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Abstract
This study analyzes a software algorithm developed on MATLAB, which can be used to examine fused filament fabrication–
based 3D-printed materials for porosity and other defects that might affect the mechanical property of the final component under
manufacture or the general aesthetic quality of a product. An in-depth literature review into the 3D-printed materials reveals a
rapidly increasing trend in its application in the industrial sector. Hence, the quality of manufactured products cannot be
compromised. Despite much research found to be done on this subject, there is still little or no work reported on porosity or
defect detection in 3D-printed components during (real-time) or after manufacturing operation. The algorithm developed in this
study is tested for two different 3D object geometries and the same filament color. The results showed that the algorithm
effectively detected the presence or absence of defects in a 3D-printed part geometry and filament colors. Hence, this technique
can be generalized to a considerable range of 3D printer geometries, which solve material wastages by spotting defects during the
workpieces layer-wise manufacturing process, thereby improving the economic advantages of additive manufacturing.
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1 Introduction

One additive manufacturing (AM) is a fast-evolving technol-
ogy for producing three-dimensional (3D) items from mate-
rials like powder, plastics, and rubber [1, 2]. It is no longer in
doubt today that the potential of this technology will be the
next industrial revolution due to its numerous advantages.
Some of the advantages include geometrical constraint reduc-
tion, production lead-time reduction due to computer-aided
design (CAD), the flexibility of the material used depending
on the application of the manufactured item, labor cost reduc-
tion, waste reduction, and flexibility of customization. This
manufacturing method has attracted increasing attention over
the years, and advancement in this technology has seen a

positive shift from just rapid prototyping of parts, which is
mostly known for the production of complex components
parts. Although 3D printing has been widely used for the
development of materials and structures with complex geom-
etry, the employment of this manufacturing method is still
limited in attaining or ensuring uniformity of workpieces me-
chanical properties and shapes, especially in mass production
[3–5]. Presently, Components are manufactured one after the
other to avoid mistakes. The 3D printer is stopped intermit-
tently to check the quality of printed materials. Materials are
wasted if they do not meet design requirements. Time is
wasted executing a fresh print in the outcome of mistakes
discovered (time to do the materials all over again if it does
not meet design requirements) and many more undesirable
tendencies. Hence, this necessitates the need for an in situ
and real-time quality monitoring system currently sparsely
available that can breach this deficiency in the 3D printing
process. The main challenge in coming up with such a system
that ensures real-time investigation to make the manufacturing
process more efficient stems from the wide range of time-
scaled events and their complexities. The 3D printing process
does not entirely entail material heating, melting, and solidifi-
cation as it can be observed physically during the component
production operation. Also, thermodynamic phase transitions
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and residual stress distributions during the final stage of the
formation of a component which help in cooling and solidifi-
cation to a large extent determine the end shape and quality of
the component [5–7]. These parameters above are not alien to
engineers. Still, a closer study shows they have properties that
can be linked to mechanical, laser optics, thermal, electrical
particle distribution, and material properties. Expert knowl-
edge of these properties can be harnessed to explain the qual-
ity of components characterized by cracks, porosity, residual
stress distribution, and built-up edges. Table 1 gives a brief
description of different defects encountered during the print-
ing of parts on a 3D printer, which compromises the quality
and reliability of parts produced using this technology [7, 9,
10].

Quite a several types of research have been done, and a lot
are ongoing regarding optimization and defect detection/
control in the field of additive manufacturing. The primary
reason for this is to improve the quality of products emanating
from this form of production [10–12]. A wide variety of in situ
methods developed by different researchers had implemented
different in situ sensors and other data capture devices, which
include RGB cameras, laser scanners, thermal imaging cam-
eras, piezoceramic, RGB cameras, CCD cameras, pyrometers,
microbolometers, and acoustic sensors. The work of the de-
vices in the research that were utilized is to provide real-time
information of process parameters during the build process to
halt the printing process and scrap the faulty component or
make necessary adjustments and continue the build. In the
light of a review conducted on this subject matter, this re-
search builds upon these existing works. Still, it focuses on
harnessing a simple microscopic camera and its acquired data
in describing ongoing work on the in situ monitoring and
control operations in additive manufacturing [8, 12, 13].

Much of the early work focusing on in situ inspection has
adopted an in-line camera-based setup which includes that of
the more recent work of Shevchik et al. work, which investi-
gates the feasibility of using acoustic emission for real-time
quality monitoring [14–16]. Here, a sensitive acoustic emis-
sion sensor was used to obtain data from the heat zone. A fiber
Bragg grating sensor was used to record the acoustic signals
during the powder bed additive manufacturing processing
[16–18]. The process parameters were strategically manipu-
lated to create different processing regimes that led to the
generation of different concentrations and types of pores and
contours that aid in the classification process. The classifier
utilized was trained to distinguish between the acoustic fea-
tures of dissimilar quality, based on spectral convolutional
neural network. However, this method was restricted to the
melt pool region; hence, other parts of the printed component
cannot be analyzed for defect detection. Furomoto et al. inves-
tigated the consolidation mechanism of metal powders during
additive manufacturing operations by assembling a high-
speed camera as part of the set up to monitor the consolidation

of the powder during irradiation [19–21]. The effect of alter-
ing the thickness in this work was further investigated by
interpreting camera images captured at the different frame rate
and sampling time. Although this work was carried out with
the view of controlling the melt pool behavior during the
printing process through active monitoring of the temperature
on the surface, real-time interpretation of the data generated
was not possible. Some researchers investigated the limits for
detecting pores and irregularity in the manufactured surface
using an IR camera at a long-wave infrared wavelength band
and a specific sampling rate [21–23]. In this work, pores and
irregularities in surfaces were caused by insufficient heat dis-
sipation during the processing of laser-PBF. This study was
aimed at the identification of deviations encountered during
the build process, mainly caused by a shift in process param-
eters or random errors introduced in the process. In their work,
the additional camera approach implemented did not allow for
inspection across the entire build area. A lot of shielding of the
IR camera has to be done to prevent contaminations from
high-level specks of dust and smoke, thereby reducing the
accuracy of the data collected. High-speed cameras were also
utilized by Craeghs et al. to check for inconsistency mainly
caused by curling up of parts due to induced stresses with the
build-in course of monitoring the powder bed [1, 23, 24]. The
camera was mounted at an angle to the build area axis, and a
simple algorithm was implemented to avoid perspective
distortion.

Some researchers, in their work, equipped an electron
beam-PBF system with an IR camera with a processing reso-
lution up to 320 × 240 pixels [25–27]. The camera, in this
case, was also placed at an angle of 15 degrees to the bed
and shielded by a zinc-selenide (ZnSe) to protect equipment
from metallization [28–30]. A snapshot of each layer was
taken after meeting before the next powder layer was raked
across. This image is then compared with the model of a
ground sample. Areas of materials with higher heat radiation
correspond to flaws or irregularities. An automated process
would be required to progress from just detecting to
implementing a closed-loop structure that assures repairs of
errors detected [29–32].

An IR camera was also incorporated by Rodriguez into an
electron-PBFmachine to do a surface temperature analysis for
each build layer processed. The information obtained during
the analysis is then incorporated into the dictate of the build
settings for the subsequent layer. This research was carried out
mainly to analyze captured images manually, and measuring
the emitted radiation from the surface of the component being
printed, reflected emission from sources at ambient tempera-
ture and atmospheric emission. The cumulative temperature
was then converted to a relative temperature reading. The idea
of the cumulative temperature helped in the identification of
material discontinuities caused by “over melting” as observed
from IR generated images [32–34]. Incorporation of a thermal
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imaging camera is an effective way of monitoring each layer
printed during additive manufacturing operation, as described
in the work of other researchers highlighted in the literature.

Still, it compromises on its ability to distinguish between ob-
jects of interest due to its dependence on heat concentrations
in components.

Table 1 Types of defects in 3D printing and their corresponding causes [8]

PRINT (PLA) TYPE OF DEFECT CAUSES
Poor Bridging Lack of support provided for larger bridging regions of printed 

parts.

Dimensional 

Accuracy

Many common factors can cause this defect: thermal contraction, 

under or over-extrusion, filament quality, and first layer nozzle 

misalignment.

Gaps Between Infill 

and Outline

Many common factors can cause this defect: thermal contraction, 

under or over-extrusion, filament quality, and first layer nozzle 

misalignment.

Layer Separation and 

Splitting

In this case, the infill is printed too fast, making it not to have 

enough time to bond to the outline perimeters.

Elastic Deformation This defect occurs when the Layer height preselected is too large 

or when the Printing temperature is too low. This is mostly 

caused by Insufficient Cooling or Printing at too high of a 

temperature.

Misalignments This type of situation occurs when there is over extrusion of 

printing material.

Layer Shifting This kind of case arises when the Tool head is moving too fast, or 

there is a Mechanical or Electrical Issue associated with the 

printer itself.

Blobs and Zits This occurs due to the retraction and coasting of the extruder or 

error in the start point setting.

Incoherence This can be caused by several issues, which include Filament 

getting stuck or tangled, Clogged Extruder, Very low layer 

height, Incorrect extrusion width, Poor quality filament, and 

Mechanical extruder issues.

Stringing or Oozing This situation arises due to one of the following; Retraction 

distance, Retraction speed, Temperature too high, Long 

movements over open spaces, or inappropriate Movement Speed.
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Like previous work, this research attempted to identify key
parameters of interest of the objects under manufacture to mod-
ify printer behavior in real-time. Engineers out there in different
disciplines utilizing hardware for design synthesis require com-
ponent not only with good aesthetic quality but also with opti-
mum mechanical properties to meet quality assurance demand.
Nowadays, 3D-printed materials are finding its way into core
engineering applications that were meant for steel and other
metallic alloys with desired properties; hence, a grave necessity
is laid on additive manufacturers to improve on the quality of
the manufactured components. One of the many ways to
achieve this is the institution of a system that analyzes the
quality of the printed parts for defects that may affect their
overall workability in the areas of application, hence the prima-
ry objectives of this research study. This research is an ongoing
work that seeks to develop a software algorithm that can deter-
mine the locations of pores and crack concentration on each
layer of a 3D-printed product. With the image processing algo-
rithm developed in this paper, the extraction of porosity infor-
mation from raw quality inspection data, such as tomography
datasets of cross-sectional images, can be automated.

2 Methodology

An experiment is carried out by printing a model shape using a
3D printer to identify layers which have pores as well as other
deformation that goes beyond an acceptable range. Base on
the 3D printer settings, each layer that represents a specified
thickness is completely printed before proceeding to a new
layer. The moment a layer is completely printed, the CCD
camera takes the image of the print and sends the result to
the image-processing system. The image-processing system
processes the sent image from the camera using a developed
algorithm and compares it with the design model image.
Layers captured during intermittent layer prints are compared

with layers without defect. Those layers were noted and ana-
lyzed to give a command to the 3D printer to continue or stop
printing to avoid material wastage if the defect is not within
acceptable limits. The following methodological approach
was adopted in aiding this research. The object to be printed
using the 3D printer was designed and modeled using solid
works software [33–36]. This modeled design serves as the
input variable and setpoint for which the printer is meant to
replicate during production. An experimental setup was ar-
ranged using the in situ configuration with one CCD camera
at the top view of the printed object to obtain real-time images
of each layer once printer and send an image to the monitoring
system to analyze using the developed algorithm. The 3D
printer was set to print a total of 10 layers for the object due
to the design dimension (thickness) of the model design of
which should reflect the actual 3D printed object. Each image
layer was analyzed and compared with the designed solid
works model using an algorithm. At layers having defects,
the defective layers were compared with the layers without
defects. Result obtained was evaluated and discussed to obtain
a conclusion and suggest areas for further research.

2.1 Model design and experimental setup

Solid works software was used to design an object model for
use in experimenting. The object shape, as seen in Fig. 2,
shows the CAD design and its corresponding dimensions.
Based on the thickness of the modeled object, a total of ten
layers was created from it of which these serve as a reference
for the 3D printer when executing the printing command
[29–31]. Due to the uniformity of the object being printed,
each layer has the same dimensions and shape. One-layer
dimension was used for all layer model reference during the
production process. To bring the aim of this study into actu-
alization, an experimental set has been realized to aid the
investigation. As shown in Fig. 1, the setup incorporates a

Fig. 1 Experimental setup of the cameral process to detect the defect in the printing object
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CCD camera which acquires the data of each layer of a part
printed at regular intervals. Two light sources are placed at
strategic locations in the printing chamber to enable the
defocused and homogeneous illumination of partly printed.
The setup is extended by a memory drive that saves all the
images acquired by the CCD camera, and then it is accessed
directly by the software in the computer used for the process-
ing. Table 2 gives information regarding the specification of
the camera, software used, and the additive manufacturing
machine utilized for the experiment.

2.2 Porosity measurement

This is a software-based comparative study of printed scaf-
folds of 3D-printed material with visible defects and those
without visible defects. An exhaustive literature review and
experimental examinations were done to achieve the objec-
tives of this research. A MATLAB model porosity identifier
algorithm was further developed, which can be implemented
in real-time to give an idea of the porosity gradient of a printed
component. Before employing a technique to construct the
porosity in situ monitoring model, the image of parts printed
on the bed of the 3D printer collected by an appropriate sensor
camera needs to be compared with the porosity data collected
from the component that is analyzed. A set of image process-
ing algorithms has been developed in MATLAB to generate
porosity information from the raw images of cross-sections
under investigation, as discussed in Fig. 5. The cross-
sectional images acquired consecutively are not concatenated
or post-processed like some other research carried out. Here,
the images captured are diagnosed by the developed algorithm
in its raw state. The image is then cropped from during the
processing to exclude areas of the sample holder and other
accessories captured during the operation, which are not parts
of the region of interest. After the cropping, the image is
binarized using Otsu’s thresholding algorithm, and the dark
patches represent pointers of porosities on the image’s cross-
section. In the cause of this study, two types of dark patches
were observed. One was due to contour cracks, and the other
is due to pores spaces of different magnitude. The sequential

steps of processing the image are discussed below and illus-
trated in Figs. 7 and 8.

3 Evaluation of defect detection

In this study, a sample test CADmodel was created, as shown
in Fig. 2 below. The G-code of the model was then generated,
and a total of ten layers were printed using the 3D printer to
determine the layer at which the defect could no longer be
acceptable. Each printed layer samples were suitable for the
analysis intended. These samples were selected to be used to
test the validity of the software program algorithm. The
Fig. 2a below represents one of the layered sample printed
on the 3D printer with some defects on it, while Fig. 2b rep-
resents another layer sample without defect as recorded by the
CCD camera during the experiment.

When these samples were analyzed using the software al-
gorithm developed, the following operational sequence shown
in Fig. 3 was carried out at different stages of the simulation.
Each of the operation represented on the flow chart yielded
specific results which are collectively used to make a final
loop in the identifications of pores/defect/contours in printed
components. The image results (Figs. 5 and 6) in the
succeeding page show the series of operation as explained in
the flow chart that was done on the digital input image before
a final result is generated stating the existence or non-
existence of pores/defect/contours in the additively
manufactured component (Fig. 4).

4 Result and discussions

Thresholding of the image acquired is necessary to aid the
subtraction of foreground components from the background
as the first step before implementing other classifications to
facilitate defect detector computations. This section shows the
result of the images analyzed by the algorithm to detect the
presence of pores. In Figs. 5 and 6 below, a, b, c, d, and e
represent the intermediate image processing results obtained

Table 2 Details datasheet of support devices

Data sheet of camera

Designation of microscopic camera Frame rate Lens mount Sensor type Camera resolution

AV GC -D1380CH 30 C-MOUNT CCD 1360 (H) × 1024 (V) pixel

Data sheet of 3D printer

Type of material Nozzle temperature File format printing Machine weight Structure

PEEK 220 °C STL, G-code 8.5 kg Aluminium profile

Data sheet of software program

Type Version Bits Execution time

MATLAB R2020a 64 0.48 s
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during analysis. The end product of this analysis, which is, of
course, the porosity information image, is one that depends on
other processes for it to be successfully achieved. Figures 5
and 6 show a vivid comparison between the image results of
the layer generated by the simulation of the algorithm devel-
oped on a component with defect/contours/pores and another
without a defect. This will aid in examining the efficacy of the
algorithm for further investigations and approval for general
use. In this simulation, some errors were accounted for that
were mainly due to the image quality obtained, component
sacrificial scaffold support finishing, and illumination. These
sources of errors can be neglected in this study as the aim is
just towards defect identification on a photographic scale. In
the case where a feedback system will be implemented for
information regarding defects detected, these errors will be
filtered or ignored as the support is only a component which
is usually discarded when the actual component is successful-
ly manufactured. Figure 7 shows the nature of the histogram
distribution of the pixels in the image.

4.1 Pixel distribution and segmentation

The captured images of both specimens (the layer with defect
Fig. 5(a) and the layer without defect Fig. 6(a)) were then
normalized into a greyscale pixel intensity map which ranges
from 0 (dark patches on image) to 1 (white) for image seg-
mentation. This step taken allowed us to identify the pattern of
pixel intensity mapping within each frame of interest for

spatial and layer variation analysis rather than acquiring pixel
values using a point-wise approach.

The image processing was done using the MATLAB im-
age toolbox viz-a-viz, a specially designed algorithm. The
pore detection of this additive manufactured sample poses
some challenges arising from foreground objects around the
sample evaluated, the image quality of the captured sample,
and a shadow cast on any side of the sample due to light
position. In general, in situ detection of sintered contours is
easier than a post-process analysis of a molten and solidified
workpiece because of its higher contrast between the molten
area and the unmolten powder. Consequently, the following
optical analysis may be transferred directly to comparable in
situ edge detection measurements.

For optical measurements and evaluation to be carried out,
three basic steps are undertaken during the process, which
involves utilizing both hardware and software, respectively.
Firstly, the object layers being manufactured on the 3D printer
are captured with an appropriate camera in a well-illuminated
condition after completing each successive layer. Secondly,
the image is transferred to the workstation via the adapted
camera. Lastly, the acquired data in the form of a digital image
is then processed with the software algorithm developed for
quality assessment and measurement. In this study, the soft-
ware algorithm developed performed series of operations on
the digital image, as shown above, before the desired result is
reached. To suitably track the edges of any image analyzed by
the algorithm, the grey sample is first generated. The grey

Fig. 3 Method of pores/contour/defect detection algorithm, where β1
converts the grey scale image to binary image. β2 complements the
binary image. β3 fills holes identified in the image. β4 calculates the
boundary area of the image. β5 draws a boundary line on the image. β6

displays holes and numbered too. β7 calculates boundaries of regions
with pores in the image. β8 displays the image with pores and contours
represented in random colours

Fig. 2 Measurement object (a) CAD design of sample. b Image of additive manufactured sample with defects. c Image of additive manufactured sample
without defect
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values obtained are then binarized, complemented, and filled
with revealing the entire area covered by the image to aid in
dimension extraction. During the printing process and from an
image captured by the CCD camera, it was discovered that
layers from 1 to 7 had no defect, but layers from 8 to 10 had
defects in them, which have been analyzed and comparedwith
layers without defects. The equation below represents the spa-
tial objective function for pores identification of a squared
error function

F Uð Þ ¼ ∑K
i¼1 ∑Ki

j¼1 xi−uj
�� ��� �2 ð1Þ

where x = {x1, x2, x3,…., xn} is the set of defect points and
u = {u1, u2,…., uc} be the set of centres of defect clusters. (‖xi
− vj‖) is the Euclidean distance between xi and uj. ki Is the
number of pores/defects in the cluster. K is the number of
cluster centers.

The equation can be further experience as a model spatial
function for pore’s center identification.

Fig. 4 Flowchart of the model
detection process
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ui ¼ 1
�
ki

� �
∑ki

j¼1xi ð2Þ

where ki is the number of pores in the cluster. This formula is
used to recalculate the new pores/defect cluster center to aid
reassignment in the algorithm to achieve a better result during
simulation of layers under consideration. The pore detection
was based on K means clustering algorithm used predomi-
nantly for medical imaging in most biomedical applications.
From the results obtained as shown in Fig. 6, the sample
without pores did not have the random colors displayed on
its surface, which invariably shows that no visible pores were
identified on its surface when analyzed by the image process
algorithm. However, it will be observed that there are some
colors displayed at the side (support) due to the relative rough-
ness of the support. In essence, this algorithm has further
proved its validity in total agreement with what is observed
physically by our eyes. In the sample with pores (Fig. 5), it
will be observed that there are random colors scattered around
its surface. This simply shows the presence of pores and dis-
continuities on the surface. This was achieved by K means

clustering concept, as stated earlier, via the investigation of
the pixel values of pores and any other discontinuities/defects
and their size distributions.

4.2 Edge detection and background subtraction

This is one of the processes embedded in the software algo-
rithm to mark out the boundary of the sample to aid in the
measurement of the sample dimensions. This process is most
times affected by the presence of shadow in a digital image
captured. Hence, the result obtained tends to be obscured like
the sample analyzed in Fig. 8 below, thereby giving a false
judgment regarding sample size on the build plate of the 3D
printer. This limitation is similar to the first limitation, which
can be solved by improving the illumination of the sample.
Still, in this case, an appropriate angle of incidence selected
will improve the quality of the sample image greatly.

This is another challenge as a decisive selection cannot be
made regarding what is captured and what is blanked out
when the camera is placed facing a particular direction. In

Fig. 5 Processing steps of pore’s detection for an image with defect (a)
Input image. b Complemented image of a sample. c Binary image of
sample exposing every defect. d Complemented images of samples

with all holes/defect filled. e Outline of the boundaries of samples
traced by code. f Result of local pore detection

Fig. 6 Processing steps of pore’s detection for an image without defect. a
Input image. b Complemented image of a sample. c Binary image of
sample exposing every defect. d Complemented images of samples

with all holes/defect filled. e Outline of the boundaries of samples
traced by code. f Result of local pore detection
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the capturing of the sample under manufacture, the camera
also tends to capture other accessories of the 3D printer. It
becomes difficult to carry out a foreground (other accessories)
subtraction when there is a similarity between some of the
accessories and the sample underbuild. This, however, was
solved by thresholding and image segmentation options in
the image processing algorithm before binarization of the
sample image.

5 Limitation

It was noticed that the presence of shadows around the image
or on the digital image to be analyzed caused some deviations
from the expected results obtained, as observed in Fig. 8. This
was so because the pixel value of the shadow interfered with
the pixel values of pores included in the algorithm for pore
investigation and detection. To cub this anomaly in this re-
search study, pictures of samples were taken in an adapted
optical environment. The algorithm requires an iterative apri-
ority specification of the number of cluster centers. Since it is

highly probable to have two overlapping pixel data of defects
identified on images, the algorithm simulation result may be
tilted slightly from accuracy based on this kind of input. This,
however, can be solved by intelligent machine learning tech-
niques that can identify close matching data sets. Also, the
algorithm is not invariant to non-linear representations. The
measure of Euclidean distance between sets of defect points
and cluster centers can unequally weight underlying factors
like shadows and other noisy data and outliers.

6 Conclusion

This algorithm proposed in this research study can aid this
material to be effectively utilized in different sectors with
low to zero risks regarding component mechanical property
or quality. In no distant time, 3D-printed material has the
potential of replacing expensive high-qualitymaterials already
invoke in the industrial sector. The need is to explore the
tendency of using 3D-printed components that meet mechan-
ical and quality standards for more sophisticated applications.

Fig. 7 Histogram distribution of
Grey level images of samples
pixels. a Grey level image of a
sample without defect. b Grey
level image of sample with
defects. c Histogram distribution
of the grey level image of a
sample without defect. d
Histogram distribution of the grey
level image of a sample with
defects

Fig. 8 Shadow effects on algorithm
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This development will undoubtedly increase the usage of 3D-
printed materials since a material property validity test proce-
dure now breaches the gap created by uncertainties. In the
future, a video editing of layers printed during the additive
manufacturing process will give a better result and ensure
optimum quality in the process. We recommend in this re-
search work for further analysis of the thickness of the printed
object for any form of defect.
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