þ

Therefore, the next interpolation point can be achieved by
C(uk+1), where the feed arc length of current interpolation
interval is expressed as VkT.

2.3 Feedrate fluctuation analysis

The interpolation point C(uk+1) on the curve can be achieved
with uk+1, so that the resultant displacement of the motion can
be achieved

lk ¼ bVkT ¼ ‖C ukþ1ð Þ−C ukð Þ‖ ð10Þ

There are two problems need to be noticed. Firstly, VkT is
the arc length of current curve as shown in Eq. (11), which is

different from the chord length bVkT in Eq. (10).

sk ¼ VkT ¼ ∫ukþ1

uk

dC uð Þ
du

����
����du

ð11Þ

Secondly, the high-order term of Taylor’s expansion is
neglected. Although the higher-order Taylor’s expansion can
achieve better precision, truncation errors are still inevitable.
These two factors lead to the difference of desired and actual
feed length in an interpolation interval as in Fig. 3. In another
words, the feedrate fluctuation ε from the difference of the

actual velocity bVk and the desired velocity Vk is unavoidable
as in Eq. (12).

ε ¼ Vk−bVk

Vk












� 100% ð12Þ

In order to achieve smaller feedrate fluctuation, another
interpolation target point B’ as in Fig. 3 needs to be found,
so that the actual feed length |AB’| could be equal to the arc
length AB, and feedrate fluctuation can be eliminated. So how
to get the target point B’ to insure that the chord length |AB’| is
equal to its arc length AB is the target of this paper.

3 Interpolation with online arc length
prediction and correction

The proposed online interpolation method can be divided into
two stages. Firstly, a prediction model is derived based on the
relationship of the arc length and chord length of previous
interpolation results, and then target arc length AB’ is

(a) shape of the curve (2) velocity profile

Fig. 7 The tested cubic polynomial curve, (a) Shape of the curve, (b) Velocity profile
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predicted based on the desired feed length and the derived
model. Secondly, target parameter u of the curve is derived
with Taylor’s expansion and corrected by iteration, so the
position of the target interpolation points can be obtained.
The whole process is as shown in Fig. 4.

3.1 Arc length predictor

Mark the arc length between uk and uk+1 as sk, and its corre-
sponding chord length as lk. When the arc length is small
enough, it can be approximated with a circle of same curvature
as shown in Fig. 5

Therefore, the arc length sk can be expressed as a function
of the chord length lk and the radius of curvature 1/Rk, as
shown in Eq. (13).

sk ¼ f Rk ; lkð Þ≈2Rk � sin lk
2Rk

ð13Þ

The chord length lk is the actual feed length in an interpo-
lation interval, which is computed in the feedrate scheduling

stages. It can be seen that the arc length sk is a function of the
its curvature 1/Rk and the chord length lk. In another word, if
the curvature of the spline is continuous, the arc length sk
corresponding to the given chord length lk will change contin-
uously with the curvature of the spline.

lim
θ→0

sk ¼ lim
θ→0

2Rk � sin lk
2Rk

¼ 2Rk � lk
2Rk

¼ lk

ð14Þ

When the chord length tends to zero, it will be equal to the
arc length. Take the quotient of arc length sk and chord length
lk as λ, then λ can be expressed as in Eq. (15).

λ ¼ s
l
¼

∫uuk
dC uð Þ
du

����
����du

C; uð Þ;−;C; ukð Þk k

ð15Þ

A polynomial is employed to approximate this relationship
in an interpolation interval. It is known that cubic spline is

(a) 1st order Taylor’s expansion (b) 2nd order Taylor’s expansion

(c) 1st order Taylor’s expansion with 3rd order polynomial predictor (d) 1st order Taylor’s expansion with 3rd order polynomial predictor 
and twice iteration

Fig. 8 Feedrate fluctuation comparison of different methods, (a) 1st order Taylor’s expansion, (b) 2nd order Taylor’s expansion (c)1st order Taylor’s
expansion with 3rd order polynomial predictor, (d) 1st order Taylor’s expansion with 3rd order polynomial predictor and twice iteration

2101Int J Adv Manuf Technol (2020) 111:2095–2104



most used in CAD/CAM, whose derivative and curvature are
continuous, so λ is continuous. Arc length λk+1 can be inter-
polated based on the previous value λk, λk-1 and λk-2. Here
Newton’s divided difference interpolation polynomial is
employed to get the correction factor.

λk ¼ λ0 þ ∑
n

k¼1

Δkλk

k!
s s−1ð Þ⋯ s−k þ 1ð Þ; 0≤s≤n

The divided differences table is shown in Table 1.
Then the target arc length sk+1 corresponding to the desired

feed length VkT can be derived as in Eq. (16).

skþ1 ¼ lkþ1 � λkþ1 ¼ VkT � λkþ1 ð16Þ

Different orders of the divided quotient can be employed to
get desired precision. When abovementioned algorithm is im-
plemented, arc length and chord length are unknown at first,

(a)  1st order Taylor’s expansion (b)  2nd order Taylor’s expansion

(c)  1st order Taylor’s expansion with 3rd polynomial predictor (d)  1st order Taylor’s expansion with 3rd polynomial predictor 
and twice iteration

Fig. 10 Feedrate fluctuation comparison of different methods, (a) 1st order Taylor’s expansion, (b) 2nd order Taylor’s expansion, (c) 1st order Taylor’s
expansion with 3rd polynomial predictor, (d) 1st order Taylor’s expansion with 3rd polynomial predictor and twice iteration

(a) shape of the curve (b) velocity profile

Fig. 9 The tested cubic polynomial curve, (a) shape of the curve, (b) velocity profile
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so a buffer is needed. Only when the buffer is full with historic
data, the Newton’s divided difference interpolation polynomi-
al can start working.

3.2 Feed-length correction

u1kþ1≈uk þ
VkTλkþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx
du

� �2 þ dy
du

� �2 þ dz
du

� �2q 




u¼uk

ð17Þ

Taylor’s expansion is employed to get the value of param-
eter u as shown in Eq. (8) and Eq. (9).Given the computation-
al load of second-order Taylor's expansion, firs order is
employed here.

As the feed length in an interpolation interval is the predict-
ed with Eq. (16), then another target position B1 as in Fig. 7 is
obtained, then uk+1 can be derived as shown in Eq. (17).

The actual feed length in this interpolation interval can also
be achieved as in Eq. (18).

l1kþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkþ1−xkð Þ2 þ ykþ1−yk

� �2 þ zkþ1−zkð Þ2




u¼u1kþ1

r
ð18Þ

Take Δlk + 1 as the difference between the feed displace-
ment and chord length, when the value is 0 means the feedrate
fluctuation is 0. So that an iterative formula can be derived as
in Eq. (19).

uiþ1
kþ1 ¼ uikþ1 þ

Δlikþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
du

� �2 þ dy
du

� �2 þ dz
du

� �2q








u¼uikþ1

Δlikþ1 ¼ VkT−likþ1

8>>>><
>>>>:

ð19Þ

An ideal value of feedrate fluctuation can be obtained with
enough times of iteration; the process is shown in Fig. 6.

4 Simulation and verification

A segment of 2D cubic curve as in Eq. (20) is interpolated
with the velocity V=1.5m/min, interpolation interval
T=0.001s.

x ¼ −140u3 þ 90u2 þ 90u
y ¼ −90u2 þ 90u

�
ð20Þ

The contour shape and velocity profile of this curve are
shown in Fig. 7. The feedrate fluctuation performance of tra-
ditional Taylor’s expansion method and the proposed predic-
tion model based algorithm is shown in Fig. 8.

The maximum feedrate fluctuation of first-order
Taylor’s expansion interpolation method is about
0.35%, as shown in Fig. 8(a). When second-order
Taylor’s expansion is employed, better performance
can be achieved, and the feedrate fluctuation can be
reduced to 3×10-3 %, as shown in Fig. 8(b). The
feedrate fluctuation of arc length predictor model is on-
ly one thousandth of second-order Taylor’s expansion as
in Fig. 8(c), and better performance can be achieved
when iteration is applied as in Fig. 8(d).

For the curve in Eq. (20), even second-order Taylor’s
expansion based interpolator can get the desired feedrate
fluctuation. The interpolation of a more complicated
butterfly shape NURBS curve in Fig. 9(a) is used to
verify the performance of proposed method, where Fig.
9(b) is the velocity profile. The feedrate fluctuation of
these methods is shown in Fig. 10, and the sum of
feedrate fluctuation in the whole interpolation process
is shown in Table 2.

The interpolation results show that, although the big-
gest feedrate fluctuation of second-order Taylor’s expan-
sion method in Fig. 10(b) is smaller than arc length
predictor model in Fig. 10(c), its sum feedrate fluctua-
tion is bigger as in Table 2. Besides, the computational
load of second-order Taylor’s expansion method is also
larger than third-order polynomial. When the predictor
and iteration method are combined together, the feedrate
fluctuation can reduce hundreds times, and high perfor-
mance can be achieved as in Fig. 10(d) and Table 2.

5 Conclusion

Feedrate fluctuation in NURBS interpolation is analyzed, and
a novel interpolator is proposed to get small feedrate fluctua-
tion. A polynomial based prediction model is derived based
on the continuous relationship of the interpolated chord length
and its corresponding arc length, so that an accurate interpo-
lation arc-length with small feedrate fluctuation can be
achieved with this model. Then the target parameter u in every

Table 2 Sum of feedrate fluctuation in the whole interpolation process

1st order
Taylor’s
expansion

2nd order
Taylor’s
expansion

1st order Taylor’s
expansion 3rd order
polynomial
predictor

1st order Taylor’s
expansion 3rd order
polynomial predictor
twice iteration

∑εi 2249.66 76.78498 49.52917 0.376616
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interpolation cycle is calculated with Taylor’s expansion and
corrected by iteration, so the desired feedrate fluctuation can
be achieved. Performance of the proposed algorithm is tested
with two segments of curve, and the simulation results show
that the proposed algorithm can get smaller feedrate fluctua-
tion with fewer times of iteration than traditional Taylor’s
expansion method.

Funding This research is supported by National Science and Technology
Major Project of China (Grant No. 2019ZX04004001), Natural Science
Foundation of Shandong Province (Grant No. ZR2019QEE042), The
Project of Innovative Application Experiencing Center of Industrial
Internet Platform.

Appendix A Parameters of the Butterfly shape
NURBS curve

Control point (mm):
(54.493, 52.139), (55.507, 52.139), (56.082,49.615),

( 5 6 . 780 , 44 . 971 ) , ( 69 . 575 , 51 . 358 ) , ( 7 7 . 786 ,
58.573),(90.526, 67.081), (105.973, 63.801), (100.400,
47.326), (94.567,39.913), (92.369, 30.485), (83.440,
33.757), (91.892, 28.509),(89.444, 20.393), (83.218,
15.446), (87.621, 4.830), (80.945,9.267), (79.834, 14.535),
(76.074, 8.522), (70.183, 12.550), (64.171,16.865), (59.993,
22.122), (55.680, 36.359), (56.925, 24.995),(59.765, 19.828),
(54.493, 14.940), (49.220, 19.828), (52.060,24.994), (53.305,
36.359), (48.992, 22.122), (44.814, 16.865),(38.802, 12.551),
(32.911, 8.521), (29.152, 14.535), (28.040, 9.267),(21.364,
4.830), (25.768, 15.447), (19.539, 20.391), (17.097,
28.512),(25.537, 33.750), (16.602, 30.496), (14.199,
39.803), (8.668, 47.408), (3.000, 63.794), (18.465, 67.084),
(31.197, 58.572), (39.411, 51.358), (52.204, 44.971), (52.904,
49.614), (53.478, 52.139), (54.492,52.139).

Knot vector:
[0, 0, 0, 0, 0.0083, 0.0150, 0.0361, 0.0855, 0.1293, 0.1509,

0.1931, 0.2273, 0.2435, 0.2561, 0.2692, 0.2889, 0.3170,
0.3316, 0.3482, 0.3553, 0.3649, 0.3837, 0.4005, 0.4269,
0.4510, 0.4660, 0.4891, 0.5000, 0.5109, 0.5340, 0.5489,
0.5731, 0.5994, 0.6163, 0.6351, 0.6447, 0.6518, 0.6683,
0.6830, 0.7111, 0.7307, 0.7439, 0.7565, 0.7729, 0.8069,
0.8491, 0.8707, 0.9145, 0.9639, 0.9850, 0.9917, 1, 1, 1, 1]

Weight vector:
[1.0000, 1.0000, 1.0000, 1.2000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 2.0000, 1.0000, 1.0000,
5.0000, 3.0000, 1.0000, 1.1000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.1000, 1.0000,
3.0000, 5.0000, 1.0000, 1.0000, 2.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.2000, 1.0000,
1.0000, 1.0000]
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