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Abstract
Manufacturing industry has paid more attention to the carbon footprint in the manufacturing process with an increasing focus on
ecological environment. Also, optimum machining parameters are usually considered as an efficient solution for minimizing
carbon footprint and processing time owing to their great role in process control. To make a better process parameter set, a novel
multi-objective parameter decision approach called multi-objective grey wolf optimizer (MOGWO) is adopted to realize the
decision process in gear hobbing. First, the problem of gear production is elaborated in detail and the characteristics of carbon
footprint in light of hobbing process are synthetically analyzed; the carbon footprint model and processing time model are
established subsequently. Second, a parameter decision approach for multi-objectives is presented followed by thorough opti-
mization approach. Finally, a case study is put into practice for verifying the presented parameter decision-making scheme. The
results demonstrate good hobbing process parameter solutions under the proposed decision approach, and it reveals a certain
functional relationship between carbon footprint and processing time in view of the graphic display.
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1 Introduction

With an increasing concern about energy saving and emission
reduction in machinery industry, a sustainable manufacturing
mode called low-carbon manufacturing arises at the historic
moment by its distinct advantage in emphasizing carbon foot-
print and resource consumption in production process [1]. The
various CNC machines have been widely applicant into in-
dustrial sectors which have considerable potential in attaining
sustainable manufacturing while the consumed energy ac-
counts for nearly 60% of total resource consumption in ma-
chine tool industry [2]. Particularly, the gear hobbing acts as
the core of gear production while hobbing machines almost
occupy 50% of the total gear machines [3]. It is clear that
activities involved in gear hobbing would inevitably cause
carbon footprint which inspires researchers to seek effective

solutions and strategies for the continuous development of
hobbing.

Recently, process parameter decision and optimization has
been considered as an effective scheme in process control, and
technologists tend to maximize profits in multi-objective opti-
mization with parametric variation [4]. It has been transformed
into parameter decision-making process for reducing carbon
emissions which involves accurate calculation of carbon foot-
print since a good many of process parameters play a part [5].
Thus, carbon footprint has attracted extensive attention and is
often regarded as one of the optimization objectives of paramet-
ric optimization, and a great deal of parameter optimization
mechanisms in manufacturing have been developed in depth.
Lin et al. [6] applied carbon consumption characteristics and
regression analysis to establish a carbon consumption quantita-
tive calculation model, and utilized teaching and learning algo-
rithm to solve turning parameters, for instance, rotation speed,
the rate of feed, and cutting depth. In addition, a subsequent
optimization study [7] on high efficiency and low carbon emis-
sion in multi-pass turning was also developed. Yi et al. [8]
established a cutting parameter optimization model for the
higher energy efficiency and lower carbon emissions in NC
machining process, and the NSGA-II algorithm was used to
handle the processing parameters in cylindrical turning. Wang
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et al. [9] also applied NSGA-II algorithm to solve multi-
objective optimization problem, in which energy, cost, and qual-
ity are highlighted to obtain optimum machining parameters.
Zhang et al. [10] carried out research on peck drilling process,
the particle swarm optimization algorithmwas adopted to obtain
optimum parameter solution, and the energy-saving potential
was proved by experiments. Kant and Sangwan [11] obtained
the optimum machining parameters by the combined action
among grey relational analysis, principal component analysis,
and response surface methodology (RSM), with a pre-
constructive multi-objective optimization model to decrease
power consumption and surface roughness. Yan et al. [12] con-
structed a multi-target optimization methodology using grey re-
lational analysis in cooperation with RSM and Taguchi method
so as to reach a final trade-off among the energy consumption,
production rate, and cutting quality, and the results showed a
more energy-efficient process effect with low spindle speed.
Alrashdan et al. [13] designed a multi-criteria optimization
method for minimum cost in the end milling, which highly
evaluated the surface roughness and the generated electricity
energy consumption. Jagadish and Ray [14] spurred much at-
tention intomulti-response optimization in green EDM inwhich
grey relational analysis as well as principal component analysis
was used to optimize machining parameters; multiple regression
analysis was then developed to evaluate final performance char-
acteristics. Adalarasan and Sundaram [15] integrated the advan-
tages of TOPSIS and grey relational analysis to design and
analyze parameters in friction welding which shows good effec-
tiveness of the methodology. Stated thus, multi-objective opti-
mization strategies of process parameters have certain research
value and abundant optimization models are constructed to re-
alize machining optimization; especially, embracing carbon
footprint is the current hot point of low carbon development.

Apart from the consideration of carbon footprint in multi-
objective parameter optimization, the accurate quantitative cal-
culation and analysis of carbon footprint in manufacturing in-
dustry is of great importance owning to its role in monitoring
and controlling cutting process while it also serves as a techni-
cal difficulty for low carbon manufacturing. Correspondingly,
Jeswiet et al. [16] pointed out that the carbon consumption
participating in the manufacturing process was related to power
consumption and presented a carbon emission method based
on carbon emission index of power plants. Song et al. [17]
designed a low-carbon product design system which incorpo-
rated embedded inventory of greenhouse gas emissions by in-
tegrating overall carbon emissions of the main components of
products based on product BOM tables. Li et al. [18] studied
the characteristics of material consumption, energy usage, and
carbon consumption for mechanical manufacturing system,
and defined its generalized boundary by proposing a quantita-
tive analysis model for the CNC machine. Zhou et al. [19]
proposed a quantifying method of carbon consumption in parts
processing based on manufacturing characteristics which

covered the analysis of carbon source in machining process.
In the second dissertation [20], they mainly focused on the
effect of tool wear as it worked greatly on minimizing carbon
emission. Gui et al. [21] illustrated a low carbon–oriented de-
sign method which depended on parts activity in various stages
of product lifecycle, and an improved GA equipping with a
new selection mechanism was utilized to optimize parts in both
carbon footprint and cost. Lu et al. [22] elaborated an embodied
carbon-energy field (ECEF)–based selection method in the ref-
erence of carbon consumption characteristics for low-carbon
design, directing the energy to indicate specific distribution of
carbon consumption on product structures as well as guide
product designers in making decisions. Zhou et al. [23] took
the carbon emissions of process routes seriously and presented
a multi-objective optimization method to obtain reasonable
process routes of parts with low carbon, economy, and high
efficiency. To sum up, quantitative and qualitative analysis of
carbon footprint is an important support for process parameter
decision-making, which provides reference value and theoreti-
cal basis for the establishment of parameter decision model.

Based on the above literature analysis and research findings,
these general studies and discoveries have contributed to the
process of manufacturing with respect to parameter optimization
and carbon footprint calculation while there is still room for
deeper development considering carbon footprint in gear hob-
bing. The existing studies mostly concentrate on the energy con-
sumption and energy saving involving machining parameter op-
timization while lacking detailed discussion in carbon emission
and carbon footprint of parameter decision model; particularly,
the carbon footprint of hobbing process is rarely taken into ac-
count, which has a significant impact on the environment.

Inspired by the extensive research foundations, the present
paper focuses on the current research gap and work on the
following exploration. First, a holistic statement of parameter
decision problem in correlation to gear hobbing is presented.
Second, the characteristics and quantitative calculation model
of carbon footprint in hobbing process is specifically modeled,
as well as the model construction of processing time. On the
basis of the construction structure above, a parameter decision-
making approach called modifiedMOGWOmodel is proposed
to realize the integrated optimization both on carbon footprint
and processing time. Few works have studied the effect of
carbon footprint in hobbing process while implementing the
parameter decision-making. The consideration of this is closer
to the current development demand in energy conservation and
consumption reduction of manufacturing.

The rest of the details in the present paper is organized as the
following description: Section 2 briefly demonstrates the prob-
lem of parameter decision in gear production. Section 3 ad-
dresses the details of characteristics and models in carbon foot-
print and processing time for hobbing process. Section 4 de-
scribes the optimization model followed by the integrated pa-
rameter decision-making approach. The case study is illustrated
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in Section 5, and conclusions and prospects are stated in
Section 6.

Nomenclature

Variable Unit Specification

n r/min Spindle speed

Fz mm/min Axial feed speed

d0 mm Outside diameter of hob

m mm Module of gear

z1 Number of gear teeth

β rad Helix angle of gear

d1 mm Outside diameter of gear

B mm Gear width

z0 Threads of hob

h mm Cutting depth

CF kgCO2 Carbon footprint

PT s Processing time

CFelectricity kgCO2 Electricity carbon footprint

CFmaterial kgCO2 Material carbon footprint

CFwaste kgCO2 Waste carbon footprint

CFEfactor kgCO2/kWh Electricity carbon footprint factor

ECelectricity kWh Total electricity energy consumption

ECcut kWh Electricity energy consumption in
cutting time

CF ;X F ; Y F ; Z F
;U F ;V F

Cutting force coefficients

fz mm/r Axial feed rate

K1, K2, K3 Coefficients of material, hardness,
helix angle

v m/s Velocity of hob

Tc s Cutting time

Pi W Idle power consumption

Pn W Non-loaded power consumption

CFraw kgCO2 Carbon footprint of raw material

CFMfactor kgCO2/kg Carbon consumption factor of
material

Mchip kg Mass of removal part

Q mm3/s Material removal rate

ρ g/cm3 Material density

CFtool kgCO2 Carbon footprint of tool

CFTfactor kgCO2/kg Carbon consumption factor of tool

Td s Hob durability

Rt Regrinding times

CFcutting fluid kgCO2 Carbon footprint of fluids

CFCfactor kgCO2/L Carbon consumption factor of fluids

CL L Initial usage of fluids

AL L Additional usage of fluids

Tcircle−c s Life cycle of fluids

f Coefficient of cutting type

CFlubricant kgCO2 Carbon footprint of lubricant

CFLfactor kgCO2/L Carbon consumption factor of
lubricant

VI L Usage of lubricating oil

Tcircle−I s Lubricating oil life cycle

CFwc kgCO2 Carbon footprint of waste chips

CFCwc kgCO2/kg Carbon consumption factor of chips

ECce kg ce/kg Standard coal consumption

CEFce kgCO2/kg
ce

Carbon consumption factor of
standard coal consumption

CFwt kgCO2 Carbon footprint of waste cutting
tools

CFwf kgCO2 Carbon footprint of waste cutting
fluids

CFwl kgCO2 Carbon footprint of waste lubricants

CFfwt kgCO2/kg Carbon consumption factor of waste
tool

CFfwf kgCO2/L Carbon consumption factor of waste
fluids

CFfwl kgCO2/L Carbon consumption factor of waste
lubricant

ℓ Final cutting fluid concentration

CFwp kgCO2 Carbon footprint of waste gear parts

Mparts kg Mass of waste parts

Minput kg Mass of gear workpiece

i Number of hob passes

Ts s Average tool change time

Tt s Clamping time

Tu s Empty travel time

Ta s Auxiliary time

CT mm Approach stroke

Ua mm Approach safety allowance

Ue mm Exit safety allowance

OT mm Over travel

Tsc s Total tool change time

T s Tool life

cr, mt, nt, q Tool life coefficients

Lab mm Distance length

nmin r/min Minimum spindle speed

nmax r/min Maximum spindle speed

Fzmin mm/min Minimum axial feed speed

Fzmax mm/min Maximum axial feed speed

η Power efficiency

Pe W Rated power of spindle motor

Fc N Cutting force

Fc
max N Maximum cutting force

Tmin
hob min Minimum tool life

Ra μm Surface roughness

r mm Nose radius of hob

2 Problem elaboration

Gear hobbing is a kind of production method with the principle
of generating motion that uses a hob to process gear workpiece
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which is equivalent to the meshing of a helical cylindrical gear
pair [24]. As is depicted in Fig. 1, it shows the schematic dia-
gram of the axial movement of the gear workpiece cut by hob. In
reality, gear hobbing is an intricate forming process which re-
lates various process parameters and complicated calculation.
The hobbing process parameters include the geometric parame-
ters of gear workpiece, hob and machine tool, cutting parame-
ters, and so on. Applying different process parameters has a
distinct influence on gear production [25]. Therefore, the carbon
footprint and processing time of the hobbing process will vary
with the actual parameter schemes. The problem of parameter
decision-making can be illustrated as follows.

In the hobbing process, the similar processing sample
size becomes larger when the processing sample accu-
mulates to a certain extent in addition to the increase of
available parameter set, experience, and knowledge, and
the characteristics of parameter decision are as following
three points: (1) for different gear parts, the processing
parameters need to be adjusted in a frequent interval, so
as to meet the machining requirements; (2) there exists
a great many similar gears in actual processing, and the
historical processing samples have certain reference sig-
nificance; (3) in various production stages, different
types of parts have different amounts of sample param-
eter sets, thus they occupy diverse processing parameter
decision-making and optimization requirements.

For gear hobbing, process problem description property usu-
ally refers to the initial machining characteristic parameters of
gear parts which guide the next process and require proper pro-
cess parameters. As shown in Fig. 1, the hob rotates at a certain

speed n and have a pending task to process the gear workpiece
along the machining trajectory, and the optimum axial feed Fz is
essential for the chip removal process and the diameter of hob d0
is considered as it highly affects the production efficiency. Thus,
the process parameter solution property {n, Fz, d0} represents
the suitable and technological process parameters for gear pro-
duction, and these parameters need to be carefully determined
for optimum machining effect. The present paper mainly con-
cerns about the carbon footprint and processing time while
meeting othermachining requirements. The property description
of parameters is explicated in Table 1.

Taking into account the environmental issues, the carbon
footprint is an important supporting factor for evaluating the
effect of hobbing. Simultaneously, manufacturers are more
concerned about reducing processing time to improve pro-
cessing efficiency and increase revenue, thus the processing
time is taken as another machining effect value. That is, car-
bon footprint and processing time act as optimization objec-
tives of hobbing in the present paper. The hobbing process is
carried out under the description attribute values of process
problem, and the decision objective is to find the optimum
process parameter solution to conduct gear hobbing with the
aim of minimizing carbon footprint and processing time.

3 Modeling of machining effect in hobbing
process

The carbon footprint of hobbing is selected as one machining
effect owing to its effective expression on environmental impact
and the processing time is adopted due to the economic consider-
ation. For better description, boundary and characteristics of car-
bon footprint are initially defined in Section 3.1 followed by a
detailed establishment of carbon footprint model in Section 3.2.
The model of processing time is then introduced in Section 3.3.

3.1 Boundary and characteristics definition of carbon
footprint

When raw materials are processed into gear products by hob-
bing machine, processes will inevitably produce correspond-
ing energy consumption and waste material, such as the car-
bon footprint from the electricity consumption, cutting fluid
use, and lubricant cost. Waste products and tool wear in hob-
bing process normally produce carbon footprint in a direct or
indirect way. Consequently, it is quite meaningful to consider
carbon footprint in gear hobbing and the characteristics defi-
nition of carbon footprint is illustrated below.

Covering the hobbing process and research achievements
on generalized boundary conditions and composition of car-
bon footprint in numerical control machine systems [18, 26],
first, the primary carbon footprint in hobbing process starts
with existing raw materials, judging and weighing the carbon

CT

OT

B

Ue

Ua

Ofixed

Xfixed

Yfixed

Zfixed

Hob

Gear workpiece

Workbench

Fz

a b

Lz

Lab

Fx

n

Fig. 1 The schematic diagram of the hobbing process
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footprint caused by electricity energy consumption in a whole
process. Second, as carbon footprint of the manufacturing
system is more complex and multi-source due to the carbon
consumption of the waste and the post-treatment process in-
volved in chemical refining, the gear hobbing process also
contains material carbon footprint produced by tools, cutting
fluids, lubricants, and other auxiliary materials. Third, the
component to consider is waste carbon footprint which high-
lights the waste chips, waste cutting tools, waste cutting fluids,
waste lubricants, and waste gear parts after processing.
Herein, the characteristics flow of carbon footprint in hobbing
process is graphically illustrated as shown in Fig. 2.

3.2 The carbon footprint model

On account of characteristics of carbon footprint, its measure-
ment is required. Many scholars have made many researches
on the quantitative calculation of carbon footprint in
manufacturing systems [16, 18, 19, 26] such as the case

studies in turning, forging, milling, and so on. It usually takes
into account the whole process of processing, including the
calculation of processing parameters, numerical control pro-
gramming, workpiece installation, tool installation, machine
tool start-up, cutting, and tool disassembly. In addition, the
reasonable judgment mechanism is essential for analyzing
the carbon footprint involved in a specific process.

For gear hobbing, the carbon footprint CF is evaluated
from three components: electricity carbon footprint
(CFelectricity), material carbon footprint (CFmaterial), and waste
carbon footprint (CFwaste), as shown in Eq. (1). The details of
each part are as follows:

CF ¼ CFelectricityþCFmaterialþCFwaste ð1Þ

3.2.1 Electricity carbon footprint

Hobbing is widely considered as a common gear processing
method, and the electricity energy required in the manufacturing

Table 1 The property settings of
input and output parameters Process description

property
Specification (unit) Process parameter

solution property
Specification (unit)

m Module of gear (mm) n Spindle speed (r/min)

z1 Number of gear teeth Fz Axial feed speed (mm/min)

β Helix angle of gear (rad) d0 Diameter of hob (mm)

d1 Outside diameter of gear (mm)

B Gear width (mm) Machining effect Specification (unit)

z0 The threads of hob CF Carbon footprint (kgCO2)

h The cutting depth (mm) PT Processing time (s)

Hobbing process

(Hobbing machine)

Qualified

gears

Unqualified

gears

Raw material

Cutting fluid

Lubricating oil

Tools

Auxiliary tools

Material

carbon footprint

Raw material

Tools

Cutting fluids

Lubricants

Waste chip

Waste cutting tools

Waste cutting fluids

Waste lubricants

Waste

carbon footprint

Waste parts

Electricity

carbon footprint
Power support

Material Output

Energy

Waste

Fig. 2 The characteristics flow of
carbon footprint in hobbing
process

3409Int J Adv Manuf Technol (2020) 111:3405–3419



process is indispensable which is complicated and varies in time
lapse [27]. Electricity energy drives the hobbing process and it is
the main source of hobbing carbon footprint. The calculation
formula of CFelectricity can be expressed by the following formu-
las:

CFelectricity ¼ CFEfactor � ECelectricity ð2Þ

where CFEfactor represents the carbon footprint factor of
electric energy in Chinese power grid which was formulated
by the National Development and Reform Commission in
China [28]. ECelectricity represents the total electricity energy
consumption of hobbing.

ECelectricity ¼ ECcut þ ∫TtþTa

0 Pi tð Þdt þ ∫TsþTu

0 Pn tð Þdt ð3Þ

ECcut ¼ FcvTc ¼ CFK1K2K3mX F f z
Y F hZ F v−U F z1V F

d0
vTc ð4Þ

v ¼ πd0n
1000

ð5Þ

where CF, XF, YF, ZF, UF, VF are the correlation coefficients
of hobbing force. The cutting electricity energy consumption
ECcut can be acquired based on hobbing force [29]. m denotes
the normal module of hob, fz denotes the axial feed rate, and h
denotes the depth the hob penetration.K1,K2,K3 are the material
correction coefficient, hardness correction coefficient, and helix
angle correction coefficient of gear workpiece, respectively [30].
v denotes linear velocity of hob and it has a calculation relation-
ship with d0 and n. Tc denotes cutting time in hobbing process
which is explicated in the processing time model.

In fact, during the tool change time and empty travel time,
the electric energy to keep the hobbing machine on is relative-
ly constant to ensure that the machine can run stably, thus the
idle power consumption Pi remains constant and small fluctu-
ations could be ignored. The same applies to the energy con-
sumption of machine in clamping time and auxiliary time in
which the non-loaded power Pn is a constant. Both Pi and Pn

could be acquired by power analyzer in an identical machine
environment. The time parameters Ts, Tt, Tu, Ta are introduced
in the following parts. Hence, the ECelectricity is represented as
Eq. (6):

ECelectricity ¼ ECcut þ Pi T t þ Tað Þ þ Pn Ts þ Tuð Þ ð6Þ

The total electricity carbon footprint can be summarized as
Eq. (7):

CFelectricity ¼ CFEfactor⋅
CFK1K2K3mX F f z

Y F hZ F v−U F z1V F

1000
πnTc

� �

þCFEfactor⋅ Pi T t þ Tað Þ þ Pn Ts þ Tuð Þð Þ
ð7Þ

3.2.2 Material carbon footprint

To process gears, materials are an essential part which covers
the raw material, tools, cutting fluid, and lubricant. As raw
material is the first element entering the hobbing process, the
present paper focuses on the carbon footprint of the removed
portion, then the carbon footprint of raw material CFraw is
described as Eqs. (8)–(10):

CFraw ¼ CFMfactorMchip ð8Þ
Mchip ¼ QTcρ=10

6 ð9Þ
Q ¼ 1000vhf z ð10Þ

whereCFMfactor denotes the carbon consumption factor for
raw material preparation with corresponding quantitative
values [26]. Mchip denotes the mass of removal part, and Q,
ρ indicates material removal rate and material density, respec-
tively [18].

Hobbing process is equivalent to tool usage; thus, the car-
bon footprint of tool CFtool can be expressed as Eq. (11) in
which CFTfactor means carbon consumption factor for tool
fabrication, CFTfactor denotes the hob weight, Td means hob
durability, and Rt indicates hob regrinding times. Particularly,
the tool life is numerically equal to hob durability multiplied
by hob regrinding times for grindable tools while the tool life
is equal to the hob durability for non-grindable tools.

CFtool ¼ CFTfactorMt
Tc

Rt þ 1ð ÞTd
ð11Þ

For cutting fluid, it plays the role of cooling the gear work-
piece and hob, and lubricating oil is responsible for reducing
friction and wear between moving parts of the hobbing ma-
chine. The carbon footprint of CFcutting fluid can be summa-
rized as Eq. (12):

CFcuttingfluid ¼ CFCfactor CL þ ALð Þ Tc

Tcircle−c
f ð12Þ

where CFCfactor indicates carbon consumption factor for
cutting fluid preparation, and CL, AL indicate the initial usage
of cutting fluid and additional usage of cutting fluid, respec-
tively. Tc represents the use time of cutting fluid (cutting time)
and Tcircle − c represents cutting fluid life cycle. f denotes the
coefficient of cutting type, f = 0 indicates dry hobbing while
f = 1 indicates wet cutting of hobbing.

Similarly, the carbon footprint of CFlubricant can be sum-
marized as Eq. (13):

CFlubricant ¼ CFLfactorV l
Tc

Tcircle−l
ð13Þ
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where CFLfactor denotes carbon consumption factor for lu-
bricating oil preparation, Vl means usage of lubricating oil,
and Tcircle − l denotes lubricating oil life cycle.

Summing up the above formulas, the material carbon foot-
print CFmaterial can be expressed in Eq. (14):

CFmaterial ¼ CFraw þ CFtool þ CFcuttingfluid þ CFlubricant

¼ CFMfactorQTcρ=10
6 þ CFTfactorMt

Tc

Rt þ 1ð ÞTd

þCFCfactor CL þ ALð Þ Tc

Tcircle−c
f þ CFLfactorV l

Tc

Tcircle−l

ð14Þ

3.2.3 Waste carbon footprint

Hobbing process is accompanied by waste production which con-
ceals a certain waste carbon footprint. The waste carbon footprint
mainly consists of waste chips, waste cutting tools, waste cutting
fluids, waste lubricants, andwaste gear parts. First, thewaste chips
need to be returned to the furnace after collection, and the carbon
footprint of waste chips CFwc can be expressed as Eq. (15):

CFwc ¼ CFCwcMchip ¼ ECceCEFceMchip ð15Þ

where CFCwc represents carbon consumption factor of chip
treatment, andECce andCEFce represent standard coal consump-
tion for unit quality waste disposal and carbon consumption
factor of standard coal consumption, respectively [1].

As for the carbon footprint of waste cutting tools CFwt,
waste cutting fluidsCFwf, and waste lubricantsCFwl, the com-
puting descriptions are as Eqs. (16)–(18):

CFwt ¼ CFfwtMt
Tc

Rt þ 1ð ÞTd
ð16Þ

CFwf ¼ CFfwf
CL þ ALð Þ

l
T c

Tcircle−c
f ð17Þ

CFwl ¼ CFfwlVl
Tc

Tcircle−l
ð18Þ

whereCFfwt,CFfwf,CFfwl, and ℓ are carbon consumption factor
of waste tool treatment, disposal of waste cutting fluids, disposal
of waste lubricating oil, and final cutting fluid concentration, re-
spectively. The other relevant values can be inferred by analogy
with corresponding sources in material carbon footprint.

If the final gear product is not qualified, there is actually an
additional carbon footprint of waste gear parts CFwp, and it is
denoted as Eq. (19).

CFwp ¼ ECceCEFceMparts ð19Þ
Mparts ¼ Minput−Mchip ð20Þ

The mass of the initial gear workpieceMinput can be easily
measured and Mparts is then obtained by Eq. (20).

Assuming that the qualified gear product is obtained, then
the above formula analysis comes down that CFwaste in gear
hobbing is expressed as Eq. (21):

CFwaste ¼ CFwc þ CFwt þ CFwf þ CFwl

¼ ECceCEFceMchip þ CFfwtMt
Tc

Rt þ 1ð ÞTd

þCFfwf
CL þ ALð Þ

l
Tc

Tcircle−c
f þ CFfwlVl

Tc

Tcircle−l

ð21Þ

In conclusion, the model of total carbon footprint in hob-
bing process can be subsequently obtained by the overall cal-
culation of CFelectricity, CFmaterial, and CFwaste. So CF can be
described as Eq. (22):

CF ¼ CFelectricity þ CFmaterial þ CFwaste

¼ CFEfactor⋅
CFK1K2K3mX F f z

Y F hZ F v−U F z1V F

1000
πnTc

� �
þ CFEfactor Pi T t þ Tað Þ þ Pn Ts þ Tuð Þð Þ

þCFMfactorQTcρ=10
6 þ CFTfactorMt

Tc

Rt þ 1ð ÞTd
þ CFCfactor CL þ ALð Þ Tc

Tcircle−c
f

þCFLfactorV l
Tc

Tcircle−l
þ ECceCEFceMchip þ CFfwtMt

Tc

Rt þ 1ð ÞTd

þCFfwf
CL þ ALð Þ

l
Tc

Tcircle−c
f þ CFfwlVl

Tc

Tcircle−l

ð22Þ

3.3 The processing time model

To improve production efficiency and increase revenue, it is
quite necessary to reduce processing time. The processing time

(PT) of finishing a hobbing process mainly includes cutting time
(Tc), average tool change time of each process (Ts), gear work-
piece clamping time (Tt), empty travel time (Tu), and auxiliary
time (Ta). Generally, Tt is involved in technical experience and
proficiency of technicians and Ta is mainly related to the
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automatic machine tool; they can be used as fixed values on the
basis of actual production process and machining requirements.
Hence, PT can be described as Eq. (23):

PT ¼ Tc þ Ts þ Tt þ Tu þ Ta ð23Þ

3.3.1 Cutting time of gear hobbing

As shown in Fig. 1, the cutting travel LZ of hob can be de-
scribed as Eq. (24):

Lz ¼ CT þ Ue þ Bþ Ua þ OT ð24Þ

where CT represents the approach stroke of axial machining,
and Ua and Ue represent the approach safety allowance and exit
safety allowance of the hob, generally Ue =Ua = 2mm. OT de-
notes the over travel of the hob. B means the width of gear
workpiece. Thus, Tc can be described as Eq. (25). Fz denotes
axial feed in Z direction and i denotes the number of hob passes.

Tc ¼ ∑
i

CT þ Ue þ Bþ Ua þ OT
Fz

ð25Þ

3.3.2 Average tool change time of each process

The average time of each tool change is expressed as Eqs. (26)
and (27):

Ts ¼ Tc

T
Tsc ð26Þ

T ¼ cr
1
mt

v
1
mt ⋅ f z

nt
mt ⋅m

q
mt

ð27Þ

where Tsc means total tool change time and T denotes tool
life time. cr, mt, nt, q are the corresponding tool life
coefficients.

3.3.3 Empty travel time

For gear hobbing, the empty travel distance is the moving
distance of hob from initial position to the cutting position,
as Lab, the distance length from position a to position b in Fig.
1. In particular, the tool withdrawal time after cutting is so
short that it can be ignored. The Tu is expressed as Eq. (28)
and Fx denotes the radial feed speed.

Tu ¼ ∑
i

Lab
Fx

ð28Þ

Hence, the model of processing time PT can be expressed
as Eq. (29):

PT ¼ Tc þ Ts þ Tt þ Tu þ Ta

¼ ∑
i

CT þ Ue þ Bþ Ua þ OT
Fz

þ
∑
i

CT þ Ue þ Bþ Ua þ OT
Fz

cr
1
mt

� �
= v

1
mt ⋅ f z

nt
mt ⋅m

q
mt

� � Tsc þ Tt þ ∑
i

Lab
Fx

þ Ta

ð29Þ

4 Multi-objective parameter decision-making
approach

For a simultaneous optimization of carbon footprint and
processing time in gear hobbing, the present paper de-
votes to the optimal identification of process parameter
solutions and proposes a modified decision-making mod-
el for developing a multi-objective parameter decision-
making approach. The decision variables of process pa-
rameter solution are determined in Section 4.1, and deci-
sion objectives and constraints are subsequently given in
Section 4.2. Also, the multi-objective parameter decision
model is elaborated in Section 4.3.

4.1 The variables of process parameter solution

The decision variables considered for the integrated problem of
optimizing carbon footprint and processing time should be con-
nected to the characteristic of hobbing process, which is mainly
dependent on the spindle speed of hob n and axial feed Fz. The
diameter of hob d0 is taken into account as it greatly affects the
carbon footprint and processing time. It should be indicated that
the cutting depth has little effect on hobbing compared with n
and Fz; it is usually set to a fixed value by technicians in the
description of process problem property. In the present paper, it
is assumed that the number of hob passes i = 1, and the thick-
ness of cutting is equal to tooth height. Hence, the variables of
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process parameter solution (i.e., n, Fz, d0) are taken as decision
variables.

4.2 The decision objectives and constraints

To decrease the environmental impact and improve produc-
tion efficiency in hobbing process, the decision objectives in
the present paper are carbon footprint CF and processing time
PT which have been introduced in detail in Section 3. Based
on the above analysis, a multi-objective decisionmodel is then
constructed in Eq. (30):

min f n; Fz; d0ð Þ ¼ minCF;minPTð Þ ð30Þ

Subjected to

nmin≤n≤nmax ð31Þ
Fzmin≤ Fz≤ Fzmax ð32Þ
Fc≤ Fc

max ð33Þ
Fcv≤ηPe ð34Þ
Ti
hob≥T

min
hob ð35Þ

Ra ¼ 0:0312 f z
2

r
≤ Ra½ � ð36Þ

In a hobbing process, the selection of process parameters
needs to meet the demand of hobbing machine condition and

machining requirements. Constraint (31) and constraint (32)
restrict the rational parameter ranges of machine ability in
which nmin/nmax, Fzmin/Fzmax are the minimum/maximum
spindle speed of hob and the minimum/maximum axial feed.
The cutting force is not allowed to exceed the maximum cut-
ting force provided by the hobbing machine as expressed in
constraint (33). The power required for the cutting process of
hobbing should be controlled in a fair range and constraint
(34) expresses the specific cutting power Fcv limit, η denotes
the power efficiency coefficient, and Pe denotes the rated
power of spindle motor. To ensure stable hobbing process,
the life of selected hob Ti

hob should be greater than the mini-

mum tool life Tmin
hob in constraint (35). Also, constraint (36)

defines the requirement of surface roughness in light of ma-
chine quality and r denotes the nose radius of hob.

4.3 Multi-objective decision approach

4.3.1 Framework of decision model

In order to settle the above multi-objective decision problem,
this section adapts MOGWO to realize the parameter
decision-making process. The detailed processing procedure
cycle covering MOGWO approach is illustrated in Fig. 3.

From Fig. 3, the whole process parameter decision-making
includes five steps: (1) start initial hobbing parameter setting;

MOGWO 

decision-making 

approach

START 
Actual machining 

process

Process parameters 

problem attribute 

decomposition

Adaptive decision 

of hobbing process 

parameters

Iterative updating of 

processing 

parameters set

Initial parameters setting

Processing feature extraction

MOGWO

New machining round

Fig. 3 The framework of
parameter decision-making
approach
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(2) conduct the hobbing process; (3) decompose process pa-
rameter problem attribute; (4) launch adaptive updating of
hobbing process parameters; (5) circle iterative updating of
processing parameter group. Combining the aforementioned,
the present paper proposes a modified MOGWO decision-
making approach in achieving the parameter optimization.
The reliability of modified MOGWO decision-making ap-
proach is verified in two aspects: (1) the robustness of
MOGWO algorithm in solving multi-objective problems; (2)
MOGWO has a superiority in searching for global solutions.

4.3.2 Establishment of parameter decision-making

After the set of process parameters and identification of pro-
cess parameter problem attribute, the pending parameter set
enters into the optimization module to start parameter deci-
sion-making. Grey wolf optimizer acts as renovating the pro-
cessing parameters which is an optimization algorithm in
swarm intelligence and is inspired by grey wolves’ prey

hunting activities [31]. It has strong convergence perfor-
mance, fewer parameters, and is easy to implement [32].

Grey wolves are divided into four grades according to the
social hierarchy and each level has its own function, as shown
in Fig. 4. In reality, grey wolves have four hunting behaviors
such as search for prey, encircle prey, chase prey, and attack
prey. The specific mathematical models are constructed as
follows.

Step 1: hunt for prey
Grey wolves hunt for prey in accordance with the

position of the leadership. They disperse and then
gather together to attack the target prey.
Mathematically, in order to simulate decentraliza-
tion, random |A| > 1 is used to force the wolf to dis-
perse as far as possible and achieve global optimiza-
tion, and |A| < 1 is used to facilitate the wolf to con-

centrate on hunting in a particular area. C
!

is a ran-
dom number between 0 and 2 set for prey, which

top
Make decisions about predation,habitat,working and sleeping time,etc







 dominate wolves 

Assist    ,the best candidate for dominate wolves

Obey the high-level wolves, dominate the rest hierarchy

Subordinate to upper classes, guarantee the 

existence of wolves







wolves 

wolves 

wolves 

d
o

m
in

an
ce

down

Fig. 4 Social hierarchy and
functional division in grey wolf
population

Fig. 5. The searching process and
mathematical expressions
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strengthens and weakens the influence of prey in the
distance equation.

Step 2: encircle prey
The mathematical expression for this behavior is

described as

D
!¼ C

!
X p tð Þ���!

−X tð Þ��!��� ��� ð37Þ

Start

Set the number of grey wolves n, repository Ar, storage

quantity NumAr, iteration times IteTi, t=1, k=1

t≤NumAr

k≤n

Renewing grey wolf Xk base on the hunting

mathematical model

Update parameter vector a, A, C

End

No

Yes

Yes

No

Initialize parameter vector a, A, C

Calculate grey wolf fitness(target value), initialize Ar

Recalculate grey wolf fitness(target value), update Ar

Ar is full

Delete a solution using roulette method

New solution surpasses Ar

Update repository Ar covering new solution

First generation grey wolf population

Base on Ar, obtain a new round of

Obtain the final Ar

Yesk=k+1

No

Yes

No

k=k+1

Determine

Fig. 6 The flow chart of parameter set decision process

YS3120CNC6-S

Distance parameters: Lab, Lz, empty travel...

Time parameters: empty travel time, auxiliary time...

Other processing information: cutting fluid progress status...

CNC System 840Dsl

Fig. 7 The parameter acquisition process in hobbing machine

Table 2 The performance parameters of hobbing machine

Specifications (unit) Performance parameters

Machine model YS3120CNC-6

Power of main motor (W) 9000

n (r/min) 0–1200

Fz (mm/min) 0–3000

Fx (mm/min) 0–3000

Maximum hob diameter (mm)–length (mm) 160–230

Maximum tangential stroke (mm) 200

Maximum processing modulus (mm) 6
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X t þ 1ð Þ�����! ¼ X p tð Þ���!
−A
!

D
! ð38Þ

in which t is the current iteration number, X p
�!

tð Þ is
the prey position, X tð Þ��!

is the grey wolf position, and

A
!
; C
!

are corresponding coefficient vectors.

A
!¼ 2 a!r1!− a! ð39Þ

C
!¼ 2r2! ð40Þ
where a gradually reduces in linear step between 0 and
2, and r!1; r!2 are random variables between 0 and 1.

Step 3: catch prey
As shown in Fig. 4, catching prey is guided by

wolf α, β, and δ that occasionally participate in the
hunt. To imitate the search behaviors of grey wolf
(candidate solution), the best three grey wolves in
the current population (α, β, δ) are retained during
each iteration and the locations of other search
agents (including ω) are updated according to the
specific location information. The illustration and
mathematical expressions are as shown in Fig. 5.

In Fig. 5, Xα
�!

,Xβ
�!

, Xδ
�!

are position vectors of α, β, δ in the

current population, respectively. X
!

indicates position vector of

the grey wolf. Dα
�!

, Dβ
�!

, and Dδ
�!

represent the distance between
the current candidate grey wolf and the best three wolves, re-
spectively. The position of the candidate solution finally falls
into the random circle position defined by α, β, and δ, that it to

say, the candidate wolf randomly updates their location near the
prey under the guidance of the current optimal three wolves.

Step 4: attack prey
While the target prey stops moving, wolves have a

tendency to attack the target prey. When |A| < 1, the
next position of the wolf can be the present location or
the location of the prey. Continuously, the whole
multi-objective optimization process keeps a continu-
ous iterative updating to obtain the optimal solution.

More concretely, the sorted are transformed into the
first generation of grey wolf population and the opti-
mal solutions was chosen successively as the initial α,
β, and δwolf. The decision process is elaborated in the
above-detailed specific mathematical model and Fig. 6
spreads the decision flow chart.

5 Case study

This section investigates the presented approach for obtaining
optimal process parameters to reduce the carbon footprint and
processing time. The basic elements of case study are introduced
in Section 5.1, and the simulation and validation are discussed in
Section 5.2.

5.1 Case preparation

The case is to validate the availability of presented parameter
decision approach called modified MOGWO decision-making
approach in terms of hobbing process parameters so as to obtain
a better understanding of carbon footprint and processing time.
The process samples in this case are generated from a gear
manufacturing enterprise in Chongqing, China. The relevant pa-
rameter acquisition process is depicted in Fig. 7 which shows the
specific machine and numerical control system. The main perfor-
mance parameters of hobbing machine and hob used to conduct
the gear production are shown in Tables 2 and 3, respectively. It
should be noted that the used machine belongs to CNC high-
speed and high-efficiency hobbing machine series. In addition,
the factors required in calculation of carbon footprint model are
shown in Table 4 which greatly considers the application scenario

Table 4 The relevant factors of
carbon footprint CFEfactor (kgCO2/kWh) CFMfactor (kgCO2/kg) CFTfactor (kgCO2/kg) CFCfactor

(kgCO2/L)
CFLfactor
(kgCO2/L)

0.4004 2.69 17.57 2.85 3.12

CFCwc (kgCO2/kg) CFfwt (kgCO2/kg) CFfwf (kgCO2/L) CFfwl (kgCO2/L)

0.361 1.233 0.2 0.22

Table 3 The performance parameters of hob

Specifications (unit) Performance parameters

Hob material High-speed steel

Coating material TiAlN

r (mm) 0.2

Tmin
hob (min) 560

Tsc (s) 60

Number of threads 3
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studied in the present paper [18]. Table 5 represents the coeffi-
cients involving to hobbing process such as hob coefficients, cut-
ting force coefficients, and other essential machining coefficients
[33].

In this case, the material of gear workpiece to be processed
is 45# steel which belongs to the type of small modulus invo-
lute cylindrical gears and the machining grade needs to reach
7 grade (ISO 1328-1:2013) in relation to process require-
ments. According to the on-site situation of gear processing
workshop and related technical support, a series of process
parameter sets have been collected and adjusted to put into
practice of current case preparation [34]. The essential process
problem parameters are structured and the parametric details
are given in Table 6. It can be drawn that each parameter set is
multidimensional, that is, a parameter set sample is character-
ized by multiple features that comprise two main parts: the
process parameter problem attribute and the solution parame-
ters. The present paper devotes to search for an optimal com-
bination of solution parameters in achieving a balance be-
tween carbon footprint and processing time.

5.2 Simulation and validation

Considering the hobbing process and pre-established decision
model, the parameter samples are identified and guide the gear
hobbing. To get optimum objectives, the parameter optimiza-
tion process using MOGWO is programmed in Matlab and
runs on a PC with a 3-GB RAM. The solution parameters are
updated continuously to achieve the best process parameter

Pareto solution, in which the minimum carbon footprint and
processing time can be acquired in the finest. The basic pa-
rameter setting of MOGWO algorithm is shown in Table 7.
The other parameters used are set to common values accord-
ing to algorithm experience.

In light of decision objectives and decision model, it is
known as an effective method to analyze and compare the
optimization results between single objective optimization
and multi-objective optimization. Therefore, the simulation
has been run covering the following three objective levels.

1. Minimum CF oriented parameter decision.
2. Minimum PT oriented parameter decision.
3. Minimum CF and minimum PT oriented parameter

decision.

To better show the results of parameter decision, we have
been sure of the basic algorithm parameters consistent in every
simulation and carried out graphical processing of the data
with the respective iteration process in single objective levels
as the optimized parameter sets listed in Table 8.

It is indicated fromTable 8 that solution process parameters
{767.59, 70.58, 84} is the optimal selection for minimum pro-
cessing time when solution process parameters {571.16,
70.24, 70.31} drives a minimum carbon footprint in gear hob-
bing. With single objective optimization results, larger n and
d0 have a supporting role in reducing processing time while a
lower carbon footprint can be obtained by decreasing the
values. In addition, the parameter decision of multi-objective

Table 5 The coefficients related
to hobbing process Cutting force coefficient CF XF YF ZF UF VF K1 K2 K3

18.2 1.75 0.65 0.81 0.26 0.27 1 1.05 1.11

Tool life coefficient cr mt nt q

280 0.33 0.5 0.5

Table 6 The process parameter set acquired in the case

Parameter setting
sequence

Process parameter problem attribute Solution parameters

m (mm) z1 β (rad) d1 (mm) B (mm) z0 h (mm) n (r/min) Fz (mm/min) d0 (mm)

P1 2 43 0.423 93.636 15.4 3 6.318 700 75 80

P2 2 39 0.358 82.04 14.5 2 4.52 700 75 80

P3 2 29 0.419 66.192 14.45 2 6.596 650 70 75

P4 1.5 51 0.428 83.596 13 3 5.423 650 70 80

P5 1.75 53 0.419 99.286 13.8 3 5.455 800 70 80

P6 1.75 45 0.428 85.296 15.4 3 5.46 800 70 80

P7 1.75 35 0.406 68.54 14.35 2 5.832 650 75 80

P8 1.75 31 0.419 60.884 15.65 2 5.504 650 75 75

P9 2.5 51 0.41 135.244 29 3 6.952 600 70 80

P10 2 41 0.397 90.128 15.2 3 6.564 600 70 80
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optimization is simulated in keeping consistent with the flow-
chart of Fig. 6, and Fig. 8 reveals the evolutionary process of
searching for Pareto solutions. Table 9 shows the optimum
process parameters of archive Ar.

It is obvious that there is a clear interrelationship between
carbon footprint and processing time in Fig. 8 and the non-
dominated solutions unfold an inverse proportional function re-
lation of two objectives; a less processing time leads to a higher
carbon footprint that a certain mutual restraint pertains. The
optimal goal is {464.2021, 0.3334} with the corresponding pro-
cess parameter solution {595.56, 72.13, 77.13}. Besides, the Ar
presented in Table 9 gives feasible process parameter solutions
to simultaneously minimize processing time and carbon foot-
print. It can be seen that the value of Fz is always 72.13 mm/
min after the application of the proposed optimization method.
This is because in each optimization process, the proposedmeth-
od mainly focuses on the variation of the spindle speed and hob
diameter. There is no notable change in Fz; thus, it has a rela-
tively small impact on the carbon footprint and processing time.
Actually, the change range of Fz is too small to emerge distinc-
tively which makes it always a constant.

Comparing with single objective optimization, the larger
n decreases processing time while it takes less effect in car-
bon footprint. Fz directly affects the cutting time in hobbing
which has an impact on cutting process that generates car-
bon footprint. The consideration of d0 similarly reduces the
processing time but it also increases the tool carbon foot-
print. In fact, it is weak to make the two objectives reach the
best at the same time but it provides more choice space, and
technicians can select corresponding parameter solutions
adapted to the actual process parameter problem attribute
and the parameter solutions obtained above need to be mod-
ified to match the actual hobbing process conditions.

Consequently, for the process parameter decision-making in
gear hobbing, if manufacturing enterprises pay more attention to

processing time, larger n and d0 in process parameter solutions
are excellent choices; if manufacturing enterprises care more
about carbon footprint while processing time is controlled, small-
er values can show a good impression of objectives.

6 Conclusions and prospects

In the present paper, we have extended a novel parameter
decision-making approach in gear hobbing using modified
MOGWO model elaborated comprehensively. Taking ac-
count of carbon footprint, a series of carbon footprint analysis
calculations have been carried out which has a positive effect
on the later process parameter optimization. Using the modi-
fied MOGWO decision-making model, the results reveal that
MOGWO can generate a set of parameter repositories, indi-
cated by the results, and the acquired parameter set provides a
parameter selection space freely chosen by technologists.
What is more, the proposed model offers a new direction for
process parameter decision-making and it can be transformed
skillfully to other engineering manufacturing.

In future researches, we will continue to make a profound
study in the following aspects: (1) The parameter samples
used in the present paper are from the practical gear produc-
tion while the sample size is finite, so a larger range and scale

Table 7 Related
parameter setting of
algorithm

Algorithm parameters Value

Number of search agents 20

Maximum iterations 200

Parameter dimension 3

Repository size 20

Number of grids 10

Grid inflation value 0.1

Fig. 8 The evolutionary process of simulation results

Table 8 The parameter decision results of single objective optimization

Objective
level

n (r/min) Fz (mm/min) d0 (mm) PT (s) CF
(kgCO2)

Minimum PT 767.59 70.58 84 474.1 /

Minimum CF 571.16 70.24 70.31 / 0.42

Table 9 The partial Ar results of multi-objective optimization

Number n (r/min) Fz (mm/min) d0 (mm) PT (s) CF (kgCO2)

1 595.56 72.13 77.13 464.20 0.33

2 734.28 72.13 77.42 463.77 0.37

3 685.58 72.13 77.13 463.87 0.35

4 642.89 72.13 77.71 461.69 0.37

5 656.75 72.13 77.32 464.05 0.34

6 677.69 72.13 77.57 463.97 0.35
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of processing parameter samples need to be collected to sup-
port parameter decision-making. (2) A functional dependence
between the carbon footprint and processing time as well as
mapping relation between parameters can be further devel-
oped. (3) It is worth exploring the close connection between
maximal productivity and process parameters in hobbing pro-
cess. (4) The tool parameters greatly affect the gear hobbing,
thus more consideration should be given to other tool param-
eters such as hob length, hob threads, and hob slot numbers.
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