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Abstract
This study aims to investigate the effects of dry, minimum quantity lubrication (MQL), and nanofluid cutting conditions on
surface roughness (Ra) and material removal rate (MRR) for Al6082-T6. Three controllable factors, namely, feed rate (Fr),
spindle speed (Vs), and depth of cut (Dc) are studied at three levels using Taguchi method. Single-response optimization is
conducted using S/N ratio and contour plots. Empirical models of Ra and MRR for all cutting conditions are developed, and
analysis of variance (ANOVA) is used to measure the adequacy of these models. Experimental results reveal that 26~30%
improvement in Ra could be observed when experimental setup shifted from dry toMQL, and 13~16% improvement is recorded
when further shifted to nanofluid cutting condition. No remarkable effect of cutting conditions (dry, MQL, and nanofluid) is
observed on MRR. Additionally, Vs is observed insignificant for MRR in all cutting conditions. The appropriate cutting
conditions and optimum values of input variables are proposed to the practitioners for industrial machining and production when
contemplating face milling processes.

Keywords Minimum quantity lubrication (MQL) . Nanofluid . Surface roughness . Facemilling .Material removal rate (MRR)

Nomenclature
ANOVA Analysis of variance
MQL Minimum quantity lubrication
MRR Material removal rate
Ra Surface roughness
S/N ratio Signal-to-noise ratio
Fr Feed rate
Vs Spindle speed
Dc Depth of cut

1 Introduction

Face milling is the secondary process used for the cutting and
finishing of parts. The process is employed for the fabrication
of tooling for other processes with high accuracy in a suitable
processing time [1] and also used in the parts of aerospace and

automotive industries, where quality is the prime factor [2].
Surface roughness is the measure of quality in machined parts,
highly depends upon controlling parameters: Fr, cutting
speed, and Dc [3]. There is a need to optimize these control-
ling parameters to enhance the quality of parts as Ra is sensi-
tive to Fr [4, 5]. It was observed that the parameters other than
feed (axial and radial Dc and cutting speed) are also significant
factors that affect the Ra [6]. Material removal rate is the
second major measure, which need to be maximized without
compromising the surface quality of the part [7]. The factors
that contribute in achievingmaximumMRR are Fr and Dc [8].
High Fr results in higher MRR but it also increase the cutting
temperature which reduces the tool life [9] and surface quality
[10]. Beside input parameters, cutting fluid has the prime im-
portance in metal cutting processes for enhancing the quality
of the workpiece by lubricating the tool. Workpiece interface
lubrications (cutting fluid) improve the machining character-
istics and workpiece’s surface quality [11]. But flooded
cooling increases the manufacturing cost by 16% [12]. To
minimize the coolant cost, MQL technique was introduced.
Researchers focused on MQL technique as it reduces the con-
sumption of lubricant by sprinkling the blend of air and lubri-
cant and as environmental friendly [13]. In MQL, coolant
mixed with compressed air is sprayed at the tool-workpiece
interface at a low flow rate [14]. It is reported that the MQL
reduces the coolant consumption 3 times than flooded cooling
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using flow rate 50–500 ml/h approximately. It is investigated
that MQL produces superior surface finish than other conven-
tional methods of lubrication [15, 16]. MQL not only im-
proves the surface finish but also reduces cutting temperature
and enhances the tool life by reducing the flank wear [17, 18]
as it provides excess amount of oxygen at tool-workpiece
interface forming the protective oxide layer [19]. But for ma-
terial removal rate, it is evident that MQL did not show sig-
nificant improvement for medium carbon steel [20].

To enhance the efficiency of MQL, nanoparticles are con-
taminated in the fluid. The addition of nanoparticles improves
the surface quality [21]. It is claimed that 46% reduction in
surface roughness was achieved as compared with the com-
monly used lubricant [12]. In nanofluid, particles form a lu-
brication film and fill the surface cavities which polish the
surface and improve the surface quality [22, 23]. It is noticed
that nanofluid exhibits better Ra as compared with base fluid
[24]. However, increasing of nanoparticles concentration re-
sults in reduced Ra since the excess nanoparticles concentra-
tion enhances the viscosity of cutting fluid and fills the surface
pores. Incoming nanoparticles shear off the existing ones and
other ploughed off particles remain stuck on exfoliated film in
tool-workpiece interface. Therefore, increased nanoparticles
concentration may negatively influence the surface quality
[25]. But the percentage improvement is different for soft
and hard material while using MQL and nanofluid. And there
is a need to study the trends of the input variables/parameters
in different cutting conditions.

Number of statistical and mathematical techniques includ-
ing response surface methodology, factorial design, Taguchi
method, genetic algorithm, fuzzy logic, and artificial neural
network have been used [26–32]. Among these techniques,
genetic algorithm, fuzzy logic, and artificial neural network
are the soft computing, while response surface methodology,
factorial design, and Taguchi method are statistical tech-
niques. Soft computing techniques also have the ability to
predict the response measures, and repetitive hit and trial is
used for prediction. However, statistical techniques require

less number of experiments for the prediction and optimiza-
tion. Therefore, Taguchi method has been observed with less
number of experiments and also considered as cost-effective
[33]. After the selection of suitable experimental design, var-
ious analysis techniques including multi-criteria decision-
making (MCDM) analysis, grey relational analysis (GRA),
and analysis of variance (ANOVA) have also been used by
the researchers in order to optimize the response measures
[34–36].

Industrial sector is still in efforts to obtain a proper combi-
nation of workpiece material, lubrication, and nanoparticles,
which are highly efficient and inexpensive for the machining
of specific material. For example, a lubrication and nanopar-
ticles used for the machining of hard material can be expen-
sive for the softer materials. The alloy chosen for this research
is commonly used in machining application due to its high
strength and corrosion resistance. However, little study is ob-
served on investigating the effects of these cutting conditions
on Ra along with MRR for this specific aluminum alloy in
face milling process. Therefore, this study aims to analyze the
impact of dry, MQL, and nanofluid cutting conditions on Ra
and MRR. The influence of three effective input variables
including Fr, Vs, and Dc has been investigated using
Taguchi method.

The rest of this paper is organized as follows. Section 2
explains the experimental procedure for the machining of alu-
minum specimens with dry, MQL, and nanofluid medium and
the Taguchi method used for the design of experiment.
Investigated results, analysis using ANOVA, and optimiza-
tion through contour plots have been presented in Section 3.
Finally, conclusions of overall research and recommendations
for the future study are discussed in Section 4.

2 Experimental procedure

This section gives a detail about material composition, experi-
mental setup, sample preparation, and response measurements.
Aluminum alloy 6082-T6 selected for the machining purpose
having mechanical properties and composition is given in
Tables 1 and 2, respectively. Optical emission spectrometer is
operated to check the chemical composition of workpiece mate-
rial used. Machining of workpiece material highly depends upon
its mechanical properties. Machinability refers to the ease of
cutting of metal and allowing the removal of material swiftly.
Materials with superior machinability require less cutting power

Table 1 Properties of Al6082-T6 [37]

Properties Value

Density (g/cm3) 2.7

Hardness (Vickers) 95

Ultimate tensile strength (MPa) 300

Yield strength (MPa) 255

Elongation at break (%) 10

Modulus of elasticity (GPa) 69

Shear strength (MPa) 200

Modulus (GPa) 26

Table 2 Chemical composition of aluminum alloy (Al-6082)

Si Fe Zn Cr Mg Mn Cu Al Others

1.2 0.33 0.05 0.14 0.78 0.5 0.08 Bal 0.15
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and time. Machinability of aluminum is considered to be excel-
lent in terms of achievingminimumRa andmaximumMRR. To
further improve the machinability of the selected workpiece ma-
terial, different parameters and cutting conditions have been
adopted. From the previous research, it has been observed that
Fr, Vs, and Dc are the most effective input parameters for Ra and
MRR [38–40]. Therefore, Fr, Vs, and Dc are used as process
variables in three different cutting conditions: dry, MQL, and
nanofluid. Fr is the linear motion of tool throughout the machin-
ing. Vs is the rotational motion of tool, and Dc is controlled by
the vertical movement of the tool. Commercial soluble oil is used
as lubricant in MQL machining. A system has been developed
for the delivery of MQL between the tool and workpiece inter-
face. Air pressure gun attached with a compressor has been
employed to throw air-lubricant mist using 5-bar pressure. The
oil mist has been produced inside the tank using air pressure.
Flow rate of aerosol has been kept constant at 400 ml/h. In
nanofluid, Al2O3 nanoparticles of size 80μmmixedwith soluble
oil in 5% by weight ratio were used with the same flow rate.

Machining process is performed using NC MIKRON
WF21C milling machine having maximum Vs of 4000 rpm
as shown in Fig. 1a. Workpiece is clamped using fixtures to
avoid any vibration and distortion during the machining. To

avoid the effect of machine-tool fixture environment on the
machining rate and quality, all workpieces are clamped with
same type and number of fixtures. Use of proper machine tool
fixtures enables experimental process to present the true ef-
fects of input parameters and cutting conditions. Cutting tool
made of HSS with 16 mm diameter is employed. The speci-
mens prepared for the face milling process along with dimen-
sions are shown in Fig. 1 b and c, respectively. Surface rough-
ness of the specimens was measured through surface rough-
ness tester, shown in Fig. 2.

2.1 Experimental design

Taguchi design is a robust technique used for the optimization
of input variables and reduces the process variation. The tech-
nique uses signal-to-noise (S/N) ratio as quality characteristic
measurement [41]. Using S/N ratios, Taguchi empirically
found the two-stage optimization process indeed offers the
optimum level combination while keeping mean on target,
minimizing the standard deviation [42]. S/N ratio is beneficial
in improvement of measurement and improving quality
through variability reduction. Properties of S/N can be classi-
fied in three categories:

Smaller the better property; S=N ¼ −10log
1

n
∑Y 2
� � ð1Þ

Nominal the best property; S=N ¼ 10 log
Y�
S2y

ð2Þ

(a) (b) (c)

HSS Tool

WorkpieceFixture

1
0

0
 m

m

65 mm
Fig. 1 a Face milling process of
aluminum specimen, b machined
specimens, and c dimensions of
specimen prepared for machining

Fig. 2 Surface roughness measuring apparatus

Table 3 Face milling input variables with levels

Input Variables Levels

Low Medium High

Feed rate (mm/min) 500 1000 2000

Spindle speed (rpm) 1000 2000 4000

Depth of cut (mm) 0.25 0.5 1
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Larger the better property; S=N ¼ 10log
1

n
∑

1

Y 2

� �
ð3Þ

where Y is mean of all the observed values, Sy
2 is variance of

y, y is observed data, and n depicts number of observed values.
Smaller the better case was employed for Ra and larger the
better for MRR. Fr, Vs, and Dc have been specified as input
variables due to their remarkable impact on machining prop-
erties [43–46]. The input variables along with selected levels
are shown in Table 3.

Nine experiments were performed using Taguchimethod L93
4

array for each cutting condition. Experiments were performed at
each level of the input variables tomeasure the response variables
included Ra and MRR. Three different readings of the machined
surface have been taken for each specimen and their mean value
is considered as final reading. Mean and standard deviation of the
measured values against each experimental run have been pre-
sented in Table 4. MRR is calculated using Eq. 4 [47].

MRR ¼ W1−W2ð Þ
t � ρ

ð4Þ

Here W1 is initial weight of a specimen before machining,
W2 is final weight after machining, ρ is density of workpiece
material, and t is machining time.

3 Results and discussion

3.1 Graphical representation using signal-to-noise ra-
tio approach

Taguchi’s S/N ratio represents the response or quality charac-
teristics, and the largest S/N ratio value is desirable. S/N ratio
was used for selecting the best combination of input variables to
achieve optimum response. Average values of signal-to-noise
ratio for Ra of different variables at their levels are shown in
Table 5 and represented in graphical form in Fig. 3. The peak
values of S/N ratio of control variables were selected
representing the optimum conditions for the Ra. S/N ratio is
also used to rank the input parameters on the basis of their

Table 4 Design matrix with observed responses

Exp.
run

Input variables Response variables

Feed rate (mm/
min)

Spindle speed
(rpm)

Depth of cut
(mm)

Surface roughness (μm) Material removal rate (mm3/
sec)

Dry MQL Nanofluid Dry MQL Nanofluid

Mean Std. dev Mean Std. dev Mean Std. dev

1. 500 1000 0.25 1.105 0.0042 0.785 0.0089 0.683 0.00025 30.906 29.606 30.556

2. 500 2000 0.5 0.940 0.00098 0.677 0.00064 0.582 0.00051 75.811 76.931 75.901

3. 500 4000 1 0.658 0.00027 0.480 0.00091 0.403 0.00029 148.620 149.342 148.892

4. 1000 1000 0.5 1.713 0.0016 1.216 0.00022 1.046 0.0054 149.622 147.622 151.523

5. 1000 2000 1 1.542 0.0075 1.141 0.0021 1.016 0.00069 289.774 287.224 290.534

6. 1000 4000 0.25 0.694 0.00051 0.486 0.00062 0.423 0.00024 69.811 69.781 67.764

7. 2000 1000 1 3.381 0.0232 2.468 0.071 2.172 0.039 506.489 508.490 506.015

8. 2000 2000 0.25 2.339 0.0099 1.684 0.0064 1.465 0.0087 163.552 161.622 163.642

9. 2000 4000 0.5 1.520 0.0056 1.064 0.0051 0.936 0.00061 269.244 271.894 269.723

Table 5 Average values of S/N ratios of Ra at different levels

Level Dry MQL Nanofluid

Fr Vs Dc Fr Vs Dc Fr Vs Dc

1. 1.103 − 5.376 − 1.722 3.9573 − 2.4815 1.2833 5.3020 − 1.2715 2.4930

2. − 1.785 − 3.533 − 2.591 1.1411 − 0.7594 0.3842 2.3184 0.4179 1.6276

3. − 7.199 1.028 − 3.568 − 4.3043 4.0349 − 0.8735 − 3.1609 5.3131 0.3388

Delta 8.303 6.404 1.846 8.2616 6.5164 2.1568 8.4629 6.5846 2.1541

Rank 1 2 3 1 2 3 1 2 3

2592 Int J Adv Manuf Technol (2020) 111:2589–2599



contribution in Ra. Fr is the highest contributing factor followed
by the Vs and Dc. At higher values of Fr and Dc and lower
values of Vs, deformed chip cross section and volume and
sharp and brittle fractures occur on themachining surface which
increases the surface roughness [48, 49]. In dry condition, Ra is
found to be minimum at low level of Fr and Dc and high level
of Vs. Similar trends are observed for MQL and nanofluid
cutting conditions as shown in Fig. 3 b and c, respectively.

Average values of signal to noise ratio for MRR are given in
Table 6, and graph for the S/N ratio are presented in Fig. 4.
Ranking of input parameters on the basis of their S/N ratio shows
that Fr is the most contributing input parameter for MRR, while
Dc and Vs are the second and third most contributing input
parameters, respectively, and same can be seen in Fig. 4. MRR
is maximum at high level of Fr and Dc and mid-level of Vs.

3.2 Analysis of results through analysis of variance

For the modeling of response variables, regression analysis is
performed using statistical software Minitab. Analysis of var-
iance (ANOVA) is employed to test the adequacy of the de-
veloped models.

3.2.1 ANOVA for Ra

ANOVA results declared that the effects of input variables, Fr,
Vs, and Dc associated with Ra, were significant for dry condi-
tions. Same input variables were obtained significant for MQL
and nanofluid cutting. ANOVA results along with adequacy
measures R2, adjusted R2, and predicted R2 values are provided
in Table 4. The results demonstrate that the regression models
are significant having p value less than 0.05. Adequacy mea-
suresR2,R2 (adjusted), andR2 (predicted) values for dry,MQL,
and nanofluid conditions are close to one, indicating the ade-
quacy of models. For the prediction of Ra, empirical models for
dry, MQL, and nanofluid conditions are presented in Eqs. 5, 6,
and 7, respectively.

Ra Dryð Þ ¼ 0:801þ 0:001021� Fr−0:000363� Vsþ 0:684� Dc ð5Þ
Ra MQLð Þ ¼ 0:561þ 0:000737� Fr−0:000267� Vsþ 0:540� Dc ð6Þ
Ra Nanofluidð Þ ¼ 0:472þ 0:000653� Fr−0:000313� Vsþ 0:486� Dc ð7Þ

Percentage contribution of each factor in Ra for all cutting
conditions extracted from the ANOVA tables has been present-
ed as pie charts in Fig. 5a. Fr is the most contributing factor for
Ra with percentage contribution of 60%. Percentage contri-
bution of Vs and Dc are 30% and 7%, respectively.

3.2.2 ANOVA for MRR

The input parameters that significantly influence in MRR
include Fr and Dc. Models developed for MRR are sig-
nificant with p value less than 0.05 as shown in Table 7.
Adequacy measures R2, R2 (adjusted), and R2 (predicted)
are close to one, showing the adequacy of the models. For
the prediction of MRR, empirical models for dry, MQL,
and nanofluid are developed and presented in Eqs. 8, 9,
and 10, respectively.

Table 6 Average values of S/N ratio of MRR at different levels

Level DRY MQL Nanofluid

Fr Vs Dc Fr Vs Dc Fr Vs Dc

1 36.95 42.46 36.98 36.88 42.31 36.82 36.92 42.46 36.87

2 43.21 43.70 43.23 43.14 43.69 43.26 43.16 43.72 43.28

3 48.99 42.97 48.92 48.99 43.01 48.92 48.99 42.90 48.93

Delta 12.04 1.24 11.94 12.12 1.37 12.10 12.07 1.25 12.07

Rank 1 3 2 1 3 2 1 3 2
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Fig. 3 S/N ratio graph showing the effects of Fr, Vs, and Dc on Ra for a dry, b MQL, and c nanofluid
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MRR Dryð Þ ¼ −116:2þ 0:1508� Fr−0:0200� Vsþ 302:2� Dc ð8Þ
MRR MQLð Þ ¼ −119:3þ 0:1515� Fr−0:0194� Vsþ 303:3� Dc ð9Þ
MRR Nanofluidð Þ ¼ −116:0þ 0:1507� Fr−0:0203� Vsþ 303:3� Dc ð10Þ

Pie chart in Fig. 5b showing the percentage contribution of
different input variables for MRR has been obtained from the
ANOVA table. Fr and Dc are the major contributing factors
with percentage contribution of 46% each. Vs has very small
contribution in achieving maximum MRR.

3.3 Optimization using contour plots

Contour plots are normally used for the optimization and pre-
diction of the response variables. Optimization of milling pro-
cess can be considered as multivariate and multi-criteria prob-
lems in which the objective is to maximize or minimize the
single variable. Here the effects of input variables on Ra and

MRR have been analyzed using contour plots. It is apt that the
graphs represent the effects of two input variables at the mid-
dle level of all the other variables.

3.3.1 Contour plots for Ra

Figure 6a–c represents the effects of Fr and Vs on Ra for dry,
MQL, and nanofluid, respectively. By comparing the Ra of
dry, MQL, and nanofluid cutting conditioned parts, it is evi-
dent that the effect of Fr and Vs on Ra are similar. Ra is more
sensitive to Fr as compared with Vs. Moreover, Ra decreases
with increasing Vs and decreasing Fr. It is virtuous to state that
minimum Ra is achieved in nanofluid cutting condition as
compared with dry and MQL.

The effects of input variables Fr and Dc for all cutting
conditions are shown in Fig. 7 a to c. The contour plot dem-
onstrates that Ra is affected by Fr significantly, and it is less
altered by Dc and same trend has been observed in all cutting
conditions. Among three different types of cutting conditions,
nanofluid machining yields better results.

(a) (b)

Feed rate

60%

Spindle 

Speed

30%

Depth of 

cut

7%

Error

3%

Feed rate Spindle Speed Depth of cut Error

Feed rate

46%

Spindle Speed

3%

Depth of cut

46%

Error

5%

Feed rate Spindle Speed Depth of cut Error

Fig. 5 Pie chart of percentage contributions for a Ra and b MRR

Fig. 4 S/N ratio graph showing the effects of Fr, Vs, and Dc on MRR for a dry, b MQL, and c nanofluid
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While distinguishing the influence of Vs and Dc on
Ra under dry, MQL, and nanofluid cutting conditions,
identical trends have been observed (Fig. 8 a to c). Ra
decreases with increasing Vs and decreasing Dc. Among
different cutting conditions, nanofluid produces the im-
proved surface quality.

3.3.2 Contour plots for MRR

Based on the previous discussions, Fr and Dc are significant
factors for MRR. Therefore, it is no need to consider the Vs in
MRR optimization. From Fig. 9 a to c, it is cleared that MRR

is maximum at high level of Fr and Dc. And different cutting
conditions have no effect on MRR.

3.4 Comparison of cutting conditions (dry, MQL, and
nanofluid)

It is observed that MQL is better than dry cutting and
nanofluid lubrication is better than MQL cutting for Ra.
Observed responses of dry, MQL, and nanofluid conditions
are compared in Fig. 10. The figure has been drawn from the
design matrix given in Table 3. From the Fig. 10, it is evident
that shifting from dry to MQL cutting, Ra improve from
26%~30% and further switching from MQL to nanofluid

(a) (b) (c)
Spindle Speed

F
ee

d
ra

te

30002500200015001000

2000

1750

1500

1250

1000

750

500

>

–

–

–

–

–

–

–

< 0.4

0.4 0.8

0.8 1.1

1.1 1.5

1.5 1.9

1.9 2.3

2.3 2.6

2.6 3.0

3.0

(Dry)

Roughness

Surface

Spindle Speed

F
ee

d
ra

te

30002500200015001000

2000

1750

1500

1250

1000

750

500

>

–

–

–

–

–

–

–

< 0.4

0.4 0.8

0.8 1.1

1.1 1.5

1.5 1.9

1.9 2.3

2.3 2.6

2.6 3.0

3.0

(MQL)

Roughness

Surface

Spindle Speed

F
ee

d
ra

te

30002500200015001000

2000

1750

1500

1250

1000

750

500

>

–

–

–

–

–

–

–

< 0.4

0.4 0.8

0.8 1.1

1.1 1.5

1.5 1.9

1.9 2.3

2.3 2.6

2.6 3.0

3.0

(Nanofluid)

Roughness

Surface

Fig. 6 Contour plots of Ra vs Fr and Vs a dry, b MQL, and c nanofluid

Table 7 Analysis of variance for Ra and MRR

Surface Roughness (Dry) Material Removal Rate (Dry)
Source DF Adj SS Adj MS F-Value P-Value Source DF Adj SS Adj MS F-Value P-Value
Regression 3 5.904 1.968 50.12 <0.0001 Significant Regression 3 165017 55006 33.48 0.001 Significant
Fr 1 3.648 3.648 92.90 <0.0001 Fr 1 79545 79545 48.41 0.001
Vs 1 1.847 1.847 47.05 0.001 Vs 1 5584 5584 3.40 0.125
Dc 1 0.409 0.409 10.42 0.023 Dc 1 79888 79888 48.62 0.001
Error 5 0.196 0.039 Error 5 8216 1643
Total 8 0.039 Total 8 173233

Model Summary Model Summary
R2 96.78% R2 (adj) 94.85% R2 (Pred) 85.73% R2 95.26% R2(adj) 92.41% R2(pred) 78.32%

Surface Roughness (MQL) Material Removal Rate (MQL)
Source DF Adj SS Adj MS F-Value P-Value Source DF Adj SS Adj MS F-Value P-Value
Regression 3 3.155 1.051 46.76 <0.0001 Significant Regression 3 166115 55372 31.82 0.001 Significant
Fr 1 1.899 1.899 84.46 <0.0001 Fr 1 80352 80352 46.18 0.001
Vs 1 1.001 1.001 44.49 0.001 Vs 1 5255 5255 3.02 0.143
Dc 1 0.255 0.255 11.35 0.020 Dc 1 80508 80508 46.27 0.001
Error 5 0.112 0.022 Error 5 8699 1740
Total 8 3.267 Total 8 174815
Model Summary Model Summary
R2 96.56% R2 (adj) 94.49% R2 (Pred) 84.84% R2 95.02% R2(adj) 92.04% R2(pred) 77.29%

Surface Roughness (Nanofluid) Material Removal Rate (Nanofluid)
Source DF Adj SS Adj MS F-Value P-Value Source DF Adj SS Adj MS F-Value P-Value
Regression 3 2.469 0.823 49.67 <0.0001 Significant Regression 3 165647 55216 34.83 0.001 Significant
Fr 1 1.491 1.491 90.02 <0.0001 Fr 1 79536 79536 50.17 0.001
Vs 1 0.770 0.770 46.50 0.001 Vs 1 5742 5742 3.62 0.115
Dc 1 0.207 0.207 12.49 0.017 Dc 1 80369 80369 50.70 0.001
Error 5 0.082 0.016 Error 5 7926 1585
Total 8 2.552 Total 8

Model Summary Model Summary
R2 96.75% R2 (adj) 94.81% R2 (Pred) 85.76% R2 95.43% R2 (Adj) 92.69% R2 (Pred) 79.14%
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cutting, 13%~16% improvement has been observed. In MQL,
lubricant penetrates in the machining zone between tool and
workpiece with air pressure in a very effective way which
reduces the surface roughness [50]. Moreover, in nanofluid,
the particles present in the lubricant possess filling and
polishing effect and rolled at tool-workpiece interface which
reduces the Ra and frictional co-efficient [51, 52]. From Fig.
11, it can be clearly seen that variation in cutting conditions
has no effect on MRR, while negligible variation has been
observed which can be due to the equipment and human error.

4 Conclusion

The focus of this research is to analyze the effects of dry,
MQL, and nanofluid cutting conditions in facemilling process
for Al-6082 alloy. The effects of Fr, Vs, and Dc on Ra and
MRR are analyzed for dry, MQL, and nanofluid cutting con-
ditions using Taguchi method.

& The experimental results reveal that for Ra, (1) Fr is most
significant input variables with percentage contribution of
60%; (2) Vs is significant with percentage contribution of
30%; and (3) Dc is less significant as compared with feed
rate and Vs with percentage contribution of 7% for dry,
MQL, and nanofluid cutting conditions.

& For material removal rate, Fr and Dc are significant factors
with percentage contribution of 46% each for all cutting
conditions, while Vs is not as significant as Fr and Dc.

& Comparative analysis for Ra shows that the 26~30% im-
provement will be achieved when shifted from dry to
MQL and 13~16% improvement will be obtained when
further move to nanofluid cutting condition.

& Negligible effect of cutting conditions (dry, MQL, and
nanofluid) is observed for material removal rate.

& Other machining conditions including machine tool fix-
ture environment are kept constant for all experiments to
avoid their influence on surface roughness.

This research verified that the proposed nanofluid cutting
condition for face milling process could be used by the prac-
titioners to improve the quality of machined parts.
Furthermore, the contour plots and developed empirical
models for Ra and MRR will aid practitioners to select the
optimum level of input variables for the desired Ra and MRR.

As aluminum is a softer material, therefore, it is necessary
to use some soft nanoparticles in lubricant to keep surface
roughness at its minimum level. Therefore, future study can
be conducted on the comparative analysis of the performance
of metallic and non-metallic or some soft nanoparticles in the
lubricant. If non-metallic nanoparticles yield low surface
roughness, then further studies will be conducted to optimize
the particle’s size and concentration with respect to workpiece
materials. The lowest surface roughness achieved in case of
soft nanoparticles will eliminate the post-processing of work-
piece material. Elimination of single process on industrial
scale may reduce the consumption of resources. Moreover,
the combination of such nanoparticles and some environmen-
tal friendly lubricants can be used to make the process healthy
on industrial scale.
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