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Abstract
Additive manufacturing has been presented as a novel and competitive method to achieve unprecedented part shapes and material
complexities. Though this holds true in niche markets, the economic viability of additive manufacturing for large-scale industrial
production is still in question. Companies often struggle to justify their investment in additive manufacturing due to challenges in the
integration of such technologies into mainstream production. First, most additive technologies exhibit a relatively low production rate
when compared with traditional production processes. Second, there is a lack of robust design for additive manufacturing methods and
tools that enable the leveraging of the attendant unique capabilities, including the ability to form organic part geometries and automated
part consolidations. Third, there is a dearth of systematic part screening methods to evaluate manufacturability in additive manufactur-
ing. To tackle the challenge of manufacturability evaluation, the present work proposes a novel approach derived from latent semantic
analysis and dimensional analysis to evaluate parts and their production for a variety of selected metrics. The selected metrics serve as
descriptors of design features and manufacturing functions, which are developed using functional modeling and dimensional analysis
theory. Singular-value decomposition and Euclidean distance measurement techniques are used to determine the relative manufactur-
ability for a set of parts for a specified manufacturing process technology. The utility of the method is demonstrated for laser powder
bed fusion technology.While demonstrated for additivemanufacturing here, the developed approach can be expanded for any given set
of manufacturing processes. Expansion of this systemic manufacturability analysis method can support part design decision-making,
process selection, and design and manufacturing optimization.

Keywords Manufacturing process selection . Part consolidation . Latent semantic analysis . Machine learning . Additive
manufacturing

1 Introduction

Additive manufacturing (AM) is presented in literature as a
strong competitor of traditional manufacturing methods [1].
The growth in popularity of AM is related to the advantages it
provides in terms of material and design freedom to produce
unprecedented shapes with high geometric complexity.
However, successful adoption and integration of AM into
production environments has been challenging for businesses.
Often, the full potential of AM technologies is not leveraged,
and direct application of AM for products with existing tradi-
tional manufacturing solutions is not economically viable [2].
Thus, industries must focus on designing and developing
products that are suited for AM rather than using the technol-
ogy as a direct replacement of traditional manufacturing pro-
cesses [3].
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A decision support system (DSS) can aid in finding potential
candidate products for AM through systematic evaluation of al-
ternatives. However, the priorities of most DSS solutions revolve
around productivity and economics and seldom integrate design
for manufacturing and assembly assessments. Recently, research
effort has been directed towards building integrated DSS solu-
tions capable of evaluating the technical and economic aspects of
production [3, 4]. Nevertheless, such solutions are still in their
infancy and require a significant amount of human interaction. In
addition, the design freedom inAMcan be leveraged by redesign
for consolidation of parts into sub-assemblies; evaluating the
relative performance of such part consolidations is challenging,
however, due to a lack of metrics and systematic evaluation
techniques. Pradel et al. [2] developed a design framework for
mapping design and manufacturing knowledge in the context of
design for additive manufacturing (DFAM). The study reviewed
the current state of the art in DFAM and highlighted several
limitations and future directions for research in the field. An
important takeaway from the study was the need for easy-to-
use and reliable tools which can aid the user to identify when
AM can function as a competitive alternative for traditional
manufacturing. The authors emphasize that such tools must pro-
vide a comprehensive survey of available AM technologies and
allow for rapid identification of potential processes based on
evaluation of product or part over a wide range of design, pro-
duction, and economic metrics. Thus, in this research, a novel
evaluation approach derived from singular value decomposition
(SVD) and its application in the latent semantic analysis (LSA)
method is developed herein to evaluate parts and their production
for a variety of selected metrics. The developed approach serves
to achieve two distinct objectives. First, the approach supports
fast clustering of parts from a database for specificmanufacturing
processes, which enables evaluation of their manufacturability
based on a set of design and manufacturing metrics. Metric
values for part design alternatives and an “ideal” part are com-
puted and compared using a mapping approach based on
Euclidean distances between the evaluated parts. Second, the
potential for consolidation of parts into sub-assemblies is evalu-
ated using the additive property of part features and metrics pro-
vided by the SVD approach. The developed methodology aims
to provide users with an evaluation approach which is automatic
and allows for rapid identification of potential processes for dif-
ferent designs. However, the current approach does not provide
any design guidelines for AM, rather it aims to provide designers
with a generalized framework for development of dimensionless
metrics which are scale independent and invariant as well as
providing a mathematical mechanism for performing fast manu-
facturability evaluations.

The remainder of the manuscript is organized into five
sections. Section 2 discusses relevant background informa-
tion. Section 3 presents the methodology as follows. First,
metrics are formalized using a combination of taxonomies
organized around functions, organs, and variables, and the

approach to build metrics as a combination of variables is
selected. Second, the use of SVD is presented for part design
and manufacturing evaluation. Sections 4 and 5 then demon-
strate the usability of the developed approach using an AM
case study. Finally, the findings of the presented work and
potential for future developments are discussed in Section 6.

2 Background

DSS solutions for complex decision-making and problem-
solving became widespread in the 1970s with the growth of
computer technology. Over the past several decades, the util-
ity of DSS has improved, and, with manufacturing moving
towards more automated processes, solutions have been de-
veloped leading to intelligent decision support systems (IDSS)
and cyber-physical production systems (CPPS). DSS can
serve as passive, active, or cooperative systems depending
upon their functionality. The available literature categorizes
DSS into five types, namely, model-driven, data-driven,
knowledge-driven, document-driven, and communication-
driven systems [5]. In this current research, a combination of
model-driven, data-driven, and knowledge-driven approaches
is used to evaluate part manufacturability.

A model-driven DSS is typically not data intensive, rather
it uses analytical models, simulation tools, and optimization
methods to generate multiple experiments depicting the ef-
fects of alternative decisions.Monte Carlo simulation, discrete
event simulation, probabilistic forecasting, agent-based and
multi-agent simulation, system dynamics, and visual simula-
tion are some of the common simulation methods used in
model-driven DSS [6–8]. Data-driven DSS, on the other hand,
utilizes structured data (e.g., machine learning using neural
networks), such as internal and external company data, time-
series data, and real-time data [9]. Business intelligence sys-
tems or online analytical processing (OLAP) are examples of
data-driven DSS that enables better decision support by for-
mulating decisions through triggering, manipulating, and/or
analyzing data. However, accurate and structured data are a
key requirement in developing data-driven solutions, and,
thus, efficient data processing could enable fast and accurate
decision-making [10, 11]. Knowledge-based DSS methods of
today (e.g., fuzzy logic, Bayesian networks, and genetic algo-
rithms) have evolved from their predecessors, known as rule-
based expert systems. Such rule-based expert systems use
heuristics to solve problems with the help of human expert
knowledge stored in databases. In the age of big data, the
challenges pertaining to the properties of data (i.e., volume,
variety, velocity, veracity, validity, and value) need to be ad-
dressed to improve the process of decision-making [12–15].

Decision support for manufacturing process selection has
been of key interest for the AM research community. Such sys-
tems require evaluation of design and manufacturing capability
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to choose the right process for a specific design or vice versa.
Selection criteria for design elements are often objective and can
be expressed in the mathematical form to be either maximized or
minimized. However, tradeoffs involving conflicting selection
criteria may introduce a certain level of subjectivity which, when
combinedwith the existing complexity of the evaluated problem,
makes the selection process difficult. In addition, material selec-
tion, process selection, and shape selection for AM should not be
considered independent, mutually exclusive entities, rather they
must be addressedwith a focus on overlaps and interrelationships
[2, 16]. Wang et al. [17] developed a DSS for AM process
selection using a hybrid multi-criteria decision-making method,
the analytic hierarchy process (AHP) combined with a technique
for order preference by similarity. Their method was used to
obtain an ideal solution to explore and refine the solution space
and to rank suitable alternatives. Technical and economic aspects
of the processes are taken into account; however, the method
requires development of probabilistic models for representing
each process and its capabilities for initial sampling based on
customer preferences obtained through the AHP. Such an ap-
proach implies the need for large amounts of data relating to each
technical or economic aspect of interest for training. Modeling
each process with less data is challenging, especially in AM
where parameters often reflect a non-linear relationship, requiring
more intensive training to track them [18].

For humans, learning new concepts and skills is usually fast
and efficient with only a few training examples. For example,
people who know how to use a lathe are likely to quickly learn
how to use a milling machine with little or no demonstration. In
contrast, training a machine learning (ML) model for a similar
situation would require a large number of training samples and
is not likely to become an expert system capable of independent
operation. Further, the training performed for the lathe will not
be transferrable to the milling machine. The lack of interoper-
ability is a fundamental problem of current ML approaches
limiting their application to large-scale real problems [19]. In
order to effectively use ML models in a particular design or
manufacturing domain, it is important to evaluate the capability
of current approaches based on their ability to quickly learn
new concepts and skills with few training samples.
Approaches that will enable the generalization of ML models
for related application domains need to be developed.

Automated approaches are becoming increasingly popular for
modeling AM processes, but the objectives for the use of ML
methods are often unclear. The fundamental question remains:
What is the real added value of the application of ML in AM
process modeling?When comparingMLmodels with analytical
modeling strategies, one fundamental difference is the ability of
ML models to improve continuously and automatically over
time. In this respect, other models are rigid and not updated
dynamically during use. The second fundamental element to
consider with modeling is the complexity of the modeling prob-
lem, which is strongly correlated with the required size of the

datasets needed to generate the models. Based on these two
fundamental aspects ofML, a primary goal of the research herein
is to provide an approach capable of integrating new knowledge
over time to modify predictions or update clustering when new
data is included or when data is removed. Thus, the proposed
approach can be coined as a type of machine learning method.
As a second key goal, the ML approach should be capable of
providing adequate evaluations using very small datasets.

To achieve these two goals, three fundamental approaches
from meta-learning, a branch of ML dealing with improving
learning and learning processes, are adopted. Meta-learning
proposes metric-based, model-based, and optimization-based
approaches to improve training of MLmodels. First, a metric-
based approach is established here using dimensional analysis
theory (DAT) and the Vashy-Buckingham theorem. The ap-
proach has been applied to manufacturing in general and is
applicable to other engineering domains at large. Second,
model-based and optimization-based approaches are then
combined using SVD to perform part evaluation. This combi-
nation will also be studied further in future papers. This paper
presents only one limited aspect of the combination between
model-based and optimization-based approaches.

3 Methodology

As introduced above, the methodology followed in this re-
search develops anML approach for evaluating parts for man-
ufacturability and presents some fundamental aspects of the
approach suitable for part consolidation. The step-by-step im-
plementation of the methodology is shown in Fig. 1. The
methodology first uses the dimensional analysis conceptual
modeling (DACM) framework to describe the function and
define the organs and variables associated with the function. A
group of dimensionless metrics are then formulated and com-
puted for the part to be evaluated. Next, SVD and Euclidean
distance measurement techniques are used to cluster part de-
signs and compute distances between the evaluated parts and
“ideal” parts for different manufacturing process technologies.

Steps I–V in Fig. 1 follow the hypothesis that functions can
be efficiently described using a group of dimensionless vari-
ables and, subsequently, describe subsystems and systems.
Such dimensionless variables can serve as metrics for
assessing design and manufacturing information. The meth-
odology starts by describing a set of functions representing the
different activities of a system (step I). A function can be
described using an action verb. In a graphical context, a func-
tion can be represented as a box with inputs and outputs; this is
the traditional Pahl and Beitz model [18].

Figure 2 shows a modified generic model of a function and
the associated variables. A generic model of a function was ini-
tially proposed in bond graph theory [20, 21] but later modified
in the dimensional analysis conceptual modeling (DACM)
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framework by Coatanéa et al. [22]. In Fig. 2, a function is repre-
sented using three categories of variables, namely, power vari-
ables, state variables, and connecting variables. The power vari-
ables represent effort (in the form of force, pressure, temperature,
and chemical potential) and flow (in the form of velocity, volu-
metric flow, volumetric velocity, and entropy flow), while state
variables represent displacement and momentum. Generic cate-
gories of variables for different energy domains are shown in
Table 1. The generic classification model was expanded by
Coatanéa et al. [22] by introducing a supplementary category
of variables called connecting variables, for describing the con-
nections that exist between power variables (i.e., effort and flow)
and state variables (i.e., displacement and momentum).

Connecting variables can describe the geometry of a part as
well as material-related properties.

Functions can be classified using the terms employed by
the DACM framework. The equivalence of functional terms
used in DACM to the notation of other functional modeling
approaches is shown in Fig. 3. After classification, the func-
tional terms are associated with organs, such as in bond graph
theory, to represent the function as an input-output relation-
ship of generic variables [23]. Organs represent an intermedi-
ate layer of detail between the abstract concept of a function
and a physical component or subsystem required to implement
a function. The mapping between functions and organs is
shown in Table 2.

Following the description of functions, dimensionless var-
iables can be computed to define metrics. Metrics are mea-
sures used to track or assess the status of a system or activity.
In this research, metrics are used to assess the performance of
the different functions of the system. To illustrate how metrics
can be used to assess the nature of surfaces, an example case
for machining a cube is considered. Machining requires an
operator to locate and to clamp a workpiece. We can assume
that the functions (locating and clamping) are more easily
achieved if the shape of the blank workpiece is known.
Hence, the fulfillment of these functions can be analyzed by
defining a metric representing the shape of the workpiece. We
can conceptualize the shape of the workpiece with the help of
a dimensionless Pi (π) number.

Assuming the face of the workpiece to be located and
clamped is circular with a diameter D, the Pi number could
be calculated using either Eq. 1 (surface area) or Eq. 2 (cir-
cumference).

S ¼ πD2

4
ð1Þ

C ¼ πD ð2Þ

Rearranging Eqs. 1 and 2, we obtain:

π ¼ 4S
D2 ¼ 3:1416 ð3Þ

π ¼ C
D

¼ 3:1416 ð4Þ

We see that both equations provide the same value for π
(3.1416). This specific value of Pi is associated with the shape
of the geometric form considered, in this case a circle.

The concept of reordering the elements in the equations to
find the value of Pi can be performed using the Vashy-
Buckingham theorem in DAT [28]. The theorem allows the
creation of a set of dimensionless numbers, where, if a

Fig. 1 Methodology for
evaluating part manufacturability
and part consolidation

Fig. 2 Modified generic graphical model of a function with new variable
category
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physical phenomenon is represented such that q1, a dependent
variable, is influenced by a set of independent variables, then

q1 ¼ f q2; q3;…; qnð Þ ð5Þ

where qi are the n physical variables, which are expressed in
terms of h independent physical quantities. Equation 5 can be
rewritten as (Eq. 6):

π1 ¼ f π2;π3;…;π j
� � ð6Þ

where πi are dimensionless parameters constructed from qi
such that j = (n – h) dimensionless equations (Pi numbers
herein) exist of the form (Eq. 7):

πi ¼ qα1 :q
β
2 :q

γ
3 ::q

δ
n ð7Þ

where the exponents are rational numbers. To calculate the
values of the dimensionless Pi numbers, one variable (qi) is
selected as the performance variable (i.e., dependent variable)
whose exponent is 1, while the other variables are classified as
repeating variables.

Table 1 Generic categories of variables for different energy domains

Effort
e (dimension)

Flow
f (dimension)

Generalized momentum
p (dimension)

Generalized displacement
q (dimension)

Translation Force
F (N)

Velocity
v (m s−1)

Momentum
p (N.s)

Displacement
x (m)

Rotation Torque
T (N.m)

Torque velocity
Ω (rad s−1)

Angular momentum
b (N.ms)

Angle
φ (rad)

Hydraulic Total pressure
p (N.m−2)

Volumetric flow
φv (m3s−1)

Pressure momentum
Γ (N.m−2s)

Volume
V (m3)

Acoustic Pressure
p (N.m−2)

Volumetric velocity
φv (m3s−1)

Momentum
Γ (N.m−2s)

Volume
V (m3)

Electric Voltage
u (V)

Current
i (A)

Flux linkage
φ (Vs)

Charge
q (C)

Chemical Chemical potential
μ (J mol−1)

Molar flow
N’ (mol s−1)

Molar mass
N (mol)

Thermal Temperature
T (K)

Entropy flow
S’ (J s−1 K−1)

Entropy
S (J.K−1)

Store

Vary

Channel Channel

Branch

Connect

Control magnitude

Convert

Provision

Signal

Support

Branch

Channel

Connect

Change, magnitude

Convert

Store, supply

To connect

To compute

To start

To change
magnitude

To transform
To dissipate

To signal

To store
To supply

To stop

Connect

Change

Check, indicate, 

Inspect, measure 

Change, control

form, initiate, 

intensity, lower, 

modulate, raise

Accumulate

Create, destroy, 

generate

Separate

Transfer

Separate, remove, 

refine, distribute

Import, export, transfer, 

transport, transmit, 

guide, translate, rotate, 

allow DOF

Couple, mix

Convert

Start, supply, extract

Actuate, regulate, 

change, form, condition

Sense, indicate, 

display, measure

Stop, stabilize, secure, 

position

Set-up, stabilize

Cut, branch, separate

count, display

Transmit, transport

Release, store, supply

Stop, hold

Condense, convert, 

differentiate, evaporate, 

integrate, liquefy, solidify 

Sense

Crush, process, form, 

coalesce, change

Mark

AND, OR

Add, multiply, valve

Connect, mix, pack

Compare, divide, 

subtract, switch

TIPS [11]Functional Basis 
[10]

Hundal & Byrne 
[9]

DACM 
[6]

Pahl & Beitz
[8]

Fig. 3 Comparison of different
notations used in functional
modeling [22, 24–27]
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Similarly, considering the face of the workpiece to be lo-
cated and clamped to be a rectangular shape involving three
describing variables (length, l, and width, w, measured in me-
ters, m, and surface area, S, measured in square meters, m2). If
S is selected as the performance variable, the Pi number can be
calculated as shown in Eq. 8:

π ¼ S
l:w

ð8Þ

In this case, π = 1 is a constant value classifying the shape
as being rectangular. It is important to note that the value of π
is independent from the scale and dimension of the rectangular
shape, since S is dependent on l and w.

Thus, using DAT and the Vashy-Buckingham theorem, a
generic method can be followed to combine parameters and
form metrics measuring certain aspects of a designed part. Pi
numbers have a broad usage in engineering; in this research,
we demonstrate that they can be used as descriptors of func-
tions. This hypothesis is supported in literature [29], where it
is shown that combination of parameters supports the creation
of parsimonious metrics. Such parsimonious metrics have
proven to be efficient in assessing model performance.

Hence, the hypothesis in this research is similar, where the
parsimonious principle applies to the description of functions.
Revisiting the example of machining the cube, the goal is to
evaluate the “locating” and “clamping” functions for a part in
a material removal process. The evaluation of the functions

requires considering the efficiency and ease with which both
functions are performed. Thus, using the metric values, we
can evaluate how “distant” a specific part is from an ideal
part—a part for which the two functions (locating and
clamping) are most optimally performed (e.g., when the shape
is circular or prismatic and locating and clamping can be per-
formed using a three- or six-jaw chuck or a vise). In this
research, ideal parts are used to represent different
manufacturing process technologies following the TRIZ con-
cept of ideality [27]. In addition, metrics can be computed
based on other functional requirements, such as shape com-
plexity, macro- and micro-level precision, volume of material
removed or added, and material complexity.

Through the previous examples, a generic method ground-
ed in functional modeling and DAT can be conceptualized for
the development of metrics. Though dimensional analysis has
been widely used in engineering, the current application of
this mathematical approach establishes a mechanism to select
the appropriate combination of variables for an engineering
application using the DACM framework. The lack of such
mechanism to select the right performance and repeating var-
iables for the study in traditional DAT implies that the domain
knowledge associated with the study is absent. The DACM
framework applied in this research bridges this gap by provid-
ing a functional basis through which performance and repeat-
ing variables can be assigned. Thus, the Pi numbers computed
using this approach do not serve solely as combinations of

Table 2 Function-to-organ
mapping Elementary functions Associated organs Number of possible organ connections (N)

To supply Source of effort 1

Source of flow 1

Sink 1

To transform/to change magnitude Transformer 2

Gyrator 2

To transform/to dissipate Resistor 1

To transform/to store Inertia 1

Capacitor 1

To connect Flow junction N ≥ 1
Effort junction N ≥ 1

To start/to stop Switch N ≥ 1
To compute AND 2

OR 2

NOR 2

NAND 2

Add N ≥ 1
Subtract 2

Multiply 2

Divide 2

To signal Sense 1

Display N ≥ 1
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variables to ensure dimensional homogeneity but also as met-
rics which describe specific functions associated with a tech-
nical system or part. The presented approach establishes a
formal association between Pi numbers, a type of structural
description metric, and functional modeling using the princi-
ple of composability (Fig. 4). In practice, a function is imple-
mented using components. The components are modeled
using variables and equations. Pi numbers are a generic form
of power laws present ubiquitously in nature and used in order
to model a function via key performances (i.e., key perfor-
mance indicators), repeating variables (i.e., independent vari-
ables), and the equations combining them. Pi numbers are
scale, metric, aggregation, and composition invariant. They
form an ideal tool to represent manufacturing metrics when
parts with different scales, metrics, and compositions need to
be compared.

Metrics have long been used as a means of evaluating
functions. Nevertheless, the use of dimensionless numbers
as performance indicators is a generalization enabling the cre-
ation of generic metrics that can apply to a broader spectrum
of functional use cases. The concept for the use of metrics to
represent functions is next explained using an additive
manufacturing example.

In laser or electron beam powder bed technologies, the
build volume rate V (mm3/s) is a key performance indicator
for assessing building time and, consequently, production rate
and cost [30]. V is dependent on the layer thickness DS (μm),
the scan speed Vscan (mm/s), and the scan line distance be-
tween parallel laser tracks Δys (μm). Other important vari-
ables affecting the overall product cost are height of the part
H (mm), part orientation, part surface area SP (mm2), and total
printing time tB (s). A printing process is equivalent to the
superfunction/organ D in Fig. 4, wherein multiple low-level
functions are integrated to form a high-level function (to
print). The level of granularity of function descriptions focus-
es on the key outputs of the manufacturing machine sub-func-
tions, namely, to create a layer of powder and to move the
laser or electron beam with respect to the powder layer.
Parameters related to the different functions as well as those

that specify part properties and part position on the printing
table are considered. Figure 5 shows the high-level functional
model for the superfunction “to print” for powder bed printing
technology. Variables are represented as their generic catego-
ries following Table 1.

The two performance variables (i.e., variables used to as-
sess the performance of the printing process) here are V, the
expected build volume rate, and tB, the total printing time. The
expected build volume rate accounts for the specific perfor-
mance of the laser or electron beam when taking into account
laser beam diameter, line spacing between laser scans, and the
height of the powder layer. The total printing time evaluates
the total duration of the printing process, which is dependent
on the part geometry. The dependent variables (performance
variables) and the independent variables can be represented in
the form of vectors. Table 3 presents the decomposition for the
first performance variable V. Using the formula [C] = [A]−1.
[B], the exponents ([C]) of the influencing variables in matrix
A can be computed to ensure dimensional homogeneity. The
base dimensions of the variables in this case are represented as
the length of the part layers in each ordinal direction (Lx and
Lz) and time (T). Here, time (T) is one of the seven base
dimensions of the international system of units. In addition,
matrix A is square due to wise decomposition of the base
dimensions. Obtaining a square matrixA is needed to compute
the matrix inverse, [A]−1.

Matrix A can be represented as a square matrix by modify-
ing the number of base dimensions by either adding, suppress-
ing, or combining variables in columns. Szirtes [31] presents
heur is t ic rules to fol low when performing such

Superfunction D

Neg B

Function 
A

Function 
B

πD

πNeg.B

πA

πB

Fig. 4 Composability of
functions and dimensionless
metrics

Displacement variables

DS, Δys

Connecting variables

H, tB, SP

Function: To Print

Effort variables 

Flow variables

VScan

Effort variables 

Flow variables:

V

Fig. 5 Functional model for the “to print” superfunction in powder bed
printing technology
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transformations. Using the proposed approach, Pi numbers are
developed for the two performance variables, V and tB, selected
above. Thus, the performance variables are represented in the
form of dimensionless variables as presented in Eqs. 9 and 10:

πV ¼ V
VScan:DS :ΔyS

ð9Þ

πtb ¼
tB:VScan:DS :ΔyS

H :SP
ð10Þ

Following the development of dimensionless variables as
metrics describing functions, steps VI–IX in Fig. 1 are used
to define the mathematical mechanisms to support SVD for
part evaluation. The different part alternatives and metrics for
their characterization are represented in the form of matrix X
(Table 4). In addition to the evaluated part alternatives, an ideal
part for each manufacturing process technology is also consid-
ered in matrix X. The ideal part is one in which the different
functions of the manufacturing system are most optimally per-
formed. This implies that the ideal part will have the ideal
(maximum, minimum, or limit) value for all metrics assessed.

Matrix X is decomposed using SVD to enable the compu-
tation of distances between the evaluated part alternatives and
the ideal part for each potential manufacturing process tech-
nology. SVD allows the creation of a model of parts and
processes, presented in the form of a succession of vectors
composed of metrics [32]. SVD is a decomposition technique
related to principal component analysis (PCA) and used for
classification and ranking of tasks. Applications of SVD have
been presented in literature, for example, in aeronautics and in
metamodeling [29, 33]. However, prior to this research, the
use of the approach as a systematic part screening method has

not been reported. In this research, SVD is used for part clus-
tering, which enables the calculation of distances between the
evaluated part alternatives and the ideal part for each
manufacturing process technology. Matrix X can be
decomposed to the form (Eqs. 11 and 12):

X½ � ¼ U½ �: W½ �: V½ �T ð11Þ
X 11 X 12 X 13

X 21 X 22 X 23

X 31 X 32 X 33

X 41 X 42 X 43

2
664

3
775 ¼

U 11 U12 U 13

U 21 U22 U 23

U 31 U32 U 33

U 41 U42 U 43

2
664

3
775:

W11 0 0
0 W22 0
0 0 W33

2
4

3
5:

V11 V21 V31

V21 V22 V32

V31 V32 V33

2
4

3
5
T

ð12Þ

In Eq. 12, a compact SVD approach is followed, in which
[X] is an (m × n) matrix, [U] is an (m × r) matrix, [W] is square
diagonal matrix of size (r × r), where r represents the rank of
[X] with r ≤ min {m, n} and [V] is an (n × r) matrix. A com-
pact SVD approach implies that no null columns exist in the
matrix [W]. The approach is chosen to ensure that the decom-
position results in a square diagonal matrix to allow for
straightforward inverse matrix operations.

The matrix [W] resulting from the decomposition is ar-
ranged in a way that its diagonal elements (i.e., the singular
values) are ranked in descending order. This implies that the
influence of the [U] rows is also in descending order. The
initial [X] can be reconstructed with reasonable accuracy by
reducing the number of rows in [U]. An interesting property of
[U] is that the sum of the variance of each column is one.
Thus, all columns have the same deviation. Considering only
the singular values in [W], let us assume that the number of
selected singular values, k, is two. Then, [W] can be represent-
ed as Eq. 13:

W½ � ¼ W11 0
0 W22

� �
ð13Þ

The parts are represented by the terms in the row vectors of
the matrix product [Uk]. [Wk]. Similarly, the metrics are repre-
sented by the column vectors of the matrix product [Wk]. [Vk]

T.
The matrix product [Uk]. [Wk] creates vectors of dimension k,
where the rows represent the parts (and respective manufactur-
ing process technologies) considered in the study. Thus, the
SVD approach develops a reduced model linking parts, met-
rics, and manufacturing processes. The required level of accu-
racy can be selected by choosing the number of singular values
retained in the reduced model. In this research, the variation in
the accuracy of models depending on the number of singular
values selected is investigated as part of the case study. The use
of SVD and of the decomposed products [Uk]. [Wk] and [Wk].
[Vk]

T provides several advantages. First, it enables computation
of distances using the Euclidean distance measurement ap-
proach and thus allows screening and ranking of parts in terms

Table 3 Decomposition of performance variable V using DAT

πV Independent variables
[A]

Dependent variable [B]

Vscan Ds Δys V

Base dimension Lz 0 1 0 1

Lx 1 0 1 2

T − 1 0 0 − 1

Table 4 Part alternatives and metrics forming matrix X

Metric 1 Metric 2 Metric 3 … Metric n

Ideal part for process 1
(laser powder bed fusion)
Part 1

…

Part m
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of their manufacturability for each manufacturing process tech-
nology evaluated. Ideal parts can be added for consideration of
different manufacturing process technologies by computing the
limits of each metric. The ideal limit of each metric computed
would imply the best performance in a specific function.
Subsequent ranking would then allow evaluation of the suit-
ability of multiple manufacturing methods for a given part de-
sign or set of design alternatives. Further, SVD enables recon-
struction of the design space, which allows for development of
aggregated metrics and parts. These advantages are further ex-
plored in the case study for an additive manufacturing process
technology below.

In order to rank the different parts and evaluate their suit-
ability for certain manufacturing processes, the distance be-
tween the ideal part for the given manufacturing process tech-
nology and the evaluated parts from a database needs to be
computed. Several methods are presented in literature to per-
form such computation. The two most frequently used ap-
proaches, the cosine similarity approach and the Euclidean
distance computation approach, are investigated in this re-
search. Cosine similarity is a measure of similarity between
two non-zero vectors of an inner product space based on the
cosine of the angle between them. Cosine similarity is usually
used in positive design space, wherein the outcome is bound-
ed in [0, 1]. It is assumed that the set of metrics developed is
also bounded in [0, 1]. Thus, the input data is normalized in
order to obtain values in the range of zero (0) to one (1) for
computing cosine similarity. For two vectors A and B, the
cosine similarity measure can be computed as (Eq. 14):

cos θð Þ ¼ A:B
Ak k: Bk k ¼ ∑n

i¼1Ai:Biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1Ai
2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1Bi
2

q ð14Þ

Cosine similarity is often used as a metric for measuring
distance when the magnitude of the vectors does not matter,
e.g., in semantic analysis. However, if the magnitude of the
vectors is important, then a second approach can be followed
by computing a Euclidean distance. The Euclidean distance
between an ideal reference part (r), which represents a part
containing the ideal features (also implies optimal metric
values) for a specified manufacturing process technology,
powder bed fusion technology in this case, and a real part to
be evaluated (i), can be computed as (Eq. 15):

dir ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xrð Þ2 þ yi−yrð Þ2 þ zi−zrð Þ2 þ…þ f i− f rð Þ2

q

ð15Þ
where x, y, z, and f represent the vectors of the product [Uk]. [Wk]
when assessing part distances (Fig. 7) and vectors of the product
[Wk]. [Vk]

T when assessing metrics (Fig. 8). In this research, the
magnitude of the distance between the points is of importance.
Since the reference technologies play the role of ideal targets,
distances must be computed between these ideal parts

(technologies) and the evaluated alternative parts. The
Euclidean distance method is chosen to compute distances and
rank parts for a specific manufacturing process technology.
Nevertheless, the cosine similaritymeasure is also used for com-
parison in the case study. Distance computation and ranking
facilitate screening for part manufacturability for a specific tech-
nology by comparing metric performance with ideal values.

An important aspect of the current methodology is the de-
velopment of dimensionless metrics (Pi numbers) which are
scale, metric, and composability invariant, by virtue of the Pi
laws (i.e., power laws with dimensional homogeneity). The
developed metrics enable the computation of Euclidean dis-
tances by weighting each metric equally. If not, the Euclidean
distance computed would not give equal importance to each
metric rather will favor the ones with high variance when
measured in the principal component space [33]. The use of
the Euclidean distance to perform ranking would not be pos-
sible without the invariant nature of the developed metrics.
Alternately, Mahalanobis distance could be used for compar-
ing metrics. However, it is important to note that the
Mahalanobis distance measurement would require the compu-
tation of the variance-covariance matrix of the dataset. The
computation of the variance-covariance matrix is difficult
when the data is multicollinear and/or when the number of
variables exceeds the number of objects in the dataset. A fea-
ture reduction would then need to be carried out to accurately
calculate the Mahalanobis distance [33]. The current approach
provides an advantage over Mahalanobis distance, wherein
the developed Pi numbers provide a method to reduce the
dimension and complexity of a problem by aggregating
metrics.

4 Additive manufacturing case study

The utility of the method developed above for systematic
manufacturability evaluation using dimensionless metrics
and SVD is demonstrated for an additive manufacturing case
study using the laser powder bed fusion (LPBF) process.
LPBF technology is considered as a unique manufacturing
method in this proof of concept exemplar (no competing
manufacturing method is considered here). Nevertheless,
through future extension, the approach will enable the integra-
tion of several manufacturing processes simultaneously. The
capability of the approach to aid manufacturing process selec-
tion will be investigated in future research.

In this work, twelve metrics are computed, as presented in
Table 5, following the design rules proposed by Zimmer and
Adam [34]. The last column of Table 5 is used to compute the
position of the ideal part used as the reference for a given
manufacturing method. Eight parts exhibiting a range of com-
plexities (e.g., size and number and type of features) were
selected to be assessed for the LPBF process (Fig. 6).
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Specific features of Bracket A and Connector D have been
isolated in this case study to simplify the evaluation of certain
metrics as well as to demonstrate the capability of the pro-
posed method to enable metric or elementary features’ and
or parts’ aggregation through vector representation.
Specifically, for Bracket A, the big hole and the small holes
have been evaluated separately. Similarly, for Connector D,
the helix and holes were evaluated separately. For both parts,
the choice to isolate specific features was drawn from design

rules for AM [35]. The parts and metrics are combined to form
matrix X (Table 6).

MatrixX is decomposed using SVD via a code generated in
MATLAB. Before running the SVD decomposition, matrix X
is normalized between [− 1, 1] with a maximum standard de-
viation of 1.

The normalized input matrix [X] is shown in Table 7.
The resulting decomposed matrixes [U], [W], and [V]T are

presented in Eqs. 16, 17, and 18, respectively.

Table 5 Metrics for characterizing functions in laser powder bed fusion technology (based on design and manufacturing principles from [30])

Metric
#

Metric calculation Name of the variables (units) Category
[Purpose of the metric]

Ideal objective

Metric
1

πV ¼ V
VScan:DS :ΔyS

V: Expected build volume rate per layer (mm3/s)
VScan: Scan speed (mm/s)
DS: Layer thickness (mm)
Δys: Scan line distance between parallel laser

tracks (mm)

Production rate
[Evaluating build time per layer]

lim
Ideal

πV ¼ 1

Metric
2

πVn ¼ V
VScan :DS :ΔyS

:n n ¼ SBP SP with:
SBP: Surface area of build plate (cm

2)
SP: Surface area per part layer (cm

2)

Production rate
[Evaluating building time per layer for n parts]

lim
Ideal

πVn ¼ n

Metric
3

πtb ¼ tB:VScan :DS :ΔyS
H :SP

H: Height of the part (considering the part
orientation) (mm)

tB: Total printing time (s)
SP: Surface area per part layer (mm2)
Vscan: Scan speed (mm/s)
DS: Layer thickness (mm)
Δys: Scan line distance between parallel laser

tracks (mm)

Cost
[Total build time of a0 specific part]

lim
Ideal

πtB ¼ 1

Metrics
4 and 5

πRIH ¼ RIH
DS

RIH: Internal radius (horizontal holes) (mm)
DS: Layer thickness (mm)

Design rule: Internal support structure
[Evaluating the need for support structure in

internal round channels]
Design rule: Post-processing
[Evaluating needs for post-processing of holes]

lim
Ideal

πRIH < 45

lim
Ideal

πRIH > 10

Metric
6

πRV ¼ DV
DL

S: Surface of the contour + Surface internal hole
(mm2)

DL: Laser beam diameter (mm)
CL: Generated laser beam circumference (mm)
DV ¼ S

CL
: Length vertical holes (mm)

Design rule
[Evaluate the minimal size of vertical holes that

can be printed]

lim
Ideal

πRV > 0

Metric
7

πL ¼ L
10:R1=2 :LP1=2

L: Length of the holes (mm)
LP: Length of the part (mm)
R: Radius of the holes (mm)

Design rule
[Depowdering feasibility evaluation]

lim
Ideal

πL≤1

Metric
8

πS ¼ S
SA

DS: Layer thickness (mm)
n: Number of layers of the surface printed with δ

angle
δ: Printing angle with the build plate
SA ¼ n: 2DS

tanδ +S
S: Total surface printed with angle
SA: Surface printed at 0° or 90°

Design rule
[Evaluation of the relative printing default for

surfaces with printing angle at 0° or 90°]

lim
Ideal

πS ¼ 1

Metric
9

πDS ¼ DS
C C: Minimal size of chamfer or radius parallel or

perpendicular to the building plate (mm)
DS: Layer thickness (mm)

Design rule
[Evaluation of the printability and risk of shape

deviation]

lim
Ideal

πDS ¼ 0

Metric
10

πVT ¼ VT VL VT: Total volume (mm3)
VL: Lattice volume (mm3)

Design rule
[% of lattice structures and thick walls]

lim
Ideal

πVT ¼ 0

Metric
11

πST ¼ ST
SCþSP

ST: Total surface of the part (mm2)
SC: Cylindrical surfaces (mm2)
SP: Plane surfaces (mm

2)

Design rule
[Evaluation of clamping capability for

post-processing]

lim
Ideal

πST ¼ 1

Metric
12

πSO ¼ SO: LO=LHð Þ
ST

LO: Overhanging length (mm)
LH: Overhanging height (mm)
SO: Overhanging surface (mm2)
ST: Total surface of the part (mm2)

Design rule
[Evaluation of support for overhanging

structures]

lim
Ideal

πSO ¼ 0
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U½ � ¼

−0:90 −0:09 −0:21 −0:12 −0:10 0:03 −0:04 −0:01 −0:33
0:07 0:26 −0:41 0:54 0:55 0:13 −0:18 0:08 −0:33
0:37 −0:41 −0:66 −0:31 −0:18 −0:13 0:09 0:01 −0:33
0:10 0:64 −0:03 0:18 −0:61 −0:19 0:16 −0:09 −0:33
0:14 0:15 0:17 −0:40 0:11 0:52 −0:20 −0:57 −0:33
0:07 0:10 0:23 −0:26 0:09 0:35 0:38 0:69 −0:33
0:08 0:01 0:29 −0:21 0:07 −0:48 −0:67 0:26 −0:33
−0:01 −0:12 0:29 0:02 0:39 −0:48 0:54 −0:33 −0:34
0:08 −0:55 0:33 0:55 −0:33 0:25 −0:08 −0:03 −0:33

2
6666666666664

3
7777777777775

ð16Þ

W½ � ¼

2:47 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
0:00 1:47 0:00 0:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 1:34 0:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 0:00 0:97 0:00 0:00 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:85 0:00 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:00 0:47 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:00 0:00 0:24 0:00 0:00
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:20 0:00
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

2
6666666666664

3
7777777777775

ð17Þ

V½ �T ¼

−0:39 −0:39 −0:31 −0:39 0:09 0:11 0:20 −0:13 −0:32 0:17 0:31 0:39
−0:06 −0:06 0:28 −0:02 0:56 −0:43 −0:28 0:03 −0:30 −0:46 0:14 0:06
−0:17 −0:17 0:24 −0:16 0:07 0:24 0:39 0:61 0:27 −0:35 −0:22 0:17
−0:13 −0:13 0:11 −0:12 0:14 0:55 −0:55 −0:29 0:04 −0:07 −0:46 0:13
−0:12 −0:12 0:12 −0:18 −0:54 −0:38 0:17 −0:44 0:00 −0:40 −0:32 0:12
0:07 0:07 0:68 0:02 −0:22 0:35 0:18 −0:07 −0:51 0:08 0:22 −0:07
−0:16 −0:16 0:28 −0:17 −0:36 −0:33 −0:50 0:42 0:07 0:40 0:03 0:16
−0:08 −0:07 0:45 −0:06 0:36 −0:15 0:25 −0:38 0:52 0:39 0:05 0:08
0:41 0:41 0:01 −0:43 −0:08 0:11 −0:14 −0:05 0:25 −0:20 0:37 −0:41

2
6666666666664

3
7777777777775

ð18Þ

Connector A Turbine 

rotor

Bracket A-

Tiny holes

Bracket A-

Big hole

Bracket A

Connector CConnector B

Connector 

D- Helix

Connector 

D- 4 holes

Connector D

Fig. 6 Case study parts
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Several important observations can be made. First, in
matrix [W] (Eq. 17), the singular values are ranked diago-
nally in descending order. As a result, the initial matrix [X]
can be reconstructed by considering only the rows and col-
umns in bold from matrices [U], [W], and [V]T in Eqs. 16,
17, and 18, respectively. This means that a complete dataset
can be reconstructed with a reduced format of the product of
the matrices [U], [W], and [V]T. For the bolded products in
Eqs. 16, 17, 18, the average summed error generated by this
reconstruction for [X] for the columns (metrics) is 6.66%
and for the rows (evaluated parts) is 0.60%. When the num-
ber of retained singular values from matrix [W] is four, the
average summed error drops to 2.66% for the columns and
0.16% for the rows. This important property is used in this
paper to represent the position of the parts and metrics in a
reduced model. This is explained in Section 3. For the dem-
onstration case herein, two singular values were retained to
obtain a reduced model.

The decomposed matrices in Eqs. 16, 17, and 18 are proc-
essed to form two sub-products between the three matrices

([U], [W], and [V]T). The product matrices, [U].[W] and
[W].[V]T, are shown in Table 8 and Table 9, respectively.
Those two products are fundamental for representing the parts
and metrics in a graphical space.

In Tables 8 and 9, the shaded rows and columns represent
the vectors of the two retained singular values. In Table 8,
each shaded row represents the specific vector of each single
part considered in the model. In Table 9, each shaded column
represents the specific vector of each metric. The parts and
metrics evaluated can also be presented as a 2D graph (Fig. 7)
representing the two main axes of the reduced model. In Fig.
7, the ideal part for LPBF serves as a reference for guiding the
evaluation of part manufacturability/printability using the
technology. From Fig. 7, it can be seen that Connector D with
four (4) holes only is closest to the ideal part and, hence,
would be the easiest to manufacture using LPBF when com-
pared with the other evaluated parts. In addition, consolidation
of parts to form sub-assemblies is investigated by combining
two vectors (Connector B + Connector D). Here, the consol-
idated sub-assembly is evaluated by combining the metric

Table 6 Input matrix [X] with metric values for ideal part/technology and evaluated parts

Metric 1
(πV)

Metric 2
(πVn)

Metric 3
(πtB)

Metric 4
(πRIH)

Metric 5
(πRIH)

Metric 6
(πRV)

Metric 7
(πL)

Metric 8
(πS)

Metric 9
(πDS)

Metric 10
(πVT)

Metric 11
(πST)

Metric 12
(πSO)

Ideal part for PBF 1 1000 1 10,000 0 0 0 2 1 1 0 0

Connector A 0.9 4.5 0.85 100 0.9 0.01 0 0 0 1 0.15 1

Turbine rotor 0.9 2.7 0.6 0 0 0.02 0.7 0.5 0 1.4 0.4 1

Bracket A
(big holes)

0.9 3.6 0.85 900 3.4 0.01 0 2 0 1 0.3 1

Bracket A
(tiny holes)

0.9 3.6 0.85 90 0.8 0.01 1 2 0 1 0.3 1

Connector B 0.9 6.3 0.9 150 0.9 0.01 0.9 2 0.3 1.05 0.25 1

Connector C 0.9 5.4 0.78 300 1.2 0.015 1 2 0.5 1 0.2 1

Connector D
(4 holes)

0.9 5.4 0.81 40 0 0.015 0.7 2 0.6 1 0.1 1

Connector D
(helix)

0.9 5.4 0.8 40 0.22 0.08 0.7 2 0.6 1.2 0.1 1

Table 7 Input matrix [X] with normalized metric values for ideal part/technology and evaluated parts

Metric 1
(πV)

Metric 2
(πVn)

Metric 3
(πtB)

Metric 4
(πRIH)

Metric 5
(πRIH)

Metric 6
(πRV)

Metric 7
(πL)

Metric 8
(πS)

Metric 9
(πDS)

Metric 10
(πVT)

Metric 11
(πST)

Metric 12
(πSO)

Ideal part for PBF 0.943 0.943 0.573 0.939 − 0.272 − 0.284 − 0.453 0.176 0.648 − 0.183 − 0.566 − 0.943
Connector A 0.118 − 0.118 0.077 − 0.128 0.025 − 0.133 − 0.453 − 0.729 − 0.324 − 0.183 − 0.141 0.118

Turbine rotor − 0.118 − 0.120 − 0.749 − 0.139 − 0.272 0.017 0.118 − 0.503 − 0.324 0.831 0.566 0.118

Bracket A (big holes) − 0.118 − 0.119 0.077 − 0.042 0.850 − 0.133 − 0.453 0.176 − 0.324 − 0.183 0.283 0.118

Bracket A (tiny holes) − 0.118 − 0.119 0.077 − 0.130 − 0.008 − 0.133 0.363 0.176 − 0.324 − 0.183 0.283 0.118

Connector B − 0.118 − 0.116 0.242 − 0.123 0.025 − 0.133 0.281 0.176 − 0.032 − 0.056 0.141 0.118

Connector C − 0.118 − 0.117 − 0.154 − 0.107 0.124 − 0.058 0.363 0.176 0.162 − 0.183 0.000 0.118

Connector D (4 holes) − 0.118 − 0.117 − 0.055 − 0.135 − 0.272 − 0.058 0.118 0.176 0.259 − 0.183 − 0.283 0.118

Connector D (helix) − 0.118 − 0.117 − 0.088 − 0.135 − 0.199 0.917 0.118 0.176 0.259 0.324 − 0.283 0.118
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values of the individual components through simple vector
addition. Additionally, consolidation of metrics can also be
performed in a similar fashion.

Next, the Euclidean distances between the ideal part and
the assessed parts are computed, and the parts are ranked on
their manufacturability (Fig. 8). It is important to note that the
ranking is dependent on the number of singular values con-
sidered, as shown in Fig. 8. The results of the case study are
discussed further in Section 5.

5 Results and discussion

The methodology proposed in this article was demonstrated
for ranking a set of parts on their manufacturability using laser
powder bed fusion (LPBF) technology. The ranking was car-
ried out for individual parts and a consolidated sub-assembly
of two components. The computed ranking of the initial parts

and aggregated features and parts were respectively validated
graphically (Fig. 7) and using the Euclidean distance for two
singular values. The blue-, green-, and orange-shaded ranking
scales in Fig. 8 show the ranking when the features of Bracket
A (big hole and small holes) and Connector D (4 holes and
helix) have been evaluated individually. The ranking is up-
dated when the two features of Bracket A and Connector D are
combined. In addition, a consolidated part (Connector B +
Connector D) represented as a sub-assembly is added to the
evaluation. The updated ranking with feature aggregation and
part consolidation is shown in the bottom, gray-shaded rank-
ing scale in Fig. 8.

The Euclidean distance-based approach provided a ranking
consistent with the visual evaluation presented in Fig. 7,
where Connector D appears closer to the ideal part for
LPBF. Cosine similarity-based ranking was also evaluated
and presented for comparison. The ranking was updated by
considering the combined/aggregated features, which

Table 8 Product [U].[W] with the two singular values of the reduced model in shaded columns

Ideal part for 
PBF

-2.22 -0.13 -0.28 -0.11 -0.08 0.01 -0.01 0.00 0.00

Connector A 0.18 0.39 -0.54 0.52 0.47 0.06 -0.04 0.02 0.00

Turbine 

rotor
0.91 -0.60 -0.88 -0.30 -0.16 -0.06 0.02 0.00 0.00

Bracket A 
(big hole)

0.24 0.94 -0.04 0.18 -0.52 -0.09 0.04 -0.02 0.00

Bracket A 
(small holes)

0.36 0.23 0.23 -0.38 0.10 0.24 -0.05 -0.12 0.00

Connector B 0.17 0.15 0.30 -0.25 0.08 0.16 0.09 0.14 0.00

Connector C 0.20 0.02 0.39 -0.20 0.06 -0.23 -0.16 0.05 0.00

Connector D 
(4 holes)

-0.03 -0.18 0.38 0.02 0.33 -0.23 0.13 -0.07 0.00

Connector D 
(helix)

0.19 -0.80 0.43 0.53 -0.28 0.12 -0.02 -0.01 0.00

Table 9 Product [W].[V]T with the two singular values of the reduced model in shaded rows

Metric 
1

(πV)

Metric 
2

(πVn)

Metric 
3

(πtB)

Metric 
4

(πRIH)

Metric 
5

(πRIH)

Metric 
6

(πRV)

Metric 
7

(πL)

Metric 
8

(πS)

Metric 
9

(πDS)

Metric 
10

(πVT)

Metric 
11

(πST)

Metric 
12

(πSO)

-0.96 -0.96 -0.77 -0.95 0.23 0.28 0.48 -0.32 -0.78 0.42 0.77 0.96

-0.09 -0.09 0.41 -0.03 0.83 -0.63 -0.41 0.04 -0.44 -0.68 0.21 0.09

-0.22 -0.22 0.32 -0.22 0.10 0.32 0.52 0.82 0.36 -0.47 -0.30 0.22

-0.13 -0.13 0.11 -0.12 0.14 0.53 -0.53 -0.28 0.04 -0.07 -0.44 0.13

-0.10 -0.10 0.11 -0.15 -0.46 -0.32 0.15 -0.37 0.00 -0.34 -0.27 0.10

0.03 0.03 0.32 0.01 -0.10 0.16 0.08 -0.03 -0.24 0.04 0.10 -0.03

-0.04 -0.04 0.07 -0.04 -0.09 -0.08 -0.12 0.10 0.02 0.10 0.01 0.04

-0.02 -0.01 0.09 -0.01 0.07 -0.03 0.05 -0.08 0.11 0.08 0.01 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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demonstrate how vector representation of the features enables
the user to both isolate different features in a part and to com-
pose different features of a part together based on necessity.
The combination of features also implies that the individual
parts can be combined into sub-assemblies. For example, the
sub-assembly (Connector B + Connector D) used in this case
study followed the same principle and illustrates the potential
to consolidate different parts together to improve the manu-
facturability for a specific manufacturing process technology.
It can be seen that Bracket A (big hole) had an initial ranking
(green-shaded scale) of seven and Bracket A (small hole) was
ranked sixth (Fig. 8). By virtue of the proposed approach, it
was possible to evaluate the effect of combining the two fea-
tures together (Bracket A) and to compute the resulting rank-
ing of the aggregate features (see Figs. 7 and 8).

As noted above, an important factor in the manufacturabil-
ity ranking is the number of singular values selected. The
global ranking changed for Connectors A, B, C, and D when
three singular values were chosen instead of two (Fig. 8).
Thus, any model reduction efforts must consider two factors:

the average error generated by the reconstruction of a reduced
model and the variation in the ranking based on the number of
singular values considered.

Another interesting observation is that somemetrics appear
in clusters when represented in a 2D graph (Fig. 9). For ex-
ample, Metric 1 (individual part production rate), Metric 2
(batch production rate), and Metric 4 (the need for internal
support structures) form a cluster. It is interesting to note that
Metric 1 and 2 relate to production time but not initiallyMetric
4. In addition, Metric 6 (minimum feasible vertical hole size),
Metric 7 (difficulty of depowdering), and Metric 10 (internal
lattice structures) each indicate part complexity and form a
cluster. Metrics 11 and 12, design rules relating to ease of
clamping and presence of overhanging features, respectively,
appear to be somewhat correlated.

Currently, no specific clustering method has been used
here, but methods such as k-means could be employed in
future studies to further examine clustering and drivers of
correlation that can better inform designers and process plan-
ners. Metrics clustered together imply the concept of

Fig. 7 2D graphical
representation of evaluated parts
based on computed distances
using Euclidean distance
measurement (green, red, and
blue dots result from aggregation
of features and/or parts)
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similarity. Hence, metrics initially developed to characterize a
specific feature(s) can assist in evaluating other features. For
example, Metric 4, initially designed to assess internal support
structures that would require additional post-processing, is
closely related to Metrics 1 and 2, which are used to evaluate
the production rate. Metric 4 combines part andmachine prop-
erties, while Metric 1 is specifically composed of machine
properties. Metric 2 includes the projected surface of parts
and combines part and machine properties. The part and
machine-related properties considered in the development of
the metrics affect the level of closeness of different metrics
despite their differences in objectives. Nevertheless, the 2D
visualizations in Figs. 7 and 9 represent the design space that
enables the combination of metrics and parts to explore and
exploit the design space. Using Fig. 9, it can be envisioned
that new metrics can be automatically generated to evaluate
parts in the design and manufacturing space. This approach to
automated metric generation opens opportunities for future

research, including the potential creation of new ML ap-
proaches for product design and production planning.

6 Conclusions

This research presents a novel and systematic framework
based on functional modeling and dimensional analysis
theory for the development of parsimonious metrics as
descriptors of functions. In addition, the developed met-
rics are utilized in a mathematical mechanism for evaluat-
ing part manufacturability using singular value decompo-
sition. The metrics, developed as part of this study based
on key performance indicators and independent variables,
allow for evaluation of design features, production types,
and product cost. The developed metrics are scale and
composition invariant by virtue of the power law form
(i.e., Pi number), which enable the computation of the

Fig. 8 Ranking of alternatives using cosine similarity and Euclidean distance for different number of singular values
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Euclidean distance to facilitate the ranking of various part
designs based on their ease of manufacturability for dif-
ferent production technologies and part dimensions. The
proposed approach improves upon the existing limitations
of DAT with the help of the DACM framework to pro-
mote a systematic approach for the selection of perfor-
mance and repeating variables during the development of
dimensionless metrics. The combination of functional
modeling, DAT, and SVD for the purpose of part manu-
facturability evaluation has not been considered in the
existing literature. The methodology reported herein pro-
vides a novel approach to automate product design evalu-
ations and provide feedback to designers during process
selection. Readers should keep in mind that automation of
the evaluation process is fundamental in this work, which
is a key novelty compared with manual (heuristic) guide-
lines proposed in DfAM methods.

The proposed method evaluates part designs for their
“fit” for a variety of potential manufacturing process tech-
nologies through the evaluation of their manufacturability
with respect to a reference (ideal) part for each process type.
The ideal part is developed based on a set of metrics that
define the unique attributes of the process. The method
developed here and demonstrated for additive manufactur-
ing has the potential to be extended to also consider con-
solidation of features and parts via the basic mechanisms
presented for metric aggregation, i.e., SVD decomposition
and the representation of features via vectors of metrics.

Part aggregation also requires consideration of multiple
other aspects, such as sub-assembly structure, mechanical
interface, and the feasibility of assembling the parts in an
aggregated sub-assembly. These considerations are not pre-
sented herein and form the basis for future work to extend
the application of the basic principles and computational
approach presented in this article. The principles presented
are highly flexible and facilitate feature/part composability
and metric ranking. These aspects of the approach have
been demonstrated here, together with a concrete imple-
mentation of the concept of ideality from TRIZ, which
was used in this research for representing the fit of a part
for a given manufacturing process technology.

The developed method enables isolated evaluation of individ-
ual features comprised in a part but also allows for combining
features or parts for aggregate evaluation of complex parts and
sub-assemblies. Thus, the method promotes design for
manufacturing and assembly through its ability to separate or
combine features and parts and perform evaluation of both indi-
vidual and aggregated features/parts. In addition, the graphical
representation of the design space can enable design space ex-
ploration to find new combinations of parts and/or newmetrics to
aid design andmanufacturing analysis. An element not studied in
this work is the use of the approach as a prediction tool, wherein
SVD allows for the computation of metric values for new parts
when information about certain metrics are already known. This
last element will drive future research efforts for assisting engi-
neers by providing them with emergent design and process

Fig. 9 2D graphical
representation of metrics based on
computed distances using
Euclidean distance measurement
(clusters represented as dotted
ovals)
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knowledge during product design and process planning, for ex-
ample, through the use of ML techniques.
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