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Abstract
In the manufacturing industry, cutting tool failure is a serious event which causes damage to the cutting tool and reduces the
quality of the product, which increases the cost of production. A reliable, intelligent, tool wear monitoring system is required in
the metal cutting manufacturing process to mitigate these negative effects. This study presents a model-based approach for tool
wear monitoring based on an adaptive neuro-fuzzy inference system (ANFIS) for a cold-finished steel bar 1215 turning process.
A three-input cutting force (Fx, Fy and Fz) and single-output (tool flank wear) model was designed and implemented using the
ANFIS approach. The forcesweremeasured using a piezoelectric dynamometer and data acquisition system. Flank wear was also
monitored using a tool maker’s microscope. The model prediction results show that it is accurate enough to perform online
monitoring of the turning process and can detect wear while operating.
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1 Introduction

The main goal of industrial companies is to manufacture high-
quality parts at a minimum price in the minimum time.
Monitoring machining operations contribute significantly to
the automation of the manufacturing process and minimise
human factor costs [1]. In the past, predicting tool failure
and tool changing strategy were based on operator experience
and played an important role during the machining process
[2]. However, these days, a tool condition monitoring
(TCM) system is essential in the manufacturing process. The
degree of tool wear may be determined from signals related to
cutting force, acoustics, vibration of both the workpiece and
the tool, spindle motor current and temperature [3].

Fu et al. [4] studied the optimisation problem of the cutting
parameters in milling NAK80 mild steel and found that the

depth of cut was the most influential factor for cutting force in
the milling process. Shi et al. [5] investigated using the cutting
sound signal for tool breakage detection in the machining
process and determined that the proposedmethod was capable
of separating cutting sound signals from other source compo-
nents related to a normal insert and a broken one.

Seemuang et al. [6] monitored tool wear in the turning
process using spindle noise. It was found that machining pa-
rameters such as cutting speed, feed rate and depth of cut had a
substantial effect on the amplitude of the spindle noise, mak-
ing it possible to use spindle noise to identify tool flank wear
in the machining process. It was also found that using simple
and inexpensive instrumentation could produce data for con-
dition monitoring of the process. García-Ordás et al. [7] pro-
posed a new online, low-cost and fast approach based on
computer vision. They claimed that the decision about wheth-
er a cutting edge is serviceable or disposable is based on the
number of sub-regions classified as worn.

Lu et al. [8] studied high-frequency sound signals for tool
wear monitoring in milling and found that there was a significant
variation between sharp and worn tools. The maximum ampli-
tude of the sound signal was related to worn tools. Zhang et al.
[9] proposed a tool wear model based on a least squares support
vector machine (LS-SVM) analysis procedure combined with
machining parameters to predict tool wear of different positions
at the tool cutting edge for a milling operation.

* Mohsen Marani
marani.mohsen@gmail.com

1 Department of Mechanical and Materials Engineering, Queen’s
University, Kingston, Ontario K7L 3N6, Canada

2 Malaysia–Japan International Institute of Technology, Universiti
Teknologi (UTM), 54100 Kuala Lumpur, Malaysia

3 École de Technologie Supérieure (ÉTS), 1100 Notre-Dame Street
West, Montreal, QC H3C 1K3, Canada

https://doi.org/10.1007/s00170-020-06144-6

/ Published online: 29 September 2020

The International Journal of Advanced Manufacturing Technology (2020) 111:505–515

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-06144-6&domain=pdf
mailto:marani.mohsen@gmail.com


It has been reported that cutting force has a direct effect on
machinability such as surface roughness, vibration and tool
flank wear during the machining of alloys and composites
[10–13]. Shankar et al. [5] reported that cutting force is the
most accurate measurement for the online TCM. Boud et al.
[14] investigated the application of multi-sensor signals for
monitoring tool wear and reported that tool wear was identi-
fied by the cutting force, pressure and table displacement sig-
nals. They developed techniques in tool wear monitoring
using a combination of sensors. In addition, they saved costs
for industry by introducing high levels of automation along
with improving the quality of final products.

In recent years, artificial intelligence (AI) techniques have
been utilised in TCM [15, 16]. The network based on an adaptive
neuro-fuzzy inference system (ANFIS) comprising both fuzzy
and artificial neural networks (ANN) has been verified as a ro-
bust system recognition tool with the capacity to forecast accu-
rately [17]. Shankar et al. [18] investigated the applicability of
predicting cutting tool wear using AI techniques. The flank wear
of the tool was found to be assessed precisely with the ANN
model. Saglam [19] proposed a three-level ANN based on the
cutting force for intelligent TCM in the milling process. A close
match was found between the model output and directly mea-
sured wear of the flank. The ANN model was suitable even for
research with insufficient data.

Mohtaram et al. [20] studied how to detect tool breakage
using a combination of neural decision and an ANFIS tool
wear predictor. They found that their proposed model enables
monitoring of the cutting process with high reliability. It was
also found that an ANFIS model can estimate tool flank wear
progress quickly and accurately. Therefore, in this research,
ANFIS is used to predict flank wear of a tool in the turning
process for machining a steel alloy. The cutting forces are used
as the indicator of the tool flank wear variation.

The paper is organised as follows: After the introduction,
Section 2 introduces the methodology used for monitoring of
tool flank wear. Section 2.1 describes turning experiments.
This section provides a description of the material, tool and
experimental setup. Section 2.2 provides a description of the
ANFIS model. Section 2.3 presents ANFIS structure and
membership function selection. Section 2.4 describes the
TCM structure in detail. The result and discussion are present-
ed in Section 3. The tool wear measurement results are ex-
plained in Section 3.1. Section 3.2 presents feature extraction
and correlation with tool condition states. Sections 3.3 and 3.4
describe ANFIS training and ANFIS prediction results, re-
spectively. Finally, the conclusion is listed in Section 4.

2 Methodology

2.1 Turning experiments

Turning experiments were conducted on a Mazak CNC
(Nexus 100-II M) which has a maximum spindle speed of

Table 1 Experimental conditions

Machining type Turning

Tool CVD/TiCN-coated carbide

Workpiece Material Steel 1215

Size 100 mm× 300 mm

Hardness 150–170 (BHN)

Cutting conditions Spindle speed 250 m/min

Feed rate 0.15 mm/rev

Depth of cut 1.5 mm

Number of pass 36 passes

Sampling frequency 1000

Fig. 1 Experimental setup
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8000 rpm. A three-component piezoelectric dynamometer
(Kistler, Type 9255C) was used to record the cutting forces
during the turning operations. The dynamometer was connect-
ed to charge amplifiers (type 5010) that measured the cutting
forces along the x, y and z axes, recorded as Fx, Fy and Fz.
LabView (Cut Pro 8.0) software was used to record and mon-
itor all signals independently. All cutting force signals were
exported to Matlab software for further analysis.

A cold-worked steel bar (1215) having a diameter of 100 mm
and an overall length of 300mmwas used as a workpiece during
the turning process. The cutting tool used for this research work
was a CVD/TiCN-coated carbide tool having a 7° relief angle
and a nose radius of 0.7 mm. Figure 1 shows the experimental
setup. The experimental conditions are summarised in Table 1.
The turning tool cuts the workpiece 36 times with the same
machining conditions. Therefore, a total of 36 profiles of the
turning force signals were gathered.

2.2 Adaptive neuro-fuzzy inference system

An adaptive neuro-fuzzy interface system (ANFIS) is an arti-
ficial neural network–based Takagi Sugeno fuzzy interface
system which integrates both artificial neural networks

(ANN) and fuzzy logic principals in a single frame [21]. The
goal of ANFIS is to find a model to correlate the inputs and
output correctly. ANFIS is an essential and intelligent tool for
building efficient models for complex processes and datasets
with uncertainty [22]. It has been found that ANFIS is useful
for establishing a model with a complex data distribution un-
der uncertainty [23].

2.3 ANFIS structure and membership function
selection

The ANFIS architecture has five layers, as shown in Fig. 2.
Every individual layer has a specific function to modify the
incoming signals from the previous layer. The Matlab envi-
ronment was employed to build up the ANFISmodel using 36
pairs of data (27 were used for training and 9 were used for
testing). As can be seen in Fig. 2, three different inputs, which
are Fx, Fy and Fz with two membership functions (MFs) were
considered in the proposed ANFISmodel. In addition, 23 rules
were considered for the structure of the recommended model.

Table 2 describes the function of each layer. The cutting
forces as the inputs of the model are acquired to predict tool

Fig. 2 Schematic of ANFIS
model

Table 2 Equations applied at each layer

Layer
number

Equation Layer
number

Equation

1 μ1i(Fx), μ2j(Fy), μ3k(Fz) 4 wr̄ f r ¼ w ̄r pr Fx þ qr Fy þ rr Fz þ sr
� �

2 wr = μ1i(Fx) × μ2j(Fy) × μ3k(Fz) 5
VB ¼ ∑

8

r¼1
wr̄ f r

3 w̄r ¼ wr

∑8
r¼1 wrð Þ
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flank wear as output. The model splits the inputs Fx, Fy and Fz
into various spaces using two MFs in the first layer.

Four different MF types, Sigmoidal, Triangular,
Gaussian and Bell-shaped, were implemented to determine
the most accurate model. Table 3 shows the function of
these applied MFs. An AND rule is applied in the second
layer to execute the multiplication of the outgoing signals
from the first layer and then the relative weights of every
rule are obtained in the third layer using the equation de-
scribed in Table 2. A linear function of the inputs Fx, Fy

and Fz is involved in the fourth layer of the model as
defined in Table 3. Finally, in the fifth layer, the outgoing
signals of the fourth layer are aggregated to obtain the
predicted tool flank wear.

2.4 TCM structure

The purpose of TCM is to adopt corresponding sensor
signal processing techniques to monitor and predict the
cutter state during the machining process. A powerful
TCM system can improve productivity and guarantee
product quality, which has a considerable influence on
machining efficiency. Hence, TCM is considerably im-
portant in the manufacturing industry [24]. In the cur-
rent study, two main steps were considered for the

proposed approach. First, a set of data obtained during
an actual machining test on the turning machine was
used to develop an ANFIS model of tool wear. Then,
the trained ANFIS model for the tool wear was used for
estimating specific tool wear condition as either initial,
workplace or dull.

The force sensor was used to collect the signals dur-
ing the turning process through a data acquisition mod-
ule. The machining signals were analysed using a signal
processing module for extracting features sensitive to
tool wear. The data set was created by the features to
be used as input to the decision system and estimator in
order to map the input features to the current state of
the tool. The data were divided into a training set and a
testing set with a random pattern classifier module. The
training set was used for learning, while the testing set
was used to test the performance of the decision system
[25]. A machining test was carried out with three dif-
ferent tools: a new tool, a working tool and a dull tool.
To expedite the development of tool wear during the
turning experiments, a set of machining conditions was
applied according to the suggestion of a toolmaker com-
pany for steel alloys.

3 Results and discussion

3.1 Tool wear measurement results

For tool wear measurement, nine turning passes, including
the 4th, 8th, 12th, 16th, 20th, 24th, 28th, 32nd and 36th
passes, were selected from among the total of 36 passes.
When measuring the tool wear, the turning process was
paused after finishing each selected pass, and the tool
was detached for measurement. Thus, an actual tool con-
dition after each turning pass could be identified. A

Table 3 Specification of MFs employed in ANFIS model

Membership
function

Equation

Sigmoidal 1

1þe−a1 x−c1ð Þ −
1

1þe−a2 x−c2ð Þ

Triangular max min x−a
b−a ;

c−x
c−b

� �
; 0

� �

Gaussian
e
− x−cð Þ2
2σ2

Bell-shaped 1

1þ x−c
aj j2b

8 passes 20 passes 36 passes

0.06 mm 0.11mm 0.18 mm

Fig. 3 Images of the flank wear of tool after cutting turning process and their measured values
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microscope with image analyser software was used to take
images after cutting each pass. The flank wear is a result of
abrasion and adhesion wear on a tool’s clearance face
contacting with workpiece surface [26]. Figure 3 shows
the optical images of the turning tool and measured flank
wear values after machining the 8th, 20th and 36th passes.

As can be seen in Fig. 3, flank wear values increased as the
number of turning passes increased. For instance, after ma-
chining the 8th pass, the flank wear value was 0.06 mm,
and it increased to 0.11 mm after machining the 20th pass.
The flank wear also increased to 0.18 mm after machining
the last pass (36th) for the steel alloy.

Fig. 4 Denoised and original
cutting force signals for a Fx, b Fy
and c Fz
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3.2 Feature extraction and correlation with tool
condition states

In this study, the data collected from the cutting forces was
processed and classified to extract the main feature of machin-
ing operations from all data. One of the important steps of a
TCM system is the application of signal processing which has
been considered beside the data acquisition system [27]. The
signal from the machining process is generally classified

either in the time domain or in the frequency domain [28].
Some procedures such as signal conditioning, filtering and
root mean square (RMS) computation are commonly used in
time domain signal processing. The difference between nor-
mal and irregular behaviour of the machine is often obtained
by frequency domain signal processing.

In this research work, the air-cut signals were extracted
from the raw signals as they could be differentiated by their
magnitude. Then, the features from the signals were extracted

Fig. 5 Average cutting force
signals for a Fx, b Fy and c Fz
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from the entry cut and the exit cut of the raw signals. It has
been found that noise is the main obstacle to obtaining signals
through sensor data acquisition [28]. Therefore, wavelet trans-
formation was used for denoising the original cutting force
signals for Fx, Fy and Fz as it is the most popular and most
important method for signal analysis in the time-frequency
domain [23]. Figure 4 shows cutting force signals and
denoised signals. As can be seen in Fig. 4, tangential force
(Fx) and radial force (Fy) are always smaller than the main
cutting force (Fz).

In addition, the mean values of the cutting force were calcu-
lated for Fx, Fy and Fz. Figure 5 illustrates the mean value of
cutting force for all axes. As can be seen in Fig. 5, cutting forces
increased with increasing number of machining pass. This
means that cutting force signals increased with increasing ma-
chining time [27]. The measured turning signals were divided
into 36 sections, one for each cutting pass of the tool. Observing
the magnitudes of the measured turning force in different sec-
tions showed a sudden increase from the 24th pass and it fluc-
tuated up and down between the 24th and 36th passes. In ad-
dition, the turning forces, Fx and Fy, increased significantly in
this span. Since the measured tool flank wear also increased in
this span, it was concluded that the turning process was not
stable, and the tool was in a ‘dull’ condition.

A dull tool requires more power to cut the material due to the
large contact area as well as friction between that tool and the
workpiece which increases the magnitude of the main cutting
force, Fz. Therefore, it was believed that measuring cutting force
signals could be used to represent tool wear conditions in the
turning process. As can be seen in Fig. 5, in the first section,
from the 1st machining pass to the 8th pass, themeasured turning
cutting forces gradually increased, and it is observed that a new
turning tool had become stabilised by turning the first six ma-
chining passes (Fig. 5a). Meanwhile, from the 8th pass to the
24th, the measured turning force signals had nearly constant
magnitude, and measured tool wear values gradually increased
(Fig. 5b). Therefore, in these sections, the turning process could
be considered stable for machining the workpiece (workable).
Finally, the dull state includes those from the 24th to the 36th
passes. In this section, the measured turning force signals fluctu-
ated sharply (Fig. 5c).

Fig. 6 Tool wear and corresponding turning forces based on cutting numbers

Fig. 7 Training regression plot of the ANFIS model with Sigmoidal MF
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Figure 6 shows tool wear and turning forces in three direc-
tions, Fx, Fy and Fz. As can be seen in Fig. 6, the tool flank
wear is about 0.2 mm at the end of the 36th machining pass.
The tool flank wear conditions were defined along with the
turning process: the initial state, workplace state and dull state.
The turning forces increased with the increasing of flank wear
values. The main cutting force (Fz) illustrates the highest turn-
ing force is about 450 N compared with the other forces. The
tangential (Fx) and radial (Fy) forces were also consistent with
the change in tool wear. The results illustrate that the influence
of the tool’s wear state on Fy is greater than its effect on Fx,
which is related to the sever adhesion caused by tool wear
deterioration, especially at the tool chip interface [29].
According to the classification of cutting tool conditions, the
tool flank wear value below 0.06 mm was classified as the
initial state, those between 0.06 and 0.13 mm were classified
as the workplace state, and those larger than 0.13 mm were
classified as the dull state.

3.3 ANFIS training results

After construction of the ANFIS model, the values of the
model coefficients were defined by using training data. In fact,

every prediction model needs to initially learn the phenome-
non. The data used in the learning (training) process must be
different from the data which will be used to evaluate the
predictive ability of the model. Therefore, 75% of the whole
data was used to train the ANFIS model. In this step, the
ANFIS model can learn the process with adequate accuracy
if the model complexity is at a similar level with the process
complexity. In this study, the ANFIS model was designed
using 36 pairs of data (27 were used for training and 9 were
used for testing). Various error analysis tools were used to
determine the quality of the learning process in which regres-
sion analysis was selected as an appropriate and reliable meth-
od in this study.

Figure 7 shows the train regression plot of the pre-
diction model with Sigmoidal MF. The regression coef-
ficient of 0.99989 illustrates that the prediction model
learns the relationship between flank wear and cutting
forces efficiently.

There are two types of coefficients: premise coefficients
which are the parameters of the MFs, and consequent co-
efficients which are the parameters of the linear function in
the fourth layer (see Tables 2 and 3). The training stage can
provide us with a good understanding of the process. For

(a) Fx (b) Fy

(c) Fz
Fig. 8 Plots of membership functions a Fx, b Fy and c Fz inputs in prediction model of tool flank wear
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instance, as can be seen in Fig. 8, the behaviour of the MFs
for Fx, Fy and Fz inputs during the training stage is similar.
Therefore, the complexity of the process with regard to all
inputs is similar and the consequent parameters have a vital
role in characterising the tool flank wear. This feature is
considered as an advantage of using ANFIS to predict
complex phenomena.

3.4 ANFIS prediction results

The results of tool condition monitoring and diagnosis
models developed by the ANFIS approach are presented
in this section. These results are compared with the
turning experimental results under the machining condi-
tion given in Table 1.

As has been discussed in previous sections, four dif-
ferent ANFIS models were constructed with Sigmoidal,
Triangular, Gaussian and Bell-shaped MFs. A regression

analysis of test data was used to evaluate the accuracy
of prediction models. Figure 9 shows the test regression
plots of all prediction models with their regression co-
efficient values. As can be seen in Fig. 9a, the predic-
tion model with Sigmoidal MF and regression coeffi-
cient value of 0.96775 is the most accurate model
among all prediction models. Figure 9 b, c and d illus-
trate the regression coefficient values for Triangular,
Gaussian and Bell-shaped models which are 0.94993,
0.9363 and 0.9152, respectively.

Figure 10 shows the comparison of prediction and
experimental results of the models for the whole dataset
including training and test data. As can be seen in
Fig. 10a, the best prediction result can be obtained by
the ANFIS model with Sigmoidal MF since its predic-
tion value in the turning process showed a monotonic
increasing trend according to the tool flank wear
progression.

Fig. 9 Test regression plots for the prediction models with Sigmoidal, Triangular, Gaussian and Bell-shaped MFs
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4 Conclusion

This research work was carried out to monitor tool condition
with a sensor fusion technique by measuring cutting force
during turning of cold-working steel 1215. The tool flank
wear had three conditions: initial state, workplace state and
dull state. The flank wear increased with an increasing number
of experiments, which means that the flank wear increases
with increasing machining time. It was found that a dull tool
requires higher power to cut the material due to the larger
contact area as well as friction between the tool and the work-
piece which increased themagnitude of the main cutting force,
Fz. The tool condition was predicted by using an ANFIS ap-
proach. It was indicated that, when the flank wear results
exceed 0.13 mm, the condition becomes dull and the tool
should be replaced for further machining processes. The pre-
diction model with the Sigmoidal membership function was
the best model for predicting wear compared with the other
models. The ANFIS prediction of tool wear can be applied to
develop a condition monitoring interface in industrial applica-
tions where tooling cost and part quality are important factors
in the production system.
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