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Abstract
One of the major problems in the application of machining processes is the cutting tool life estimation. In this regard, different
studies with various assumptions have been conducted to analyze tool wear characteristics under various cutting conditions to
achieve different objectives. Traditional models for the analysis of tool life are mostly based on deterministic approaches, and the
variations in cutting conditions are overlooked, and the tool life is not precisely matched with predicted values by these methods.
In recent years, researchers have considered using the stochastic approach in forecasting tool life. Among them, Weibull
distribution has special significance. One problem in using these approaches is the accurate estimation of tool’s life distribution
functions based on the empirical information. In other words, althoughmany researchers have consideredWeibull an appropriate
distribution for the cutting tool life modeling, however, the estimation of its parameters has certain inherent complexities. In this
research, a hybrid methodology is presented to determine the parameters of the tool life distribution, by using the design of
experiment (DOE) based on Box-Behnken design (BBD), total time on the test (TTT) transform, and golden section search
(GSS). The estimation method of Weibull distribution parameters in this paper is compared with well-known techniques such as
the least square method and maximum likelihood estimation. Finally, the proposed methodology was implemented in a case
study, and the results were reported. The values ofR2 for shape and scale parameters are 92.52% and 96.80%, respectively, which
confirm the adequacy of the proposed methodology in the practical applications.

Keywords Stochastic tool’s life modeling .Weibull distribution . TTT transform . Golden section search .Machining conditions

1 Introduction

Machining is an essential industry in developed countries [1].
Despite the developments of machines’ tools and coating
technologies, tool wear poses a significant challenge in cutting
processes, reliability determination, and product quality [2].
Tool wear can negatively affect the quality of producing
workpiece and surface roughness. It can also increase the pro-
duction time and machining process cost [3].

Taylor’s equation is adopted to predict the amount of flank
wear, and hence the tool life [4], in which the relationship
between cutting speed (Vc) and tool life (T) is defined as (Vc.
Tn =C), where C and n depend on a specific composition of a
workpiece and cutting tool materials [2].

Given the increasing industrial application of new machin-
ing technologies (e.g., high cutting speed or dry cutting), the
existing equations for tool life should be updated based on
constants. Moreover, although these equations can be used
to predict the tool life, it is difficult for tools designers to
receive more information about the extent of wear, wear spec-
ifications, or wear mechanisms [5]. Therefore, the tool life
equations cannot be used in all cutting conditions [6, 7].

In the previous studies, tool life is assumed to be determin-
istic, which allows the calculation of the tool life accurately
when the process parameters are provided. In this regard, Noel
et al. [8] reported that ignoring the variation of tool life results
in unsuccessful planning and low accessibility of the machin-
ing process. Therefore, many researchers have investigated
stochastic approaches to model tool life. Hundreds of machin-
ing experiments in the study of Wager and Barash [9] con-
firmed that the real life of HSS tools is entirely different from
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deterministic predictions. Based on these results, the authors
reported that normal distribution is suitable for tool life as long
as the complete breaking of the tool is concerned. In another
study, using a normal distribution and Bayesian inference, a
tool life model was developed for the turning and milling
process [10]. Dasic et al. [11] emphasized on the easiness
and symmetrical features of normal distribution. They argued
that despite the observed data skewness, the normal distribu-
tion is suitable for reliability modeling [11]. However, the
normal distribution allowed the inclusion of negative values
in tool life. Moreover, Wager and Barash [9] found skewed
data in their study on the life of the cutting tool and concluded
that the normal distribution cannot represent the tool life's
behavior, when it is not symmetric. Therefore, they recom-
mended using the log-normal distribution or Weibull distribu-
tion for tool life modeling. Log-normal distribution has been
used for tool wear modeling by some other researchers as well
[12, 13].

Regarding observations on the metal cutting process,
Ramalingam [13] concluded that given the changing rate of
detachment over time, log-normal distribution is more suitable
for tool life modeling. However, log-normal distribution does
not realistically represent the tool life’s distribution. This con-
clusion is made based on the failure rate function. According
to this function, the failure rate increases over a certain period,
after which it reduces to zero. Apart from a few cases, this type
of failure rate function cannot be used in usual machining
processes [14].

According to Rausand and Høyland [15], an inverse
Gaussian distribution represents the distribution of tool life
more realistically than a log-normal distribution. The shape
of the failure rate function of this distribution resembles the
shape of a log-normal distribution. Yet, over time, the failure
rate function gets closer to a non-zero value. The studies con-
ducted by Galante et al. [16] indicated the applicability of the
inverse Gaussian distribution for tool life modeling.

The analyses of cutting tools wear using Bernstein distri-
bution show that Bernstein distribution tends to inverse
Gaussian distribution when the primary tool wear is zero
[17, 18]. However, the main problem of Bernstein and inverse
Gaussian distributions is the difficulty of estimating their pa-
rameters, which makes the practical use of these two distribu-
tions challenging.

Meanwhile, various studies represent Weibull distribution
as a suitable distribution for cutting tool life modeling [19,
20]. Wager and Barash [9] proposed a Weibull distribution
as a flexible distribution. The main advantage of this distribu-
tion is that it allows the modeling of several shapes of failure
rate functions, including increasing, decreasing, and constant
rate [14]. The study of Elwardany and Elbestwai [21] on the
flexibility and shape of reliability function and failure rate
function showed that a Weibull distribution is suitable when
a tool breaks under the influence of a shock.

Pandit [22] showed that an exponential distribution as a
particular subclass of Weibull distribution is an appropriate
approximation of tool life, used in high-speed machining.
Likewise, Elwardany and Elbestawi [21] suggested the possi-
bility of using a Weibull distribution when the distinction
among various failure modes is impossible.

Based on the surveyed literature, it can be concluded that
no study has investigated the impact of machining conditions,
such as spindle speed, feed rate, and depth of cut on the pa-
rameters of Weibull distribution. Using an empirical ap-
proach, this paper aims to propose a tool life model based on
Weibull distribution. In this methodology, theWeibull param-
eters under various machining conditions are obtained using
the Box-Behnken design, TTT transform, and golden section
search.

In this paper, a hybrid methodology is developed to
achieve two objectives. The first objective is to model the
Weibull distribution’s parameters precisely for a specific ma-
chining condition that, through it, the cutting tool life distri-
bution is determined. The second objective is the identifica-
tion of variations in tools’ life distribution due to the changes
in the machining variables. To achieve these objectives, in the
proposed methodology, the design of the experiment is
adopted using Box-Behnken design. The Total time on test
(TTT) transform is conducted on the tool life data. Moreover,
the golden section search (GSS) algorithm is applied to esti-
mate the tool life’s distribution. For this purpose, the relation
between the Weibull distribution’s parameters and the ma-
chining conditions is determined as a full quadratic model.
Finally, the proposed method is implemented in a milling
operation, and the results are reported.

The rest of the paper is organized as follows: Section 2
presents the problem definition in detail. In Section 3, the
Weibull distribution estimators are compared. Section 4 de-
scribes the material and experimental planning for the case
study. Section 5 is focused on the result and discussion, and
finally, Section 6 presents the conclusions.

2 Problem definition

Accurate estimation of tool life and monitoring the cutting
tool’s performance during machining operations is critical
since the quality of the end-product and productivity rate de-
pend on the functional state of the tool [23]. Replacing tools in
short periods of time leads to increased tool costs. On the other
hand, replacing tools over long periods of time may lead to
tool breakdowns during the operation and cause damage to the
workpiece and even the machine tool. Therefore, accurate
estimation of tool life distribution’s parameters can lead to
the optimization of tool replacement time and thus reduce
the production costs [24, 25].
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In this section, assuming the tool life follows a Weibull
distribution, a mathematical approach to model the parameters
of the tool life distribution is presented. This study aims to
determine the relationship between the machining conditions
and the parameters of the Weibull distribution and investigate
how the tool life’s parameters vary as the machining condi-
tions change. As it is explained in Section 2.1, the design of
experiment (DOE) is used based on BBD. The nomenclatures
used in this paper are shown in Table 1.

2.1 Design of experiment based on Box-Behnken
design

The RSM is a non-linear multivariate model that involves the
DOE to provide reliable responses and fits the best surface to
the data [26]. One of the RSM methods is BBD, which is a
second-order design based on a 3-level partial factorial design
[27, 28]. BBD was used in this research because it is more
efficient than the central composite design (CCD) [29]. This
method can estimate the values of the parameters in a quadrat-
ic model, making it possible for the responses to be modeled
by a second-order polynomial as in Eq. 1:

Y ¼ β0 þ β1:x1 þ β2:x2 þ β3:x3 þ β4:x1:x2 þ β5:x1:x3 þ β6:x2:x3
þβ7:x

2
1 þ β8:x

2
2 þ β9:x

2
3

ð1Þ

where x1, x2, and x3 represent independent variables and γ
represents the response variable. β0 represents intercept, while

β1 to β9 denote the model’s coefficients. The number of ex-
periments can be obtained through Eq. 2:

N ¼ 2:k: k−1ð Þ þ C0 ð2Þ

whereN and k represent the number of experiments and the
number of independent variables, respectively. C0 indicates
the number of center points in the experiment.

In this study, the spindle speed, feed rate, and depth of cut
are the independent variables. It is worth noting that in all
studies conducted using DOE in machining processes, the
response variables are quantitative and measurable. Surface
roughness, flank wear, machining time, and the end of the
tool’s life are some of the response variables commonly con-
sidered. However, in the current study, a Weibull distribu-
tion’s parameters are considered response variables, which
cannot be directly calculated based on a single machining
experiment. Given different machining conditions, these ex-
periments aim to realize how the tool life’s parameters vary.
To this end, Section 2.2 describes a mathematical transforma-
tion, called the total time on test (TTT) transform, and explains
its application in the DOE.

2.2 TTT transform

Consider an experiment in which a cutting tool machines a
workpiece under specific machining conditions. The experi-
ment with fixed machining conditions was repeated n times,
and each time, the tool life is recorded. Then, the recordings
are arranged in ascending order (t1,…, tn). The tool life is
assumed to follow a continuous distribution that has a strictly
increasing cumulative distribution function with a finite mean.
Given these conditions, the total time on test for ith failure
{T(ti)} is defined as Eq. 3:

T tið Þ ¼ ∑
i

j¼1
t j þ n−ið Þti ð3Þ

In order to scale the TTT values for ith failure, each value
should be divided by {T(tn)}. Now, a plot is drawn with x axis
and y axis representing (i/n; i = 1,…, n) and T(ti)/T(tn); i = 1,
…, n, respectively. The plot is called the TTT plot.

Rausand and Høyland [15] indicated that T(ti) can be cal-
culated as Eq. 4, where Fn(u) represents the function of exper-
imental life distribution. Accordingly, they demonstrated that
when n tends to infinity, E(t) can be determined as Eq. 5,
where E(t) is the mathematical life expectation.

T tið Þ ¼ n∫ti0 1−Fn uð Þð Þdu ð4Þ

E tð Þ ¼ 1

n
∑
n

i¼1
ti ¼ ∫F

−1 1ð Þ
0 1−F uð Þð Þdu ð5Þ

Table 1 Nomenclatures

N Number of experiments

n Number of inserts (repetition)

k Number of independent variables

C0 Number of center points in the experiment

ti Failure time for the ith insert (repetition)

T(ti) Total time on test for the ith failure

E(t) Life mathematical expectation

F(t) Cumulative distribution function

R(t) Reliability function

h−1f vð Þ Total time on test transform

G(v) Scaled total time on test transform

α The shape parameter of theWeibull distribution

λ Scale parameter of the Weibull distribution

n Spindle Speed

f Feed rate

ap Depth of cut

SSE Summation squared error

d Width of the workpiece

L Length of the workpiece
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Now, h−1f vð Þ denotes the TTT transform on F(t), which is

expressed in Eq. 6:

h−1F vð Þ ¼ ∫F
−1 vð Þ

0 1−F uð Þð Þdu; 0≤v≤1 ð6Þ

G vð Þ ¼ h−1f vð Þ
h−1f 1ð Þ ; for0≤v≤1 ð7Þ

In Eq. (7), G(v) denotes the scaled TTT transform on F(t).
Given that the focus of this study is on Weibull distribution if

F(u) is replaced by 1−e− λ:uð Þ�
αg, where λ > 0, α > 0, u ≥ 0,

and F−1(v) is replaced by (1/λ). {−Ln(1 − v)}1/α, where 0 ≤ v ≤
1, the TTT transform, is achieved in Eq. 6. Consequently,
Eq. 8 can be written for the Weibull distribution:

h−1F vð Þ ¼ ∫
1
λ −ln 1−vð Þð Þ1=α
0 e− λuð Þαdu; 0≤v≤1 ð8Þ

Equation 8 can be rewritten as Eq. 9 with the change of
variable t = (λ. u)α:

h−1F vð Þ ¼ 1

αλ
∫−ln 1−vð Þ
0 t

1
α−1ð Þe−tdt; 0≤v≤1 ð9Þ

Now, G(v) is obtained for the Weibull distribution as fol-
lows:

G vð Þ ¼
1

αλ
∫−ln 1−vð Þ
0 t

1
α−1ð Þe−tdt

1

αλ
∫∞0 t

1
α−1ð Þe−tdt

¼
1

αλ
∫−ln 1−vð Þ
0 t

1
α−1ð Þe−tdt

1

αλ
Γ

1

α

� � ¼
1

αλ
∫−ln 1−vð Þ
0 t

1
α−1ð Þe−tdt

1

λ
Γ

1

α
þ 1

� �

¼
1

α
∫−ln 1−vð Þ
0 t

1
α−1ð Þe−tdt

Γ
1

α
þ 1

� �
ð10Þ

The following points are essential to make about (v):

1. G(v) is a transform on the Weibull distribution, which is
independent of parameter λ.

2. The numerator of this fraction is an incomplete gamma
function.

3. It cannot be stated as an explicit mathematical function
and can be calculated only numerically.

4. Its exact value cannot be calculated for each v. However,
there are several methods to approximate the value.

Rausand and Høyland reported a specific relationship be-

tween h−1F vð Þ behavior and failure rate [15]. They demonstrat-

ed that if h−1F vð Þ is a convex function, the F distribution would

have an increasing failure rate, and if h−1F vð Þ is a concave
function, the F distribution has a decreasing failure rate.
These conditions are two-way, assuming that F distribution
is a continuous function and has a strictly increasing cumula-
tive distribution.

The application of G(v) is the estimation of TTT based on
different values of v when 0 ≤ v ≤ 1. Equation 11 defines the
relationship betweenG(v) and the scaled total time on the test:

h−1f vð Þ
h−1f 1ð Þ ¼

T tið Þ
T tnð Þ ð11Þ

Equation 11 holds for i = 1,…, n, where v = (i/n). Equation
11 is used in this research to analyze the parameters of the
cutting tool life’s distribution, which is modeled according to
Weibull distribution. Section 2-3 will discuss how using con-
vex optimization at each level of the BBD experiment based
on TTT transform, the shape and scale parameters can be
estimated. Finally, the relationship between the machining
conditions and these parameters will be modeled.

2.3 Estimating the parameters of the cutting tool life
distribution based on the Weibull distribution

This section introduces a mathematical approach for estimat-
ing the Weibull distribution’s parameters. This approach is
used to obtain the relationship between these parameters and
the machining conditions. In this study, a hybrid methodology
is developed, which consists of a DOE based on BBD, TTT
transform, and convex optimization using the golden section.
In this methodology, based on BBD for each experiment, the
spindle speed, feed rate, and the depth of cut are initially
determined through the DOE. Then, a predefined number of
inserts (n) are performed on the workpiece, and the tool life (ti)
is recorded for each insert. Then, using Eq. 3, T(ti)/T(tn) ratio is
calculated under the scaled total TTT. In the next stage, G(v),
which is obtained from Eq. 12, is fitted on the TTT plot data,
such that the summation squared error (SSE) is minimum.
Therefore,

MinSSE ¼ ∑
n

i¼1
G

i
n

� �
−
T tið Þ
T tnð Þ

� �2

ð12Þ

The optimization of the function above involves only one
variable, namely, α, which is the shape parameter of the
Weibull distribution for the tool life because G(v) is indepen-
dent of λ. Now, if SSE is calculated for various values of α,
and all the obtained points are connected on a plot, a uni-
modal function emerges.

This study uses the golden section search (GSS) method to
optimize Eq. 12. The GSS was extended to optimize the uni-
modal functions by Kiffer [30] and other researchers [31–34].
In Appendix A, a geometrical interpretation and the pseudo-
code of this method to optimize Eq. 12 and calculate the shape
parameter are presented.

After estimating the shape parameter of the Weibull distri-
bution (α), the relationship between the scale parameter and
the distribution’s mean is used to calculate the scale parameter
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(λ), which is equal to E(T) = Γ(1 + 1/α)/λ. On the other hand,
based on the observations of the tool life for each level of
BBD, E(t) is calculated using E Tð Þ ¼ ∑n

i¼1ti=n, where n is
the number of the inserts. Then, the scale parameter for each
level of the BBD experiment is obtained using α in Eq. 13.

λ ¼
Γ

1

α
þ 1

� �
E tð Þ ð13Þ

Figure 1 displays the proposed methodology, which com-
bines a BBD-based DOE, TTT transform, and optimization
through GSS to determine the distribution parameters of a tool
life according to the machining conditions. This approach not
only supports the stochastic modeling of the tool life, but it
also represents the impact of the changing machining condi-
tions on the tool life’s distribution.

As Fig. 1 indicates, the BBD-based design of the experi-
ment initially introduces the values for eachmachining param-
eter. A predefined number of repetitions (inserts) are needed
to increase the accuracy of each experiment introduced by
BBD. Then, using TTT transform on the obtained data, a
convex optimization problem is applied. This problem con-
tains a uni-modal and a single variable function, which is
optimized by the GSS method. The output of the GSS is the
shape parameter of the Weibull distribution (α, β) under a set
of specified and constant values of the machining conditions.
The scale parameter of the Weibull distribution (α, β) is cal-
culated using the shape parameter and themean of theWeibull
distribution. This process is performed for all of the designed
experiments in BBD. Finally, the relationship between each
parameter of the tool life’s distribution and the machining
conditions is modeled using a full quadratic function.

3 Comparison of the Weibull distribution’s
estimators with the methods of LSM and MLE

In the proposed methodology, theWeibull distribution param-
eters are determined by the combination of TTT transform and
GSS for each experiment. There are various methods to esti-
mate the parameters of Weibull distribution, such as the least
square method (LSM), maximum likelihood estimation
(MLE), method of the logarithmic moment (MLM), percentile
method, and the method of moments (MM) [35]. The estima-
tion errors of these methods depend on the sample size (n).
Thus, the estimation error for these methods is considerable
for low values of n.

For this purpose, the combination of TTT transform and
GSS performance and the two methods, namely, LSM and
MLE, are compared with the Weibull distribution’s parame-
ters estimated in this study. LSM and MLE are implemented
by MINITAB software, in which the density function of the

Weibull distribution is considered f xð Þ ¼ α
β

� �
: x

β

� �α−1
:e− x=βð Þ

α. In the proposed methodology, we considered that β = (1/λ).
To compare the performance of the methods in estimating the
Weibull distribution’s parameters, three sets of the parameters,
including (α, β) = (2, 1000), (3, 1500), (4, 2000), are investi-
gated. For the three Weibull distributions, 1000 samples of
size five were simulated using the Monte Carlo method. For
sample i, the Weibull distribution’s parameters are estimated

as bαið ; bβiÞ. Then, the result of each parameter is calculated
using Eqs. 14 and 15:

α ¼
∑
1000

i¼1
bαi

1000
ð14Þ

β ¼
∑
1000

i¼1

bβi

1000
ð15Þ

In this paper, the estimation error is determined through the
normalized root to mean square error (NRMSE), provided in
Eq. 16:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000
∑
1000

i¼1

bαi−α
α

 !2

þ
bβi−β
β

 !2
vuut ð16Þ

The values of α and β obtained from the estimators and the
NRMSE are reported in Table 2 for the three methods. The
estimated errors of the TTT transform and GSS of the pro-
posed method are significantly lower than those determined
by LSM and MLE. Figure 2 shows the reliability function of

the Weibull distribution schematically under α and β from
each method. The figure shows that the accuracy of the TTT
transform and GSS is better than those of LSM and MLE.

4 Material and experimental planning

To implement the proposed methodology, a three-axis CNC
milling machine under various machining conditions shown
in Table 3 is considered. This machining process was carried
out on the steel 304 workpiece with 260-mm length and 40-
mm width. Moreover, three-edged cemented carbide inserts
were used as the cutting tool. The upper and lower bounds of
the machining conditions were defined based on the milling
machine's operational specifications. Table 3 shows the ma-
chining process’s characteristics.

The cutting speed (V) is obtained using Eq. 17, where d is
the cutting width and nS is spindle speed:

V ¼ π:d:nS
1000

ð17Þ
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Furthermore, the machining time on each workpiece is ob-
tained by the “volume of removed material/material removal
rate” [36] and is calculated using Eq. 18:

t ¼ Vol
nS : f :ap:d

ð18Þ

In this formulation, the denominator is thematerial removal
rate (nS is the spindle speed, f is the feed rate, ap is the depth of
cut, and d is the width of cut), and Vol, which is equal toVol =
ap × L × d, is the volume of the removed material from the
workpiece surface, where L is the length of cut.

5 Results and discussion

Based on ISO 3685 (1993) [37], the tool life is defined as the
period of time, which the tool can efficiently produce the
workpiece with the required dimensions and surface rough-
ness. Typically, flank wear has a critical impact on the quality
of the workpiece. Therefore, VB is usually taken as a criterion
for the tool life:

1) The average width of flank wear land (VBB) equals to 0.3
mm, if the wear patterns formed on the relief face of the
cutting tool are regular.

Determining levels of the experiment based on 

lower & upper bound for machining conditions

DOE based on BBD, to determine number of 

experiments (N) and number of insert (n)

k=k+1

Machining the workpiece with the determined 

machining conditions in the experiment k on the 

machining run i  

i= i+1

Measuring flank wear

Flank wear ≤VBmax

index for experiments, k=0,

index for inserts, j=0, 

index for machining runs, i=0

j=j+1

YesNo Recording jth tool 

life

If j<n?

Yes

Calculating scaled total time on test, based on 

equation 3 and G(v) function, based on equation 

10

Preparing SSE, based on equation 10 for 

Optimization and  obtaining α*

Calculating golden section or γ,

Calculatingα1 and α2 based on equations 21-23

|αmax- αmin|> ε 

Updating αmax, αmin and α* based 

on GSS  Pseudo-code (fig 9)  

Yes

Recording α* and

Calculating λ based on equation 

13 for experiment k

No

No

Yes

Box-Behnken methodology TTT transform and Golden section search

If k<N ?

Obtaining full quadratic model between α and 

Machining parameters,

Obtaining full quadratic model between λ and 

Machining parameters,

No

Fig. 1 The flowchart of the proposed methodology
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2) The maximumwidth of flank wear land (VBmax) equals to
0.6 mm if the wear patterns formed on the relief face of
the cutting tool are irregular.

In this study, the flank wear was measured from the cap-
tured images of the cutting tool using a machine vision. Vision
systems are suitable for assessing the tool wear and surface
quality of the workpiece. Some studies about the use of vision
systems for tool wear are reported by Kurada and Bradley
[38]. In this research, the workpiece width is equal to the cut
width (or the milling tool diameter). After the first machining
run, the insert was removed from the tool holder, and the
image of the side profile of the tooltip was captured. The width
of the flank wear land (VBBmax) was measured from the ob-
tained profile. The above procedure was then repeated until
VBBmax reaches 0.3 mm as the tool life criterion. At this stage,
the insert is considered to be worn out or “failed.” Recently,
Broto et al. [39] have considered the same criterion for the end
of tool life in a study on a milling process.

By considering k = 3 (namely, the spindle speed, feed rate,
and the depth of cut), and C0 = 1, the number of experiments
equals to 13. In this cube design, the machining parameters are
determined and based on the specified machining conditions,
and each experiment is conducted with a predetermined num-
ber of repetitions. In the current research, five repetitions are
considered. It is worth mentioning that the cube design is
defined using a set of hypothetical points in the middle of each
side and the center of a multidimensional cube. Table 4 pre-
sents the machining parameters for each experiment

Figure 3 a–d show the flank wear progress for the first
insert of experiment number 4. The flank wear reaches the
maximum permissible value due to the high amount of spindle
speed and feed rate in this experiment.

In order to show the impact of the variation in the machin-
ing conditions on the flank wear, the flank wear progress for
four randomly selected experiments are shown in Fig. 4 a–d.
Based on Section 2.2 and the presented flowchart in Fig. 1, the
values of T(ti) are calculated for each experiment. To do this,

the first obtained data of the tool lifetime (ti) are sorted in
ascending order; then, based on Eq. 3, the TTT is calculated.
Finally, these values are divided by T(tn). Table 5 presents the
process of the required calculations for four levels of the de-
sign of experiments.

Then, theWeibull parameters in each level of the designing
experiments should be determined. For this purpose, accord-
ing to Section 3.2, G(v) and SSE functions are obtained for
each experiment based on Eqs. 10 and 12. As it is mentioned
in Section 2.3 with SSE minimization, using the GSS, the
shape parameter of the Weibull distribution is determined
for each designed experiment based on BBD. Figure 5 a–d
demonstrate the trend of implementing the iterations of the
GSS for four experiments. In this figure, the blue line is the
SSE function, the red points are the solutions in each iteration
of the GSS, and the green points are the global optimum.

Figure 6 a–d show the TTT plot based on the description
provided in Section 2.2 for the four experiments. The blue
points are the values of the scaled total time on test transform

Table 2 Results of the estimation of the parameters by LSM,MLE, and
the TTT transform and GSS

α β Method α β NRMSE

2 1000 LSM 2.3349 992.2624 0.6917

MLE 2.8933 978.1068 0.9087

TTT transform and GSS 2.0242 967.8314 0.4971

3 1500 LSM 3.4776 1484.7196 0.6570

MLE 4.3035 1470.6493 0.8748

TTT transform and GSS 2.8381 1485.0398 0.3915

4 2000 LSM 4.6370 1980.1734 0.6492

MLE 5.7382 1966.0513 0.8690

TTT transform and GSS 3.6635 1999.8304 0.3614

Table 3 Machining process characteristics

Workpiece Shape: rectangular
Material: Steel 304
Length (L): 260 mm
Width (d): 40 mm

Machine tool Three-axis CNC - Emco-PC MILL 100

Tool Holder: T114-D042-16 Z03 TP16
Insert: Sandvik
T-PU-N-16-03-04-H13A

Spindle speed (n) Lower bound: 1000 rpm
Upper bound: 2000 rpm

Feed rate ( f ) Lower bound: 0.1 mm/rev
Upper bound: 0.3 mm/rev

Depth of cut (ap) Lower bound: 0.1 mm
Upper bound: 0.2 mm

Cooling None
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Fig. 2 Comparison of all estimators for α = 4 and β = 2000
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T(ti)/T(tn), andG(v) function is shown by the red line in Fig. 6.
Finally, after calculating the shape parameter, to find the scale
parameter, Eq. 13 is used.

After obtaining the shape and the scale parameters of the
Weibull distribution in each level of the designed experi-
ments, the relationship between these parameters with the ma-
chining conditions is modeled using a full quadratic function.
Table 6 shows the shape and the scale parameters of the
Weibull distribution for all experiment levels. Moreover, in

this table, the values of the SSE function obtained in the op-
timization process using the GSS algorithm are presented. In
Fig. 7, the tool reliability functions with 4 different categories
of machining conditions are compared, which indicate that
each reliability function has different values of Weibull distri-
bution’s parameters.

Tables 7 and 8 present the effects of machining conditions
on the shape and scale parameters of the Weibull distribution.
These tables show the analysis of variances (ANOVA) for the

Insert after the second machining runInsert after the first machining run

Insert after the fourth machining runInsert after the third machining run

Flank wear land

(a) (b)

(c) (d)

Fig. 3 Real images of the flank
wear progress for the first failed to
insert in experiment number 4
(n = 2000 rpm, f = 0.3 mm/rev,
ap = 0.15 mm)

Table 4 Experimental plan and the results for the tool life

Experiment no. Machining conditions Lifetime for the failed inserts

Spindle speed (n) Feed rate ( f ) Depth of cut (ap) t1 t2 t3 t4 t5

1 1000 0.1 0.15 1243.00 1865.54 1965.60 2363.06 690.22

2 2000 0.1 0.15 79.13 223.26 238.08 187.58 199.33

3 1000 0.3 0.15 1352.00 135.25 1071.02 178.48 387.48

4 2000 0.3 0.15 86.86 116.44 107.54 62.70 75.61

5 1000 0.2 0.10 1025.42 408.36 913.71 1198.66 507.00

6 2000 0.2 0.10 119.70 100.13 91.00 126.57 108.98

7 1000 0.2 0.20 392.95 178.27 686.51 499.95 990.49

8 2000 0.2 0.20 65.18 61.29 83.48 78.59 118.74

9 1500 0.1 0.10 1872.00 905.02 1132.54 1703.78 1693.75

10 1500 0.3 0.10 508.09 468.00 322.28 494.73 575.47

11 1500 0.1 0.20 813.45 1371.85 1490.39 1831.59 665.08

12 1500 0.3 0.20 48.41 143.94 100.08 64.87 121.33

13 1500 0.2 0.15 402.36 276.61 461.53 189.94 151.86
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Weibull parameters separately. In these tables, the degree of
freedom (DF) is the number of changeable values in statistics
and is obtained by subtracting the number of the evaluated

parameters from the number of independent observations.
The sequential sums of squares (SSSeq) depend on the number
of entire factors in the model. The adjusted sums of squares

(a) Experiment number 5(a) Experiment number 4

(d) Experiment number 13(c) Experiment number 9

Fig. 4 Flank wear progress for 5 failed inserts in experiments numbers 4, 5, 9, and 13.

Table 5 Tool life data and TTT estimates

Experiment number 4 Experiment number 5

i ti T(ti) v T(ti)/T(tn) i ti T(ti) v T(ti)/T(tn)

1 62.70 313.51 0.2000 0.6980 1 408.36 2041.80 0.2000 0.5038

2 75.61 365.12 0.4000 0.8129 2 507 2436.36 0.4000 0.6011

3 86.86 398.89 0.6000 0.8881 3 913.71 3656.50 0.6000 0.9021

4 107.54 440.24 0.8000 0.9802 4 1025.42 3879.92 0.8000 0.9573

5 116.44 449.14 1.0000 1.0000 5 1198.66 4053.16 1.0000 1.0000

Experiment number 9 Experiment number 13

i ti T(ti) v T(ti)/T(tn) i ti T(ti) v T(ti)/T(tn)

1 905.02 4525.11 0.2000 0.6193 1 151.86 759.32 0.2000 0.5123

2 1132.54 5435.16 0.4000 0.7438 2 189.94 911.64 0.4000 0.6150

3 1693.75 7118.81 0.6000 0.9742 3 276.61 1171.63 0.6000 0.7904

4 1703.78 7138.87 0.8000 0.9770 4 402.36 1423.13 0.8000 0.9601

5 1872 7307.09 1.0000 1.0000 5 461.53 1482.30 1.0000 1.0000
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(SSAdj) are independent of the number of entire factors in the
model. The adjusted mean squares (MSAdj) are calculated
based on dividing the adjusted sums of squares by the degree
of freedom. F is calculated by dividing MSAdj by the error
mean square (MSE) for each factor in each row of the table.
P-value (P) is used to determine the significance level of the
factors.

R2 ¼ %92:52;R2
Adjusted ¼ %70:08

R2 ¼ %96:80;R2
Adjusted ¼ %87:19

In Table 7, the values of R2 and the adjusted R2 for the
shape, parameters are 92.52% and 70.08 % , respectively,
which show the appropriate correlation between the quadratic
model and the results of the experiments. The obtained model
for the shape parameter of the Weibull distribution has been
explained in Eq. 19. According to Table 7, the P − value for n

and ap in the last column has the least value compared to other
factors. These results show the significant impact of the spin-
dle speed and the depth of cut on the shape parameter of the
Weibull distribution. The impact of the spindle speed is more
prominent than the depth of cut. This is further confirmed by
P − values of 0.023 and 0.072 for the spindle speed and the
depth of cut, respectively. Moreover, according to Eq. 19 in
Table 9, n and ap coefficients are negative, indicating an in-
verse relationship between these machining parameters and
the shape parameter of the Weibull distribution.

In Table 8, the values of R2 and the adjusted R2 for the
scale, parameters are 96.80% and 87.19 % , respectively,
which show the appropriate correlation between the quadratic
model and the results of the experiments. The full quadratic
model for the scale parameter of the Weibull distribution is
shown in Eq. 20 of Table 9. According to Table 8, the spindle
speed has the greatest impact on the scale parameter based on
P − value (0.005). It should be noted that the significant im-
pact of the cutting speed on the tool life has been confirmed by
other studies, which are considered a deterministic tool life.

(b) Experiment number 5(a) Experiment number 4

(d) Experiment number 13(c) Experiment number 9

Fig. 5 SSE function and the resultant solutions in each iteration of the golden section search
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Furthermore, in the obtained results, the effects of the feed rate
with a P-value of 0.028 and the depth of cut with P − value of

0.080 on the scale parameter are noticeable. Moreover, the
interaction factor, f × ap with P − value of 0.086, has a

(b) Experiment number 5(a) Experiment number 4

(d) Experiment number 13(c) Experiment number 9

Fig. 6 TTT plot for 5 failed inserts of experiments numbers 4, 5, 9, and 13

Table 6 Shape and scale parameters and SSE value of the experimental plan

Number of experiment Machining conditions α λ SSE

Spindle speed (n) Feed rate ( f ) Depth of cut (ap)

1 1000 0.1 0.15 1.98924 0.0005453 0.0162

2 2000 0.1 0.15 2.44646 0.0047813 0.0499

3 1000 0.3 0.15 0.89286 0.0016913 0.0357

4 2000 0.3 0.15 3.44661 0.0100082 0.0009

5 1000 0.2 0.10 1.97024 0.0010936 0.0145

6 2000 0.2 0.10 6.41528 0.0085209 0.0002

7 1000 0.2 0.20 1.50150 0.0016422 0.0052

8 2000 0.2 0.20 3.69836 0.0110792 0.0080

9 1500 0.1 0.10 2.87611 0.0006099 0.0101

10 1500 0.3 0.10 4.15211 0.0019175 0.0093

11 1500 0.1 0.20 2.12786 0.0007174 0.0105

12 1500 0.3 0.20 2.00489 0.0092573 0.0043

13 1500 0.2 0.15 1.87706 0.0029944 0.0065
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significant effect on the scale parameter. Finally, due to the
negative coefficients of n, ap, and f in Eq. 20, all three param-
eters, the spindle speed, the feed rate, and the depth of cut,
have an inverse relationship with theWeibull scale parameter.

6 Conclusion

In this paper, a hybrid methodology was developed to achieve
two objectives. The first objective was to precisely model the
Weibull distribution’s parameters for a specific machining
condition that, through which, the cutting tool life distribution
was determined. The second objective was identifying the

variations in the tool life’s distribution according to the chang-
es in the machining variables. To achieve these objectives, the
design of the experiment was adopted using the Box-Behnken
design for arranging the experiments. The total time on test
(TTT) transform was conducted on the obtained data of the
tool life. Moreover, the golden section search (GSS) algorithm
was applied to estimate the tool life’s distribution. To achieve
this, the relation between the Weibull distribution parameters
and the machining conditions was determined as a full qua-
dratic model. Finally, the proposed method was implemented
in a milling operation, and the obtained results were reported.
The appropriate correlation between the Weibull distribu-
tion’s parameters and the obtained data from the cutting tool
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Fig. 7 Tool reliability function
for experiments numbers 4, 5, 9,
and 13

Table 7 Analysis of variance for α

Source DF SSSeq SSAdj MSAdj F P

Regression 9 22.9286 22.9286 2.5476 4.12 0.135

Linear 3 16.4094 16.4094 5.4698 8.85 0.053

n 1 11.6472 11.6472 11.6472 18.85 0.023

f 1 0.1396 0.1396 0.1396 0.23 0.667

ap 1 4.6225 4.6225 4.6225 7.48 0.072

Square 3 3.6675 3.6675 1.2225 1.98 0.295

n × n 1 0.1081 0.4866 0.4866 0.79 0.440

f × f 1 1.0015 0.0478 0.0478 0.08 0.799

ap × ap 1 2.5579 2.5579 2.5579 4.14 0.135

Interaction 3 2.8517 2.8517 0.9506 1.54 0.366

n × f 1 1.0989 1.0989 1.0989 1.78 0.275

n × ap 1 1.2636 1.2636 1.2636 2.05 0.248

f × ap 1 0.4893 0.4893 0.4893 0.79 0.439

Residual error 3 1.8535 1.8535 0.6178

Total 12 24.7821

Table 8 Analysis of variance for λ

Source DF SSSeq SSAdj MSAdj F P

Regression 9 0.000187 0.000187 0.000021 10.07 0.042

Linear 3 0.000155 0.000155 0.000052 25.05 0.013

n 1 0.000108 0.000108 0.000108 52.45 0.005

f 1 0.000033 0.000033 0.000033 15.95 0.028

ap 1 0.000014 0.000014 0.000014 6.75 0.080

Square 3 0.000014 0.000014 0.000005 2.22 0.265

n × n 1 0.000010 0.000008 0.000008 3.84 0.145

f × f 1 0.000002 0.000001 0.000001 0.40 0.574

ap × ap 1 0.000001 0.000001 0.000001 0.59 0.499

Interaction 3 0.000018 0.000018 0.000006 2.95 0.199

n × f 1 0.000004 0.000004 0.000004 2.02 0.250

n × ap 1 0.000001 0.000001 0.000001 0.49 0.534

f × ap 1 0.000013 0.000013 0.000013 6.34 0.086

Residual error 3 0.000006 0.000006 0.000002

Total 12 0.000193
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life in the full quadratic models indicates the adequacy of the
proposed methodology in practical applications. Based on the
results, the values of R2 for the shape and scale parameters are
92.52% and 96.80% , respectively.

For the future study, a mathematical optimization model
can be developed considering the relationship between the
machining conditions and the tool life distribution. In this
case, the tools’ replacement policies and the machining con-
ditions can be simultaneously need optimized.

Acknowledgment The authors wish to thank the Amirkabir University of
Technology for the support that enabled this study to be carried out.

Appendix A

To explain the golden section (Heath et al. [40]), a geometrical
interpretation is provided. It is assumed that a straight line of
length R is divided into two parts so that the ratio of the longer
part to the whole line is equal to the ratio of the shorter part to
the longer part. In other words, if it is assumed that line AB is
divided by pointC, such that the length of AC andCB denoted
by r1 and r2, respectively, and r2 < r1, then

s ¼ r1
r2

¼ r2
R

ð21Þ

Given that R = r1 + r2 , Eq. 18 is rewritten as follows:

s ¼ r2
R

¼ r2
r1 þ r2

ð22Þ

Dividing the numerator and the denominator of Eq. 22 by
r2 and using Eq. 21, we obtain the following:

s ¼
r2=r2

r1=r2 þ r2=r2
¼ 1

sþ 1
ð23Þ

Equation s2 + s − 1 = 0 is used to calculate s so that the roots

of this equation are obtained through s ¼ −1þ ffiffiffi
5

p� 	
=2 and

s ¼ −1−
ffiffiffi
5

p� 	
=2. The positive root of this equation is called

the golden section, which is denoted by γ in this paper. This

ratio is essentially used by the GSS to optimize the uni-modal
functions. This paper seeks to determine the specific value of
α denoted by α∗, which minimizes the SSE. To this end,
interval [αmin,αmax] is initially defined to find the optimized
point. Then, α1 and α2 are calculated, using Eqs. 24, 25,
and 26:

γ ¼ −1þ ffiffiffi
5

p

2
ð24Þ

α1 ¼ γ:αmin þ 1−γð Þ:αmax ð25Þ

α2 ¼ γ:αmax þ 1−γð Þ:αmin ð26Þ

Following the calculation ofα1 and α2SSE for each point is
calculated and denoted by SSE(α1) and SSE(α2), respectively.
If SSE(α1) < SSE(α2), α

∗ belongs to interval [αmin,α2]; other-
wise, α∗ belongs to [α1,αmax]. Given this clarification, each
iteration of the GSS involves two search intervals, which only
one of them will be selected for the following searches. The
lengths of these intervals need to be equal. The explanation
provided above expresses the first GSS iteration. In the next
iterations, the search interval will be updated, and Eqs. 25
and 26 will be used to obtain α1 and α2.The algorithm will
continue likewise until the stop condition is met. The stop
condition is defined by the GSS when the length of the search
interval is less than ε. Figure 8 shows the first iteration of the
GSS algorithm in the interval [αmin, αmax], where, e.g.,
SSE(α1) < SSE(α2).

Furthermore, two characteristics of the golden sections are
initially described to define the convergence rate of the GSS.
The first characteristic is 1 − γ = γ2, and the second is φ = 1 +
γ = (1/γ), leading to the definition of the golden ratio. In the
latter, φ is named the golden ratio, which equals to

φ ¼ 0:5� 1þ ffiffiffi
5

p� 	
. If the number of GSS iterations needed

to reach the stop condition equals NOI (number of iterations),
the convergence rate of the GSS is φNOI [41]. Likewise, Shao
et al. [42] showed that the length of the search interval by
NOI = 15 could decrease to less than 1% of the length of the
primary interval in the GSS algorithm. Figure 9 shows the
pseudo-code of the GSS algorithm.

Table 9 Regression models for the parameters of Weibull distribution

α ¼ 9:35623−0:00184806� nþ 1:87674� f −94:4347� apþ 1:84567e−006� n2 −14:4686� f 2 þ 423:147� ap2−0:0224818� n�
apþ 0:0104826� n� f −69:9483� ap� f

(19)

λ ¼ 0:0263548−2:20641e−005� n−0:0406462� f −0:163598� apþ 7:44103e−009� n2 −0:0598173� f 2 þ 0:291717� ap2 þ 2:009
67e−005� n� apþ 2:0404e−005� n� f þ0:361617� ap� f

(20)
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Fig. 9 Pseudo-code of the golden
section search algorithm

Selected interval in 

the next iteration

Fig. 8 The first iteration in the
golden section search algorithm
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