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Abstract
Tool wear will lead to the reduction of surface quality andmachining accuracy. Therefore, tool condition monitoring is vital to the
improvement of industrial production efficiency and quality. In this paper, first of all, the internal mechanism of the milling
process and the performance characteristics of the milling signals were analyzed. It is found that there are different trends between
the large and small fluctuations of milling signals in the process of tool wear increasing. This property can be characterized by
various parameters of multifractal spectrum to establish the relationship between tool wear and multifractal parameters. By
analyzing the changes of multifractal spectrum parameters, the tool wear monitoring can be realized. Then, the multifractal
detrended fluctuation analysis (MFDFA) method is used to calculate the mean square error, generalized Hurst exponent, and
multifractal spectrum parameters, which are the eigenvectors, and establish its relationship with tool wear. Finally, the tool
condition diagnosis is conducted by a support vector machine (SVM). The results show that the tool condition monitoring
method of MFDFA combined with SVM is proved to be effective and the multifractal parameters of MFDFA are very sensitive
to tool wear.

Keywords Tool conditionmonitor . Cutting force signal . Vibration signal . Multifractal detrended fluctuation analysis . Support
vector machine

1 Introduction

Tool wear is the result of mechanical friction, cutting force,
and cutting temperature in milling process. It is a very com-
plex phenomenon of physical and chemical changes, which
consists of abrasion, adhesion, diffusion, fatigue, and chemi-
cal wear [1]. In the process of cutting, the tool contacts with
the workpiece directly. The tool wear will increase the rough-
ness of the workpiece surface and reduce the quality of the
workpiece. Serious tool wear will cause tool chipping, frac-
ture, and chatter, which will damage the workpiece and ma-
chine tool and cause serious processing accidents [2].
Therefore, in order to obtain better surface quality and reduce

the loss caused by tool wear, the research of signal processing
and pattern recognition technology for tool condition moni-
toring has become an urgent problem to be solved [3].

Tool condition monitoring can be divided into direct
methods and indirect methods based on the method of mea-
surement technique and complexity of the machining process
[4]. The direct methods based on direct measurement of flank
wear consist of vision inspection [5], radioactivity [6], and
electrical resistance [7]. However, because of the high require-
ments for the measuring environment and the limitations of
accessing such as cutting fluid, illumination, and chip, the
direct methods are not conducive to practical applications
[8]. The indirect methods refer to measure tool wear based
on the signal analysis. By the signals obtained from the cutting
process, such as cutting force [9, 10], vibration [11, 12],
acoustic emission [13, 14], temperature [15], and motor cur-
rent [16], the hidden relationship between these signals and
tool wear is analyzed to indirectly measure tool wear. Among
these sensors, cutting force, vibration, and acoustic emission
have been used more frequently than other sensors. Cutting
force is an intuitive reflection of the changes of various factors
in the cutting process, which is closely related to the cutting
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process, so the cutting force signal is effective. Vibration sig-
nal monitoring equipment is inexpensive and easy to install.
Acoustic emission signal, mainly caused by plastic deforma-
tion of workpiece and chip, friction between tool and work-
piece, and chip fracture, whose frequency range is between
10 kHz and 10 MHz, has a higher frequency than mechanical
vibration and environmental noise. So it has the advantages of
high sensitivity and strong anti-interference ability.

Feature extraction is a key step after signal processing. On
the one hand, feature extraction can remove irrelevant redun-
dant information and select features related to tool wear as
input of the model. On the other hand, the purpose of feature
extraction is to control the number of selected features and
select the most relevant features, which can reduce the com-
puting time of feature extraction and model construction.
There are a lot of feature extractionmethods; for instance, time
domain and frequency domain analysis [17, 18], wavelet
transform (WT) [19, 20], and empirical mode decomposition
(EMD) [21]. Time domain and frequency domain analyses are
commonly used feature extraction methods, but they can only
describe the characteristics of signal from a single standpoint
and cannot provide comprehensive feature information. They
have limitations in dealing with non-stationary signals [22].
WT and EMD can remedy the defect of time-frequency do-
main method. However, they have their own limitations. Due
to the deficiency of generality in the selection of wavelet ba-
ses, it is difficult for WT to recognize new states. EMD cannot
avoid mode aliasing and low computational efficiency in the
face of complex signals. For this reason, some new methods
applied to feature extraction have been come up, for example,
fractal theory. In fractal theory, multifractal detrended fluctu-
ation analysis (MFDFA) algorithm, which was proposed by
Kantelhardt et al. [23], plays an important role in fault diag-
nosis. MFDFA not only pays close attention to the self-
similarity but also provides the ability to describe the overall
average and the local characteristics of the signal.MFDFA has
been applied to the fault diagnosis of rolling bearings fault
location and damage degree by Xiong et al. [24]. It has been
found that the parameters of MFDFA in different states are
different from each other, so it can be used to identify the fault
state of rolling bearings. Liu applied MFDFA to the fault
diagnosis of electromechanical actuators and successfully
identified the fault states under different working conditions
using the combination of variable mode decomposition
(VMD) and multifractal detrended enablement analysis
(MFDFA) [25].

Decision-making is also an important part in indirect
methods for tool condition monitoring. Several classification
methods for tool conditions have been proposed these years,
for instance, artificial neural networks (ANN) [26, 27], hidden
Markov model (HMM) [28, 29], support vector machine
(SVM) [30, 31], and fuzzy C-means clustering [32, 33]. In
this study, we choose SVM as the classification model. The

excellent performance of SVM in small sample makes it com-
petent for TCM, which has small sample size and many non-
linear high-dimensional features. In addition, compared with
ANN, SVM overcomes the problems of uncertain network
structure, local minimum, over-fitting, and under-fitting in
neural network algorithm. The sound signal has been collected
during the end milling process by Kothuru et al. [34], and then
input the SVM model to make the tool condition diagnosis
decision after signal preprocessing and feature extraction by
the wavelet transform. Pandiyan et al. [35] explored force,
vibration, and the acoustic sensor to test the tool wear during
the abrasive belt grinding process. By using the time and fre-
quency domain features and SVM, the classification accuracy
reaches up to 94.7%.

A fault diagnosis method for TCM based on MFDFA and
SVM is proposed in this paper. Experiment platform is intro-
duced in Section 2. The MFDFA technique for feature extrac-
tion and SVM for tool wear monitoring model are introduced
in Section 3. Experiment result and discussion are presented in
Section 4 and concluded in Section 5. The overall workflow of
the tool wear monitoring process is shown in Fig. 1.

2 Experiment setup

To demonstrate the effectiveness of our contributions, we use
the experimental data measured from a high-speed milling
process, which is obtained from “prognostic data challenge
2010” database [36]. The experimental components are
shown in Table 1, and Fig. 2 shows the experiment setup for
signal acquisition.

Every cutter made 315 cuts under the same operation con-
ditions. Seven channels of signals (cutting forces in three di-
rections, vibration in three directions, and AE_RMS) were
obtained for each cut and the LECIA MZ12.5 high-
performance stereo microscope was utilized to measure the
tool wear after each cut. The cutting parameters of the ma-
chining process are shown in Table 2. The whole tool life can
be divided into three parts: the initial wear state, the gradual
wear state, and the accelerated wear state. The initial wear
state has wear value of 0~60 μm; the gradual wear state is
60~120 μm; the accelerated wear state is wear value greater
than 120 μm.

3 Methods

3.1 Multifractal detrended fluctuation analysis

In recent years, the MFDFA method has been proved to be
one of the most important and reliable tools in detecting the
long-range correlation of non-stationary time series, and has
been applied in many fields like life science, geology,
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meteorology, and economics. From the point of view of dy-
namics, it is found that the transformed sequence retains the
characteristics of the original sequence and maintains the

same persistence. At the same time, the transformed sequence
is able to eliminate its own trend components and preserve the
fluctuation components of the original sequence. The
MFDFA method for non-stationary time series with length N
{xi, i = 1, 2,…,N} can be divided into the following five steps
[37]:

1. The mean value x of the time series is calculated firstly
and then it should calculate the difference of the sequence
between each data point xi and the average value x, deter-
mining the cumulative series:

y ið Þ ¼ ∑
n

i¼1
xi−x

� �
; n ¼ 1; 2;…;N ð1Þ

x ¼ ∑
n

i¼1
xi ð2Þ

2. The cumulative series y(i) is partitioned into m ≡ int (N/s)
parts. Every part which is continuous and without over-
lapping each other has a length of s. In most cases, sinceN
always cannot be divisible by s, it is necessary to repeat
the division from the opposite end of the sequence.
Consequently, 2m segments are obtained.

3. Fit local tendency of each part by the least-square
algorithm:

yv ið Þ ¼ a0 þ a1iþ a2i2 þ…þ akik ;
i ¼ 1; 2;…; s; k ¼ 1; 2;…

ð3Þ

where k is order polynomials and ak are the polynomial
coefficients.

4. The mean square error F2(v, s) can be calculated by the
following formulas:

When v = 1, 2, …, m,

F2 v; sð Þ ¼ 1

s
∑
s

i¼1
y v−1ð Þsþ i½ �−yv ið Þf g2 ð4Þ

Fig. 1 Flow chart of tool conditionmonitoring process based onMFDFA
and SVM

Table 1 Experimental
components Milling machine Röders Tech RFM760

Cutting tool 6-mm three-flute ball nose tungsten carbide cutter

Workpiece Hardened stainless steel (HRC52)

Data acquisition system NI DAQ PCI 1200 board

Microscope LECIA MZ12.5
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When v =m + 1, m + 2, …, 2m,

F2 v; sð Þ ¼ 1

s
∑
s

i¼1
y N− v−1ð Þsþ i½ �−yv ið Þf g2 ð5Þ

5. The qth order fluctuation function of 2m subintervals can
be obtained by the following formulas:

Fq sð Þ ¼ 1

2m
∑
2m

v¼1
F2 v; sð Þ� �q=2� �1=q

q≠0

Fq sð Þ ¼ exp
1

4m
∑
2m

v¼1
ln F2 v; sð Þ� �� �

q ¼ 0

ð6Þ

MFDFA changes into the conventional DFAwhen q = 2. The
meaning of this function is the effect of different degrees of
fluctuation on Fq(s) can be described by different q values.
When q < 0, the larger fluctuation deviation tends to 0 after q
power, and it hardly works in the summation. The value of Fq(s)
mainly depends on the smaller F2(v, s). Similarly, when q > 0,
the larger F2(v, s) plays a decisive role in the value of Fq(s).

6. The scaling property of fluctuation function can be obtain-
ed by analyzing the double logarithmic function of Fq(s)

and s. The description of scaling behavior and long-range
correlation of Fq(s) by q is embodied in h(q). The Fq(s)
has an increasing trend along with s which has a power-
law when the time series has the long-range correlation:

Fq sð Þ∼sh qð Þ ð7Þ

where h(q) can be called the generalized Hurst exponents.
Specially, when q = 2, h(2) is transformed into the Hurst ex-
ponent H(q). The sequence is a monofractal sequence when
h(q) is a constant; that means the scale of mean square error
F2(v, s) shows no difference in all intervals. Conversely, if
there is a non-linear relationship between h(q) and q, the series
is multifractal series.

Fig. 2 Experimental setup for tool wear monitoring. (a) Experimental setup [36]. (b) Experimental schematic diagram

Table 2 Milling
parameters Spindle speed 10,400 rpm

Feed rate 1555 mm/min

Y cut depth (radial) 0.125 mm

Z cut depth (axial) 0.2 mm

Sampling data 50 KHz
Fig. 3 Schematic diagram of MFDFA features
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7. The relationship between the generalized Hurst exponent
h(q) and the mass index τ(q) in classical multifractal the-
ory is as follows:

τ qð Þ ¼ qh qð Þ−1 ð8Þ

The singularity exponent α and the multifractal singularity
spectrum f(α) can be obtained by the Legendre transform:

α ¼ τ
0
qð Þ ¼ h qð Þ þ qh

0
qð Þ

f αð Þ ¼ qα−τ qð Þ ð9Þ

The parameters of multifractal spectrum can describe the
dynamic characteristics of time series. It is an effective tool to
analyze non-stationary time series. Tool wear can change the
multi-fractal spectrum of cutting signals. Seven multifractal
spectrum parameters are employed as MFDFA feature in this
paper, which are shown in Fig. 3. Singular exponential α (the
abscissa) reflects the unevenness of time series in local prob-
ability measure distribution. f(α) (the ordinate) is the fractal
dimension which reveals the singular exponents α of distribu-
tion. The left point (αmin,f(αmin)) whose slope approaches to
positive infinity stands for the maximum fluctuation singular-
ity exponent and its fractal dimension, respectively. In con-
trast, the right point (αmax,f(αmax)) which has negative infinity
slope embodies the minimum fluctuation singularity exponent
and its fractal dimension severally. The abscissa of the maxi-
mum point of the curve α0 manifests the randomness of the
signal. A larger α0 means that the signal is more irregular and
random. The non-uniformity of probability measure distribu-
tion and the proportion of large and small peaks of signals are
demonstrated by Δα (Δα =αmax −αmin) and Δf(α) (Δf(α) =
f(αmax) − f(αmin)), respectively. As a result of its clear physical
meaning and excellent performance in non-stationary domain,
the multifractal parameters can be utilized to analyze intrinsic
characteristics of cutting signals.

3.2 Support vector machine

SVM is a classification learning method based on statistical
theory. Its basic principle is to construct the optimal classifi-
cation surface which has the maximal interval by mapping
feature space from low dimension to high dimension [38].
The SVM aims to obtain the maximum boundary hyperplane
between two classes, which is determined by data points
called support vectors, so as to classify test data sets correctly.
When solving the non-linear classification problem, the kernel
function is applied for non-linear transformation. The data
samples in low dimension space are converted to high-
dimension space so that the samples can be linearly separable
in high-dimension space. The plane for classification is called
the optimal classification hyperplane. Introducing the kernel

Fig. 4 The waveforms of cutting force signal Fx under different tool
conditions. (a) The initial wear stage. (b) The gradual wear stage, (c)
The accelerated wear stage

Fig. 5 The waveforms of vibration signal Vx under different tool
conditions. (a) The initial wear stage. (b) The gradual wear stage. (c)
The accelerated wear stage
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function K instead of the dot product operation solves the
computational complexity problem caused by the rising di-
mension. With a set of training sample D = {(xi, yi)| i = 1, 2,
…, n}, xi ∈ Rn, the optimal classification hyperplane can be
defined as:

w;Φ xð Þh i þ b ¼ 0 ð10Þ
where b is intercept and w is the normal vector of the plane.
The original problem of solving the optimal classification sur-
face can be simplified to solving the dual problem as below:

max J αð Þ ¼ max ∑
n

i¼1
αi−

1

2
∑
n

i¼1
∑
n

j¼1
αiα jyiy jK xi; x j

� 	( )

s:t: ∑
n

i¼1
yiαi ¼ 0; 0≤αi≤C; i ¼ 1; 2;…n

8>>><
>>>:

ð11Þ
where K(xi, xj) = 〈Φ(xi),Φ(xj)〉 is the kernel function, αi is the
Lagrange multiplier, and C is a penalizing factor. The optimal
classification function f (x) is obtained as below by solving the
quadratic problem:

f xð Þ ¼ sgn ∑
n

i¼1
α*
i yiK xi; xð Þ þ b*


 �
ð12Þ

The radial basis function was specified as the kernel func-
tion. The kernel function is represented as follows:

Fig. 6 The q-order local
fluctuation of the initial wear
stage cutting force signals. (a)
Waveforms of signal Fx. (b) The
q-order of the local fluctuations
for signal Fx

Fig. 7 Variation of maximal q-order local fluctuation value by q = − 10
and q = 10 with cuts. (a) Signal Fx. (b) Signal Vx
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K xi; xð Þ ¼ exp −γ x−xik k2
� �

; γ > 0 ð13Þ

4 Tool condition monitoring based on MFDFA
and SVM

In this study, we choose the cutting force and vibration signals
to analyze. We select the data collected at the last second of
the cutting process in each sample for analysis, which has a
more direct relationship with the measured value of tool wear.
Figures 4 and 5 show the original cutting force signal Fx and
vibration signal Vx under different tool conditions. With the
increase of tool wear, the amplitude of cutting force and vi-
bration increases gradually and the waveform becomes more
and more intensive. The periodicity of milling force and vi-
bration is gradually drowned. This is mainly due to the fact
that the small chatter caused by the increasing tool wear af-
fects the original cutting force and vibration signals. The fig-
ure shows that we can only get qualitative change trend rather
than quantitative information given from the time-domain

signal. Consequently, it is very difficult to clearly distinguish
the three states of the tool wear.

Because milling signal has periodicity, milling signal has
periodicity and large fluctuation from the point of view of
signal waveform. At the same time, there is small fluctuation
between adjacent cycles. Therefore, the variability of fluctua-
tion is also the essential attribute of milling signal. From this
point of view, we can study the change of this property in the
signals of milling process with the increasing of tool wear.
Figure 6 shows the q-order local fluctuation of the initial wear
stage cutting force signals. The q-order local fluctuation is
described by [F2(v, s)]q/2 computed in Eq. (6), which the scale
is 128. The positive q value (q = 3, 10) shows the signal is
dominated by the large root mean square segments; on the
contrary, the negative q value (q = − 3, − 10) shows the signal
is controlled by the small root mean square segments. The
signal has more obvious property of small or large fluctuation
when the q has larger absolute value. From Fig. 6, we can see
that the abrupt segment of milling force signal has a large q-
order fluctuation value when q is positive and the sequences
between the two peaks have large q-order fluctuation value
when q is negative. Therefore, the q-order local fluctuation
value can clearly distinguish the large and small fluctuation

Fig. 8 Relationship between the mean square error function Fq(s) and scale s under different wear stages of signal Fx. (a) The initial wear stage. (b) The
gradual wear stage. (c) The accelerated wear stage

Fig. 9 Relationship between the mean square error function Fq(s) and scale s under different wear stages of signal Vx. (a) The initial wear stage. (b) The
gradual wear stage. (c) The accelerated wear stage
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parts of milling signal and the large q-order fluctuation value
of positive and negative q appears alternately and periodically.
Figure 7 shows the variation of maximal large and small fluc-
tuation value in the tool wear life. When q is positive (q = 10),
q-order local fluctuation value increases with the increase of
cutting times. In contrast, when q is negative (q = − 10), the
values decrease with the increase of cutting times. This means
that the large fluctuation becomes more and more obvious in
the process of tool wear and the small fluctuation decreases
gradually in this process. Therefore, it can be seen that there is
a positive or negative correlation between signal fluctuation
amplitude and tool wear. Multifractal method is one of the
effective methods to study the change of fluctuation
amplitude.

Relation between the mean square error function Fq(s) and
scale s under different wear stages of Fx and Vx is shown in

Fig. 8 and Fig. 9. The figure shows that the logarithmic curves
of Fq(s) and s of cutting force signal and vibration signal have
a certain linear relationship. That means Fq(s) and s well sat-
isfy the power law relationship under different conditions of
cutting tools. In addition, the power law relationship is stron-
ger with the increasing tool wear. The results show that the
tool wear force and vibration signals at different wear stages
have scaling invariance and multifractal characteristics on a
certain scale.

Relationship between the generalized Hurst exponents h(q)
and q under different wear stages is shown in Fig. 10. It can be
seen that the Hurst exponent h(q) of cutting force signals and
vibration signals both varies non-linearly with the q value in
different cutting tool states, which indicates that both the cut-
ting tool signals and vibration signals are multifractal se-
quences. Besides, from this figure, we can obtain that when
the tool changes from the initial wear stage to the accelerated
wear stage, the generalized Hurst exponent of both cutting
force signal and vibration signal shows a decrease. We notice
that the Hurst exponent of cutting force signals under the
initial wear and the gradual wear condition and vibration sig-
nals in the whole tool wear life is greater than 0.5, which
indicates that there is a long-range correlation in the initial
wear state because the signals basically only have the funda-
mental frequency signal in this condition. In contrast, the
Hurst exponent of cutting force signals under the accelerated
wear state is less than 0.5, which indicates that the signals in
this condition are negative long-range correlation. Because the
signal in the sharp wear state contains both the impact noise
signals and the cutting fundamental frequency signals, the
impact signal is more prominent.

The multifractal spectrum is shown in Fig. 11. The figure
shows that the shape of multifractal spectrum is single peak
and the maximum value is 1, which fully shows that the cut-
ting signal has multifractal characteristics. Moreover, from
Fig. 11, it can be seen that the range of multifractal spectrums
in different states is obviously different, but the multifractal
spectrums in Fig. 11(e) cluster close together and cannot be
distinguished. Besides, from the perspective of ordinates, in
Fig. 11 (a) and (b), f(α) of the left point and the right point in
multifractal curves decreases with the increase of tool wear.
However, in Fig. 11(c) and (d) f(α) of these point loses the
monotonic decrement, which means the f(α) eigenvalues ex-
tracted from these multifractal spectrums will judge some tool
states incorrectly. In this work, theαmax,αmin,α0, Δα, f(αmax),
f(αmin), Δf of multifractal spectrums are calculated as feature
parameters which can reflect the tool wear state. Seven fea-
tures are extracted from three-dimensional force signal
(Fx, Fy, Fz) and vibration signal(Vx, Vy, Vz), respectively, to
form a 42-dimensional feature matrix for pattern recognition.

Multi-fractal feature parameters extracted from different
wear stages are used as input parameters. Ninety groups of
data were extracted in every experiment, including 30 groups

Fig. 10 Relationship between the generalized Hurst exponents h(q) and q
under different wear stages. (a) Signal of Fx. (b) Signal of Vx
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of data for each condition of tool wear. Therefore, 270 groups
of data were extracted. They were divided into two groups:
The first group includes 180 samples, which were used for
train SVM model. The other groups including 90 samples
are the test set. Before building the SVM model, the feature
matrix should have a zero-mean normalization processing
which is helpful for improvement of train speed and accuracy.
Then, the SVM model for tool condition monitoring will be
trained by using training samples and the corresponding la-
bels. The kernel function of SVM adopts radial basis function,

because the Gaussian kernel can make the sample space map
from low-dimension to higher dimensional space, so that the
model can get better classification effect. Previous studies
have shown that the SVM model trained by radial basis func-
tion has better performance in small sample data, which is
consistent with the cutting process, because the data collected
from cutting experiments are limited and the amount of data is
much smaller than that in other fields such as big data analysis.
The important argument cost c and gamma g will be deter-
mined by grid-search with cross-validation method. The

Fig. 11 Multifractal spectrum of under different wear stages. (a) Signal ofFx. (b) Signal ofVx. (c) Signal ofFy. (d) Signal ofVy. (e) Signal ofFz. (f) Signal
of VZ
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parameter c represents the penalty coefficient, and the param-
eter g comes from the radial basis function which is related to
the variance. The parameters of c and g are selected by
meshing method, traversing the two parameters from − 5 to
5 in double logarithmic coordinates. Each group of parameters
is trained by SVM. At the same time, cross-validation method
is used, that is, the training set is divided into equal parts, one
test set is selected each time, the other is training set, and the c
and g with the highest recognition rate are selected as the
parameters of SVM type that is used to identify test set data.
In this study, the best g and c are obtained as 4 and 32, respec-
tively, and the tool wear model is well constructed.

Finally, test data are utilized to verify model prediction
accuracy. The prediction results and the actual state are pre-
sented in Fig. 12. The result shows that the accuracy of this
model is 95.6%. As shown in Table 3, the accuracy results
obtained in this paper are higher than those of published re-
search in recent years. There are various data sources in fault
diagnosis and condition monitoring for different machining
methods (such as turning, milling, grinding) is different, cut-
ting parameters (such as cutting speed, feed, and cutting
depth) are different, and acquisition signals (such as cutting
force signal, vibration signal, and acoustic emission signal)
are different. All of these above conditions will cause different
data sets, which is related to the specific research field and
experimental design method of researchers. It is rare to use the
same data to study the same problem. Even if the same data is
used, due to different handing methods, the selection of vari-
ous parameters in the training model will be greatly different.
The change of one condition often leads to the change of the
whole model, and only one factor is changed. It is difficult to
realize the comparison of other invariant control variable
methods in the field of fault diagnosis. So the result fully
reflects that the method of MFDFA combined with SVM
can more accurately identify the different states of tool wear,
and shows its advantages in the field of tool wear monitoring.

Compared with [34, 39], this method has a higher accuracy
when SVM is also used as the classification model. It shows
that the features extracted by MFDFA are more sensitive to
tool wear than the features in time domain and frequency
domain. And it is more targeted and applicable to analyze
the trend of signal fluctuation amplitude during tool wear pro-
cessing from the inherent characteristics of the cutting process
and then use theMFDFAmethod to calculate and characterize
this trend.Moreover, the accuracy of this method is still higher
than [39] without feature selection, which has obvious advan-
tages and great significance in reducing calculation amount
and improving calculation speed.

It should be noted that other methods in the comparative
literature [34, 39–43] mostly use time domain features (mean,
root mean square, standard deviation, skewness, kurtosis,

Table 3 Comparison with
published results of tool condition
monitoring

Refs. Extracted features Classification model Accuracy rate

Hu et al. [39] Time domain, frequency
domain

ν-Support vector machine 62% (before feature
selection)

84.3% (after feature
selection)

Kothuru et al. [34] Frequency domain SVM 95%

Hong et al. [40] Wavelet transform Hidden Markov models 86.7%

Cao et al. [41] Frequency domain Convolutional neural
network

92.2%

Rizal, M., et al. [42] Time domain, frequency
domain

Mahalanobis-Taguchi
system

88.89%

Xie et al. [43] Time domain, wavelet
transform

Continuous hidden
Markov models

90%

This paper with the
proposed method

Multifractal features SVM 95.6%

Fig. 12 Classification result of tool wear condition based SVM model
((1) the initial wear stage, (2) the gradual wear stage, (3) the accelerated
wear stage)
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etc.), frequency domain features (mean square frequency, fre-
quency variance, frequency band energy, etc.), and time-
frequency domain (wavelet transform and other parameters).
The validity of these parameters is widely confirmed and can
establish a good correlation with tool wear. However, because
these parameters are statistical characteristic parameters, they
focus on the change of sample data statistics, thus ignoring the
source and inherent properties of sample data itself. These
data samples come from the cutting process, which is the
direct contact and relative movement between the tool and
the workpiece material. With the gradual wear of the tool,
the change of this movement is reflected in the signal sample.
With regard to the MFDFA method in this paper, the signal
fluctuates greatly and violently all the time based on the peri-
odic characteristics of milling. It is found that with the increase
of tool wear, the large amplitude fluctuation of the signal
becomes larger and larger, and the small-amplitude fluctua-
tion decreases gradually (as shown in Fig. 6 and Fig. 7). The
extracted multifractal characteristic parameters have clear
physical meanings. The change of cutting process signal is
explained from the point of view of fractal behavior, not just
the change of mathematical statistics without clear physical
meaning. This is the advantage of MFDFA compared with
other methods in the literature.

For the scope of application of current research results,
there exist the differences of machining methods, workpiece
materials, and cutting parameters. For the same machining
methods and different cutting parameters, the tool wear mea-
surements and signal acquisitions under all the cutting param-
eters and their combinations cannot be achieved in the exper-
iments, so it is only investigated under the fixed cutting pa-
rameters. In this paper, the variations of cutting signal magni-
tude and amplitude are studied, and the relevant features are
extracted by the MFDFA method for analysis. Under the con-
ditions of different cutting parameters in the cutting process,
the complete tool life process is in the same variation with
large fluctuation increasing and small fluctuation decreasing,
so it can be applied to different cutting parameters. For differ-
ent machining methods, due to the change of material removal
mechanism, the machining motions of turning, milling, and
grinding are different, and the inherent signal difference is
huge. The application of this method in other machining
methods needs to be investigated in depth in the future.

5 Conclusions

This paper proposes a method of MFDFA and SVM for tool
condition monitoring. Firstly, combined with the inherent
mechanism of milling and the performance characteristics of
milling signals, it is found that in the process of milling, with
the aggravation of tool wear, the large amplitude fluctuations
of signals gradually increase, while the small-amplitude

fluctuations gradually decrease. Since multifractal spectrum
parameters can represent signal fluctuation, the MFDFA is
employed to analyze the non-stationary property and extract
the feature from cutting force signals and vibration signals.
Results show that the tool wear signal has long-range correla-
tion and obvious multi-fractal characteristics. In addition, dif-
ferent wear stages of the tool can be clearly distinguished by
the multi-fractal spectrum parameters, which indicates the
multi-fractal spectrum parameters are sensitive to the tool
wear. Secondly, fault detection is carried out by SVM with
input of eigenvectors constituted by the multifractal feature
parameters. The result shows that the proposed methods of
MFDFA and SVM can identify the different tool wear stages
well and the accuracy reaches up to 95.6%. In the future work,
the modified approach of the above-presented method or other
new method for signal preprocessing and feature dimension
reduction is in progress to achieve higher accuracy.
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