
ORIGINAL ARTICLE

Chatter stability analysis for milling with single-delay andmulti-delay
using combined high-order full-discretization method

Zhenghu Yan1
& Changfu Zhang1

& Xingguang Jiang1
& Baoji Ma1

Received: 13 October 2019 /Accepted: 23 September 2020
# Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Regenerative chatter limits the surface finish and machining efficiency of the products. The demand for milling stability
prediction and chatter suppression has been increasing. This paper presents a combined high-order full-discretization method
(CHFDM) to analyze the milling stability of the system with single-delay and then extends it to calculate the stability lobe
diagram (SLD) of milling with multi-delay. Firstly, the dynamic model of the milling with single-delay is represented by delay
differential equation (DDE). Both the free vibration process and the forced vibration process are considered in the calculating
process. The state transition matrix of the milling system is obtained by directly constructing the mapping relationship between
the dynamic responses for current and previous periods. The comparisons between the CHFDM and the benchmark methods are
carried out from the aspect of the rate of convergence and computational time. It is indicated that the CHFDM is applicable for
obtaining the stability boundary of milling with both large and small radial immersion ratios accurately. Meanwhile, the
computational efficiency of the CHFDM is verified to be good through comparison. Then, the CHFDM is extended to obtain
the SLD of milling with multi-delay. The effectiveness of the extended CHFDM is validated by comparing it with two existing
methods. The comparison results indicate that the CHFDM can be extended to obtain the SLD of milling with multi-delay
reliably and efficiently.
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1 Introduction

Milling operation is usually adopted in the machining process
for many precision products. Regenerative chatter is a com-
mon phenomenon during milling operations. It is pointed out
that the surface finish and machining efficiency of the prod-
ucts are still limited by chatter [1]. Moreover, chatter may
accelerate tool wear and even shorten the lifetime of the ma-
chine tool. Therefore, the demand for stability prediction and
chatter suppression has been increasing. Chatter-free parame-
ters determined by using the SLD should be adopted to opti-
mize the milling process.

The milling dynamics considering the regenerative mech-
anism can be mathematically modeled by time-periodic DDEs

[2]. The stability lobe diagram (SLD), which illustrates the
boundary of milling stability, can be obtained through the
numerical solution of the DDE. According to the SLD, the
parameter combinations in the stable region can be adopted
for achieving high-efficiency and high-quality milling pro-
cesses. Therefore, many efforts have been devoted to study
chatter stability prediction methods. Altintas et al. [3] pro-
posed a well-known zeroth-order approximation (ZOA)meth-
od. This method is commonly applicated to study milling
stability. However, the effectiveness of the ZOA method is
limited when the radial immersion ratio is small. Merdol
et al. [4] proposed a multifrequency method to improve the
limitation of the ZOA method. Bayly et al. [5] reported a
temporal finite element analysis method; however, the reli-
ability of this method is sensitive to the degree of freedom
of the system. Then, the Chebyshev collocation method
(CCM) [6], the zeroth-order semi-discretization method
(SDM) [7], and the first-order SDM (1st SDM) [8] are devel-
oped. The CCM, SDM, and 1st SDM are applicable for the
milling system with both one degree of freedom (1-DOF) and
two degrees of freedom (2-DOF). Based on the idea of
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complete discretization, Li et al. [9] proposed a complete
discretization scheme (CDS), and Xie et al. [10] improved
the CDS to obtain the stability charts in milling. Combining
the classical Runge-Kutta method and the CDS, Li et al. pre-
sented a Runge-Kutta-based complete discretization method
[11]. To reduce computational time, Ding et al. presented the
full-discretization method (FDM) [12] and second-order FDM
(2nd FDM) [13]. Then, many other algorithms, such as the
Hermite interpolation-based [14], the third-order FDM [15],
the least squares approximation-based methods [16, 17], the
orthogonal polynomials approximation-based methods [18],
the second- and third-order updated FDM (2nd UFDM [19]
and 3rd UFDM [20]), the second-order SDM [21], the im-
proved precise integration method [22], the improved full-
discretization method [23], the holistic-interpolation scheme-
based method (HIM) [24], the precise integration-based third-
order full-discretization method [25], and so on, have been
reported inspired by the FDM and 2nd FDM. Some methods
based on numerical integration scheme, such as the numerical
integration method (NIM) [26], the updated NIM (UNIM)
[27], the Simpson-based method [28], the Adams-Moulton-
based method [29], the Runge-Kutta-based methods [30], and
so on, are also proposed for milling stability analysis. Besides,
the differential quadrature method [31], the wavelet-based
method [32], and the numerical differentiation method [33]
are also presented for obtaining the SLD in the milling pro-
cess. Additionally, Balachandran [34], Zhao and
Balachandran [35], and Long et al. [36, 37] considered the
non-linear issues when calculating the SLD.

The above studies are focused on the milling stability anal-
ysis for the system with single-delay. That is, the uniform
pitch cutters are employed in the milling process. As we
know, variable pitch cutter (non-uniform pitch cutter) can be
used to stabilize the milling process by disturbing the regen-
eration mechanism. Thus, the chatter vibration can be sup-
pressed by using the variable pitch cutter during the milling
process. The DDE with multi-delay can be used to describe
the dynamics of milling with variable pitch cutter. Many ef-
forts have been made to develop effective methods.
Choudhury et al. [38] discussed the effect of the milling cutter
with a non-uniform pitch on machine tool vibration. In this
study, the phenomenon that the vibration is reduced by using
the non-uniform cutter was observed. Altintas et al. [39] stud-
ied the stability in milling with variable pitch cutter analyti-
cally. In this work, the optimization process of the pitch angle
was also demonstrated. Based on the analytical stability anal-
ysis model, Budak [40, 41] presented a method for designing
the tools with variable pitch. In this work, the effectiveness of
chatter suppression by using the non-uniform pitch cutters
was illustrated. Song et al. [42] discussed how to design the
structural geometry of variable pitch end mills with the con-
sideration of chatter stability. Olgac and Sipahi [43] adopted
the cluster treatment of characteristic roots to determine the

SLD of the milling process using variable pitch cutter analyt-
ically. Sims et al. [44] proposed three alternative model for-
mulations to detect the chatter in milling with different non-
uniform tools under different immersion conditions. Huang
et al. [45] studied chatter suppression in milling with variable
pith tools by using robust active control. Many other methods,
such as the unified method [46], the improved FDM [47], the
Ackermann’s approach-based methods [48], the enhanced
multistage homotopy perturbation method [49], the general
spectral element approach [50], the extended SDM [51, 52],
the extended differential quadrature method [53], the im-
proved semi-discretization method [54], the extended 3rd
FDM [55], the Laplace transform-based method [56], the ex-
tendedAdams-Moulton-basedmethod [57], the extended gen-
eralized Runge-Kutta method [58], the multifrequency
solution-based method [59], and so on, have also been pro-
posed to detect chatter milling with multi-delay.

As mentioned above, the 2nd UFDM and 3rd UFDM have
a good performance on accuracy and efficiency. In these two
methods, the state term and time-delay term are approximated
by the same order interpolation polynomials, and the free vi-
bration process is not considered in the derivation process. In
this work, combined high-order interpolation polynomials,
that is, interpolation polynomials with different orders, are
respectively used to approximate the state term and time-
delay term to improve the accuracy of the prediction method.
As suggested in Ref. [60], the third-order and second-order
interpolation polynomials are used to approximate the state
term and time-delay term, respectively. Meanwhile, the free
vibration process is taken into consideration in the derivation
process. Then, the proposedmethod is extended to analyze the
stability of milling with multi-delay.

This paper is organized as follows: Section 2 describes the
dynamic model of the milling process with single-delay.
Section 3 presents the derivation process of the CHFDM and
validates the accuracy and efficiency of the presented method.
Section 4 extends the CHFDM to obtain the SLD of the mill-
ing process with multi-delay. Section 5 summarizes the
conclusions.

2 Dynamic model of milling process

In this section, the 1-DOF milling system with single-delay is
employed to study the CHFDM. By taking the regeneration
mechanism into consideration, the dynamic model of the mill-
ing process is given as follows:

::
x tð Þ þ 2ζωnẋ tð Þ þ ω2

nx tð Þ ¼ −
aph tð Þ
m

x tð Þ−x t−τð Þð Þ ð1Þ

where ζ, ωn, and m represent the damping ratio, angular natu-
ral frequency, and modal mass, respectively, ap represents the
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axial depth of cut, τ represents the time delay, and the specific
cutting force coefficient h(t) is defined as

h tð Þ ¼ ∑
N

j¼1
g φ j tð Þ
h i

sin φ j tð Þ
� �

Ktccos φ j tð Þ
� �

þ Krcsin φ j tð Þ
� �h i

ð2Þ

where Ktc and Krc are the tangential and the normal cutting
force coefficients and N is the number of cutter teeth. The
function g[φj(t)] is a step function which is used to judge
whether the tooth is removing material. The angular position
of the jth tooth φj(t) is expressed as

φ j tð Þ ¼ 2πΩ=60ð Þt þ j−1ð Þ2π=N ð3Þ

where Ω is the spindle speed in rpm.

By introducing the vector x tð Þ ¼ x tð Þ
ẋ tð Þ
� �

, the following

equation is obtained after the state space transformation of
the Eq. (1) is carried out:

˙x
:
tð Þ ¼ Ax tð Þ þ A tð Þx tð Þ þ B tð Þx t − τð Þ ð4Þ

where A ¼ 0 1
−ω2

n −2ζωn

� �
, A tð Þ ¼

0 0

−
aph tð Þ
m

0

" #
, and

B tð Þ ¼
0 0

aph tð Þ
m

0

" #
.

Since the Eq. (4) cannot be solved analytically, the numer-
ical method can be used to solve it. The relevant time period is
equally discretized into n intervals. Then, Eq. (4) is solved on
the interval [ti, ti + 1], resulting in

x tð Þ ¼ eA t−tið Þx tið Þ þ ∫tti e
A t−sð Þ A sð Þx sð Þ−A sð Þx s−τð Þ½ �ds ð5Þ

Equation (5) can be equivalently written as

x tiþ1ð Þ ¼ eAhx tið Þ

þ ∫tiþ1

ti eA tiþ1−sð Þ A sð Þx sð Þ−A sð Þx s−τð Þ½ �½ �ds ð6Þ

3 Milling stability analysis using the CHFDM

3.1 The proposed method

Generally, the state transition matrix of the milling system can be
obtained by using the product that coupled a sequence of the
discrete map or directly constructing the mapping relationship
between the dynamic responses for current and previous periods.
In this section, the state transition matrix is obtained directly. It is
demonstrated in Ref. [26] that the milling system experiences
free vibration when the cutter tooth leaves the part. Therefore,
both the free vibration and forced vibration processes are consid-
ered in the CHFDM.

When the tool is not in cut, the milling system experiences
free vibration process, and the matrixes A(t) and B(t) become
to zero matrixes. Then, the solution of Eq. (5) can be given by

x tð Þ ¼ eA t−t0ð Þx t0ð Þ ð7Þ

where t0 is the intimal time instant.
In the CHFDM, the forced vibration duration Tfo is divided

into n equal small-time intervals; that is, Tfo = nh, h is the step
length. Then, the time nodes are represented as follows:

ti ¼ t0 þ Tfr þ i−1ð Þh; i ¼ 1; 2;⋯; nþ 1 ð8Þ

where Tfr is the free vibration duration. The time nodes t1 and
tn − n + 1 have the following relation

x t1ð Þ ¼ eATfrx tn−nþ1ð Þ ð9Þ

To construct state transition matrix, the state term and time-
delay term are interpolated by combined high-order polyno-
mials. The nodal values x(ti − 2), x(ti − 1), x(ti), and x(ti + 1) de-
noted as xi − 2, xi − 1, xi, and xi + 1 are used to interpolate the
state term, resulting in

x sð Þ ¼ h2s−s3

6h3
xi−2 þ s3 þ hs2−2h2s

2h3
xi−1

þ 2h3 þ h2s−2hs2−s3

2h3
xi

þ s3 þ 3hs2 þ 2h2s

6h3
xiþ1 ð10Þ

The time-delay term x(s-τ) and the matrixA(s) are interpo-
lated by the following polynomials:

x s−Tð Þ ¼ 2h2−3hsþ s2

2h2
xi−n þ 2hs−s2

h2
xi−nþ1

þ s2−hs
2h2

xi−nþ2 ð11Þ

A sð Þ ¼ 1−
s
h

� �
Ai þ s

h
Aiþ1 ð12Þ

Equations (10), (11), and (12) are substituted into Eq. (6),
we can get

H15Aiþ1 þH16Aið Þxiþ2−nþ
H13Aiþ1 þH14Aið Þxiþ1−nþ
H11Aiþ1 þH12Aið Þxi−n

2
4

3
5

¼ G17Aiþ1 þG18Ai−Ið Þxiþ1 þ G15Aiþ1 þG16Ai þ F0ð Þxiþ
G13Aiþ1 þG14Aið Þxi−1 þ G11Aiþ1 þG12Aið Þxi−2

� �
ð13Þ
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where,

G11 ¼ −F5

6h4
þ F3

6h2
; G12 ¼ F5

6h4
−
F4

6h3
−
F3

6h2
þ F2

6h

G13 ¼ F5

2h4
þ F4

2h3
−
F3

h2
; G14 ¼ −F5

2h4
þ 3F3

2h2
−
F2

h

G15 ¼ −F5

2h4
−
F4

h3
þ F3

2h2
þ F2

h
; G16 ¼ F5

2h4
þ F4

2h3
−
3F3

2h2
−
F2

2h
þ F1

G17 ¼ F5

6h4
þ F4

2h3
þ F3

3h2
; G18 ¼ −F5

6h4
−
F4

3h3
þ F3

6h2
þ F2

3h

ð14Þ

H11 ¼ F2

h
−
3F3

2h2
þ F4

2h3
; H12 ¼ F1−

5F2

2h
þ 2F3

h2
−
F4

2h3

H13 ¼ 2F3

h2
−
F4

h3
; H14 ¼ 2F2

h
−
3F3

h2
þ F4

h3

H15 ¼ −
F3

2h2
þ F4

2h3
; H16 ¼ −

F2

2h
þ F3

h2
−
F4

2h3

ð15Þ

where the identity matrix is denoted by I, the matrix F0 equals
to eAh, and the “F” matrixes can be written as

F1 ¼ F0−Ið ÞA−1

F2 ¼ F1−h∙Ið ÞA−1

F3 ¼ 2F2−h2∙I
� �

A−1

F4 ¼ 3F3−h3∙I
� �

A−1

F5 ¼ 4F4−h4∙I
� �

A−1

ð16Þ

Combining Eqs. (9) and (13), the mapping relation of the
dynamic displacements between two adjacent periods can be
obtained as follows:

Φ1

x1
x2
⋮
⋮
xn
xnþ1

2
6666664

3
7777775
¼ Φ2

x1−n
x2−n
⋮
⋮
xn−n
xn−nþ1

2
6666664

3
7777775

ð17Þ

where,

Φ1 ¼

I 0 0 0 ⋯ 0 0 0 0 0 0
M1;0 þ F0 M2;1−I 0 0 ⋯ 0 0 0 0 0 0
M2;−1 M2;0 þ F0 M2;1−I 0 ⋯ 0 0 0 0 0 0
M3;−2 M3;−1 M3;0 þ F0 M3;1−I ⋯ 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 0 0 0 0 0
0 0 0 0 ⋯ 0 Mn−1;−2 Mn−1;−1 Mn−1;0 þ F0 Mn−1;1−I 0
0 −Mn;n−2 0 0 ⋯ 0 0 Mn;−2 Mn;−1 Mn;0 þ F0 Mn;1−I

2
66666666664

3
77777777775

ð18Þ

Φ2 ¼

0 0 0 0 0 0 ⋯ 0 0 0 eATtf

M1;n M1;n−1 M1;n−2 0 0 0 ⋯ 0 −M1;−2 −M1;−1 0
0 M2;n M2;n−1 M2;n−2 0 ⋯ 0 0 −M2;−2 0
0 0 M3;n M3;n−1 M3;n−2 0 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ Mn−2;n Mn−2;n−1 Mn−2;n−2
0 0 0 0 0 0 ⋯ 0 Mn−1;n Mn−1;n−1 Mn−1;n−2
0 0 0 0 0 0 ⋯ 0 0 Mn;n Mn;n−1

2
66666666664

3
77777777775

ð19Þ
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where,

Mi;−2 ¼ G11Aiþ1 þG12Ai; Mi;−1 ¼ G13Aiþ1 þG14Ai

Mi;0 ¼ G15Aiþ1 þG16Ai; Mi;1 ¼ G17Aiþ1 þG18Ai

Mi;n ¼ H11Aiþ1 þH12Ai; Mi;n−1 ¼ H13Aiþ1 þH14Ai

Mi;n−2 ¼ H15Aiþ1 þH16Ai

ð20Þ

The state transition matrix ψ can be calculated through the
matrixes Φ1 and Φ2 as follows:

ψ ¼ Φ1ð Þ−1Φ2 ð21Þ
Then, the SLD can be obtained by using the modules of the

matrix ψ based on Floquet theory.

3.2 Rate of convergence

The rate of convergence reflects the local discretization errors
between the approximated modules |μ(n)| and the ideal value
|μ0|. Usually, the local discretization errors vary with the param-
eter n. In this study, the ideal value |μ0| is calculated by using
the 1st SDM with n = 600. To estimate the rate of convergence

of the CHFDM, the 2nd UFDM, the newly proposed UNIM
and HIM are taken as the benchmark methods. The radial im-
mersion ratio is ae/D = 1, and the parameter combinations of
spindle speed Ω and axial depth of cut ap are as follows: Ω =
5000 rpm, and ap = 0.2, 0.5, 0.7, and 1.0 mm. The other main
parameters are identical to those adopted in the literature [13].
The comparison of the rates of convergence for the CHFDM,
2nd UFDM, UNIM, and HIM is described in Fig. 1.

As shown in Fig. 1, the 2nd UFDM and UNIM converge
faster than the HIM and CHFDM when the variable ap is cho-
sen as 0.2 mm. However, when the variable ap is equal to
0.5 mm, the CHFDM converges faster than the other methods.
In general, the errors between |μ(n)| and |μ0| computed by the
CHFDM are less than those computed by the other methods. It
is also indicated from Fig. 1 that the rates of convergence of the
2nd UFDM, HIM, CHFDM, and UNIM are sensitive to the
machining parameter combinations. Therefore, it is inadequate
to estimate the accuracy of the prediction methods by using
limited machining parameter combinations. In the following
section, the SLDs generated by the 2nd UFDM, HIM,
CHFDM, and UNIM are used to evaluate the accuracy further.
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Fig. 1 Rates of convergence of the 2nd UFDM, HIM, CHFDM, and UNIM. a ap = 0.2 mm, |μ0| = 0.819687; b ap = 0.5 mm, |μ0| = 1.073823; c ap =
0.7 mm, |μ0| = 1.221348; d ap = 1.0 mm, |μ0| = 1.406194
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Table 1 Stability charts obtained by the 2nd UFDM, HIM, CHFDM, and UNIM with ae/D = 1

2nd UFDM, 17.1 S 2nd UFDM, 29.2 S

HIM, 15.5 S HIM, 25.9 S

CHFDM, 18.9 S CHFDM, 30.3 S

UNIM, 60.8 S UNIM, 89.2 S

Reference
HIM

Spindle speed (rpm)

Reference
HIM

Reference
CHFDM

Reference
CHFDM

Reference
UNIM

Reference
UNIM

ae/D = 1, n = 30 ae/D = 1, n = 40

Spindle speed (rpm)

Reference
2nd UFDM

Reference
2nd UFDM
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3.3 Stability lobe diagrams

In this section, the SLDs generated by the 2nd UFDM, HIM,
CHFDM, and UNIM are presented. Meanwhile, the compu-
tational time of these methods is also studied. In the process of
generating SLDs, the radial immersion ration is ae/D = 1, the
value of the parameter Ω is between 5000 and 10,000 rpm
with the step length of 25 rpm, and the value of the parameter

ap is between 0 to 10 mm with the step length of 0.1 mm. The
SLD obtained by the 1st SDM with n = 200 is taken as the
reference. The SLDs calculated by the 2nd UFDM, HIM,
CHFDM, and UNIM with n = 30 and 40 are presented in
Table 1. Meanwhile, the computational time is also listed in
Table 1.

From Table 1, it can be found that the HIM consumes lest
time to generate the SLDs. The CHFDM takes a little more

Table 2 The SLDs obtained by the 2nd UFDM, HIM, CHFDM, and UNIM with ae/D = 0.05

ae/D = 0.05, n = 20 ae/D = 0.05, n = 30

2nd UFDM, 11.7 S 2nd UFDM, 24.1 S

HIM, 9.5 S HIM, 20.31 S

CHFDM, 12.0 S CHFDM, 25.3 S

UNIM, 39.1 S UNIM, 64.2 S
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time than the HIM but less time than the UNIM to generate
SLDs. For the sake of fairness, all the methods are pro-
grammed under the same framework. In addition, Table 1
shows that the SLDs obtained by the CHFDMare much closer
to the reference than those calculated by the other methods.
Therefore, it is indicated that the CHFDM is more accurate
than the other methods. Although there is an increment be-
tween the CHFDM and HIM in terms of computational time,
the increment is very small. Consequently, CHFDM is avail-
able for obtaining the SLD of the milling process accurately
and efficiently.

To further study the reliability of different methods, a small
radial immersion ratio (ae/D = 0.05) is also used to generate
SLDs. In the calculation process, the time period is divided into
20 and 30 parts. The SLDs obtained by the 2nd UFDM, HIM,
CHFDM, and UNIM with ae/D = 0.05 are shown in Table 2.

From Table 2, it shows that the SLDs generated by the
HIM, CHFDM, and UNIM are closer to the reference than
those generated by the 2nd UFDM. Since only the forced
vibration part, rather than the whole tooth-passing period, is
discretized in the HIM, CHFDM, and UNIM, the SLDs ob-
tained by these three methods are more accurate than those
calculated by the 2nd UFDM using the same value of param-
eters n. It is also found that the HIM, CHFDM, and 2nd
UFDM consume much less time than the UNIM to obtain
stability charts. The reliability of the proposed CHFDM is
proved to be good.

4 Stability of milling with multi-delay using
the CHFDM

In the milling process with multi-delay, the time period T
equals to the spindle rotation period, that is, T = 60/Ω. It is
not easy to directly construct the discrete mapping relation
like that described in Eq. (17). Therefore, the state transition
matrix is constructed by using the product that coupled a se-
quence of the discrete map in this section.

4.1 Mathematical model of milling with multi-delay

The mathematical model of the milling with multi-delay can
be expressed by the multi-delay differential equation as

M
::
q tð Þ þ Cq̇ tð Þ þKq tð Þ ¼ ∑

N

j¼1
H j tð Þ q tð Þ−q t−τ j

� �� 	 ð22Þ

where M, C, and K represent the modal mass, damping, and
stiffness matrixes, respectively, and the vector q(t) represents
the modal displacement matrix. These parameters are given as
follows:

M ¼ mx 0
0 my

� �
;C ¼ 2mxζxωnx 0

0 2myζyωny

� �

K ¼ mxω
2
nx 0

0 myω
2
ny

� �
; q tð Þ ¼ x tð Þ

y tð Þ
� � ð23Þ

where mx, ζx, and ωnx are the modal parameters in the X direc-
tion, respectively, and my, ζy, and ωny are the modal parame-
ters in the Y direction, respectively. The periodic coefficient
matrix Hj(t) is defined as

H j tð Þ ¼ −hj;xx tð Þ −hj;xy tð Þ
−hj;yx tð Þ −hj;yy tð Þ
� �

ð24Þ

where,

hj;xx tð Þ ¼ ∫ap0 g φ j t; zð Þ
� �

sin φ j t; zð Þ
� �

Ktccos φ j t; zð Þ
� �

þ Krcsin φ j t; zð Þ
� �h i

dz

hj;xy tð Þ ¼ ∫ap0 g φ j t; zð Þ
� �

cos φ j t; zð Þ
� �

Ktccos φ j t; zð Þ
� �

þ Krcsin φ j t; zð Þ
� �h i

dz

hj;yx tð Þ ¼ ∫ap0 g φ j t; zð Þ
� �

sin φ j t; zð Þ
� �

−Ktcsin φ j t; zð Þ
� �

þ Krccos φ j t; zð Þ
� �h i

dz

hj;xx tð Þ ¼ ∫ap0 g φ j t; zð Þ
� �

cos φ j t; zð Þ
� �

−Ktcsin φ j t; zð Þ
� �

þ Krccos φ j t; zð Þ
� �h i

dz

ð25Þ
where Ktc and Krc are also the cutting force coefficients, the
angular position φj(t, z) varies with the cutter tooth z denotes
the axial height, and the axial height, and it can be given by

φ j t; zð Þ ¼
2πΩ
60

t−
ztanβ
R

; if j ¼ 1

2πΩ
60

t þ ∑
N

j¼2
ψ j−

ztanβ
R

; if 1 < j < N

8>><
>>: ð26Þ

where R and β denote the radius and helix angle of the milling
tool respectively, ψj denotes the pitch angle between the jth
tooth and the (j-1)th tooth, z denotes the axial height, and Ω
has been defined in Eq. (3).

Let x tð Þ ¼ q tð Þ q̇ tð Þ
h iT

, the following re-expression of

Eq. (22) can be obtained

ẋ tð Þ ¼ Ax tð Þ þ A tð Þx tð Þ− ∑
N

j¼1
B tð Þx t−τ j

� � ð27Þ

where,

A ¼
0 0 1 0
0 0 0 1

−ω2
nx 0 −2ζxωnx 0
0 −ω2

ny 0 −2ζyωny

2
664

3
775;A tð Þ

¼

0 0 0 0
0 0 0 0

−
1

mx
∑
N

j¼1
hj;xx −

1

mx
∑
N

j¼1
hj;xy 0 0

−
1

my
∑
N

j¼1
hj;yx −

1

my
∑
N

j¼1
hj;yy 0 0

2
6666664

3
7777775
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B tð Þ ¼

0 0 0 0
0 0 0 0

−
1

mx
hj;xx −

1

mx
hj;xy 0 0

−
1

my
hj;yx −

1

my
hj;yy 0 0

2
666664

3
777775:

Just like the Ref. [54], the spindle rotation period T is
discretized into n small intervals. Equation (27) is solved on
the interval [ti, ti + 1], resulting in

x tð Þ ¼ eA t−tið Þx tið Þ

þ ∫tti e
A t−sð Þ A sð Þx sð Þ−B sð Þx s−τ j

� �� 	
ds ð28Þ

Equation (28) can be equivalently written as

x tiþ1ð Þ ¼ eAhx tið Þ

þ ∫tiþ1

ti eA tiþ1−sð Þ A sð Þx sð Þ−B sð Þx s−τ j
� �� 	

ds ð29Þ

Then, the CHFDM is extended to solve Eq. (29), so that the
stability in milling with multi-delay can be analyzed.

4.2 Extend the CHFDM for stability analysis in milling
with multi-delay

In this part, the CHFDM is extended to obtain the SLD of the
milling system with multi-delay. The state term x(s) and time-

delay term x(s − τj) are interpolated by third-order and second-
order interpolation polynomials, respectively. In the calcula-
tion process, the state term still can be approximated by using
Eq. (10). In the interpolation process for the time-delay term,
the weight of the nodal value ωj is considered. Then, the time-
delay term can be expressed as [54]

x s−τ j
� � ¼ ω jh−hþ s

� �
ω jh−2hþ s
� �
2h2

xi−n j−
ω jhþ s
� �

ω jh−2hþ s
� �
h2

xi−n jþ1þ
ω jhþ s
� �

ω jh−hþ s
� �
h2

xi−n jþ2

ð30Þ
where the weight ωj can be determined as

ω j ¼ njh−τ j

h
ð31Þ

where nj is an integer that is determined by time delay τj and
given as

nj ¼ fix
τ j þ 0:5h

h


 �
ð32Þ

The periodic coefficient matrix A(s) and B(s) are interpo-
lated as

A sð Þ ¼ 1−
t
h

� �
Ai þ t

h
Aiþ1

B sð Þ ¼ 1−
t
h

� �
Bi þ t

h
Biþ1

ð33Þ

Submitting Eqs. (10), (30), and (33) into Eq. (30) yields

Table 3 The SLDs obtained by the extended SDM [51], the method in Ref. [54], and the extended CHFDM under different immersion conditions
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xiþ1 ¼ Pi

G15Aiþ1 þG16Ai þ F0ð Þxi þ G13Aiþ1 þG14Aið Þxi−1 þ G11Aiþ1 þG12Aið Þxi−2
þ ∑

N

j¼1
W15Biþ1 þW16Bið Þxiþ2−n j þ ∑

N

j¼1
W13Biþ1 þW14Bið Þxiþ1−n j þ ∑

N

j¼1
W11Biþ1 þW12Bið Þxi−n j

2
4

3
5 ð34Þ

where,
Pi ¼ I−G17Aiþ1−G18Aið Þ ð35Þ

W11 ¼ −
1

h
þ 3ω j

2h
−
ω2

j

2h

 !
F2 þ 3

2h2
−
ω j

h2


 �
F3−

1

2h3
F4

W12 ¼ −1þ 3

2
ω j−

1

2
ω2

j


 �
F1 þ 5

2h
−
5ω j

2h
þ ω2

j

2h

 !
F2 þ −

2

h2
þ ω j

h2


 �
F3 þ 1

2h3
F4

W13 ¼ −
2ω j

h
þ ω2

j

h

 !
F2 þ −

2

h2
þ 2ω j

h2


 �
F3 þ 1

h3
F4

W14 ¼ −2ω j þ ω2
j

� �
F1 þ −

2

h
þ 4ω j

h
−
ω2

j

h

 !
F2 þ 3

h2
−
2ω j

h2


 �
F3−

1

h3
F4

W15 ¼ ω j

2h
−
ω2

j

2h

 !
F2 þ 1

2h2
−
ω j

h2


 �
F3−

1

2h3
F4

W16 ¼ 1

2
ω j−

1

2
ω2

j


 �
F1 þ 1

2h
−
3ω j

2h
þ ω2

j

2h

 !
F2 þ −

1

h2
þ ω j

h2


 �
F3 þ 1

2h3
F4

ð36Þ

The following mapping relation is obtained on the basis of
Eq. (34)
yiþ1 ¼ Diyi ð37Þ
where yi is expressed as follows:

yi ¼ xi xi−1 xi−2 ⋯ xi−nþ1 xi−n½ �T ð38Þ
The state transition matrix of the milling process with

multi-delay can be calculated by
ψ ¼ Dn−1Dn−2⋯D0 ð39Þ
where,

Di ¼

Di
11 Di

12 Di
13 ⋯ 0 0 0

I 0 0 ⋯ 0 0 0
0
0
⋮
0
0

I
0
⋮
0
0

0 ⋯ 0 0 0
I ⋯ 0 0 0

0 ⋱ ⋮ ⋮ ⋮
0
0

⋯
⋯

I
0

0
I

0
0

2
66666664

3
77777775

þ ∑
N

j¼1

0
0
0
0
⋮
0
0

⋯
⋯
⋯
⋯
⋮
⋯
⋯

Di
1; n j−1ð Þ
0
0
0
⋮
0
0

Di
1;n j

0
0
0
⋮
0
0

Di
1; n jþ1ð Þ
0
0
0
⋮
0
0

⋯ 0
⋯ 0
⋯ 0
⋯ 0
⋯ ⋮
0 0
0 0

2
66666664

3
77777775

ð40Þ
where,

Di
11 ¼ Pi F0 þ G15Aiþ1 þ G16Aið Þ; Di

12 ¼ Pi G13Aiþ1 þ G14Aið Þ
Di

13 ¼ Pi G11Aiþ1 þ G12Aið Þ; Di
1; n j−1ð Þ ¼ Pi W15Biþ1 þW16Bið Þ

Di
1;n j

¼ Pi W13Biþ1 þW14Bið Þ; Di
1; n jþ1ð Þ ¼ Pi W11Biþ1 þW12Bið Þ

ð41Þ

The maximum value of nj determines the dimension of the
matrix Di. In addition, the position of the matrixes Di

1; n j−1ð Þ,
Di

1;n j
, and Di

1; n jþ1ð Þ in the matrix Di depends on the value of

parameter nj which is related to the time delay τj. For the 2-
DOF milling systems, Di

1; n j−1ð Þ, D
i
1;n j

, and Di
1; n jþ1ð Þ are lo-

cated in the columns from (4nj-7) to (4nj-4), from (4nj-3) to
(4nj), and from (4nj+1) to (4nj+4) of the matrix Di,
respectively.

The SLD of the milling process with multi-delay is obtain-
ed through Floquet theory.

4.3 Method verification

The 2-DOF milling dynamic system is considered to validate
the effectiveness of the extended CHFDM for stability analy-
sis in the milling system with multi-delay. The modal param-
eters and other main parameters employed in the literature
[54] are also used in this study. The detail parameters are as
follows: the milling tool has four flutes with the radius and the
helix angle of 9.525 mm and 30°, respectively; the pitch
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angles between every two adjacent teeth are 70°, 110°, 70°,
and 110°, respectively; the modal parameters are mx =
1.4986 kg, my = 1.199 kg, ζx = 0.0558, ζy = 0.025, ωnx =
3541.2 rad/s, and ωny = 3243.4 rad/s; and the cutting force
coefficients are Ktc = 697 MPa and Krc=256 MPa, down-
milling.

The extended SDM [51] and the method in Ref. [54] have
been validated by experiments. Therefore, the comparisons
between the SLDs obtained by the extended CHFDM and
those obtained by the extended SDM [51] and the method in
Ref. [54] are carried out. For obtaining SLDs, the spindle
speed takes the value between 2000 and 15,000 rpm with
the step length of 65 rpm, and the depth of cut takes the value
between 0 and 25 mm with the step length of 0.1667 mm.

With the aim of validating the reliability of the extended
CHFDM, both large (ae/D = 0.6 and ae/D = 1.0) and small (ae/
D = 0.1 and ae/D = 0.3) radial immersion ratios are employed
to obtain SLDs. The discrete number n is chosen as 80 to
obtain stability charts. The SLDs obtained by the extended
SDM [51], the method in Ref. [54], and the extended
CHFDM under different conditions are shown in Table 3.

As shown in Table 3, the SLDs generated by the extended
CHFDM are consistent with those obtained by the extended
SDM [51] and the method in Ref. [54] under large immersion
conditions (ae/D = 0.6 and 1.0), which means that the extend-
ed CHFDM is effective for stability analysis in milling with
multi-delay. Regarding the small radial immersion ratios (ae/
D = 0.1 and 0.3), the SLDs obtained by the extended CHFDM
coincide well with those obtained by the extended SDM and
the method in Ref. [54]. The results indicate that the extended
CHFDM can be adopted to determine the stability boundaries
of milling with multi-delay under different immersion condi-
tions effectively and reliably.

5 Conclusions

In this paper, the CHFDM is presented to obtain the SLD of
milling with single-delay. Then, the CHFDM is extended to
calculate the stability boundaries of milling with multi-delay.
The main conclusions are demonstrated as follows:

(1) In general, the deviations between |μ(n)| and |μ0| calcu-
lated by the CHFDM are smaller than those obtained by
the 2nd UFDM, HIM, and UNIM.

(2) The SLDs obtained by the CHFDM is much closer to the
reference than those obtained by the other benchmark
methods under large immersion condition. Although
there is an increment between the CHFDM and HIM in
terms of computational time, the increment is very small.

(3) The SLDs obtained by HIM, CHFDM, and UNIM are
closer to the reference than those obtained by the 2nd
UFDM under low immersion condition. Meanwhile,

the HIM, CHFDM, and 2nd UFDM consume much less
time than the UNIM to obtain stability charts.

(4) The CHFDM can be extended to obtain the SLD of mill-
ing with multi-delay under different immersion condi-
tions effectively and reliably.
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