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Abstract
Breakout is a catastrophic accident in continuous casting. The existing breakout prediction methods based on logical judgment
and neural networks need to constantly adjust the prediction parameters or prepare high-quality samples as the input, resulting in
poor robustness and unstable precision stability. Therefore, it is particularly important to develop a breakout prediction method
that not only can predict breakout accurately but also avoid human intervention significantly. This work proposes a novel
approach for breakout prediction combining K-means clustering and feature dimension reduction. The method uses feature
dimension reduction to obtain the typical feature vector (TFV) that can characterize the original temperature change trend, and
then a K-means clustering model is established to realize online detection of breakout prediction. The results show that the model
has a 100% alarm rate for the true breakout, and meanwhile, reduces the number of false alarms from 555 to 217 compared with
the on-line breakout prediction system (BPS). The proposed method does not need to adjust the prediction parameters frequently
or prepare the input samples carefully, which not only avoids the human intervention but also meets the requirements of online
monitoring for the practicality and applicability of the breakout prediction method.
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1 Introduction

Breakout is a serious accident in continuous casting, which is
known as the rupture of weak shell and exudation of molten
steel below the mold [1]. Breakout not only damages the cast-
er equipment but also reduces the product quality and efficien-
cy [2]. Therefore, breakout prediction is always the top prior-
ity of the whole process control of continuous casting.

The mold level and the friction between the mold and shell
fluctuate significantly when breakout occurs [3]. Through
discussing the characteristics of mold friction, Ma et al. [4]
considered that the friction can be used to predict abnormal
situations before breakout. Salah et al. [5] developed a model
integrating adaptive principal component analysis and mold
level to detect and evaluate breakout. Zhang et al. [6] proposed
a model for simulating the breakout caused by friction and
illustrated the mechanism of the breakout in detail.
However, the friction or mold level is difficult to reflect the
local features of breakout. Therefore, the above works are
insufficient in the accuracy and sensitivity of the breakout
prediction, so they are mostly used for offline analysis.

The temperature change trend of thermocouple (TC) em-
bedded in mold copper plates can directly show the process of
generation, propagation, and expansion of breakout. Hence,
the breakout prediction methods based on temperature of TC
are widely used. Bhattacharya et al. [7] established a breakout
prediction system to transform temperature into a
“breakoutability.” By using the Levenberg-Marquardt (LM)
algorithm and genetic algorithm (GA) to optimize weights and
thresholds, Liu et al. [8] constructed a back-propagation (BP)
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neural network model for breakout prediction. He et al. [9]
developed the breakout detection model using logic judgment.
The breakout prediction models based on logical judgment
usually have to adjust the prediction parameters frequently
under different steel grades, casting speeds, and casting con-
ditions. Neural networks can determine the weights and
thresholds by self-learning, but have strong dependence on
the quantity and quality of training samples.

In the previous work [10], we established a predictionmod-
el of breakout based on temperature timing characteristics.
The model combines dynamic time warping (DTW) with K-
means clustering to measure the similarity of temperature un-
der different casting conditions to detect breakout. The detec-
tion results confirm the feasibility of machine learning algo-
rithms for continuous casting anomaly prediction. However,
taking the full-time temperature series of each thermocouple
as the input at any time will dramatically increase the subse-
quent calculation of similarity and clustering evaluation,
which brings a huge burden to the processing speed and
real-time performance for on-line monitoring.

In order to ensure the real-time performance of detection
accuracy and avoid as much as possible the impact of human
intervention on the model, this work uses feature dimension
reduction to obtain the TFV that can represent the change
trend of original temperature. And then, a K-means clustering
breakout prediction model based on TFV is established to
detect breakout online.

The rest of this paper is organized as follows: Section 2
introduces the breakout mechanism, as well as the temperature
features under different casting conditions; section 3 describes
the process of obtaining TFV with feature selection and di-
mension reduction; section 4 elaborates the establishment of
K-means clustering breakout prediction model based on TFV;
and section 5 shows the process and results of online detec-
tion. In the end, the conclusion of this paper is given.

2 Mechanism and temperature features
of the breakout

The main parameters of the caster are summarized in Table 1.
Figure 1 illustrates the arrangement of TCs in the mold. The
mold consists of four copper plates with 120 TCs in 40 col-
umns and 3 rows, of which 57 TCs are installed in 19 columns
and 3 rows on each wide face (loosed and fixed wide faces)
and 3 TCs are installed in a single column and 3 rows on each
narrow face (left and right narrow faces).

Under the normal casting conditions, the shell thick-
ness and the heat resistance increase along casting di-
rection, and the temperature of lower row TCs

continuously decreases, as shown in Fig. 1(a).
Breakout mainly occurs near the meniscus inside the
mold. During the downward movement along the cast-
ing direction, the breakout will expand longitudinally
and horizontally. When breakout gradually expands to
① and ②, the temperature of TC in the first row will
rise first and then fall, as shown in Figs. 1(b)–(c).
When breakout expands to ③ after a period of propa-
gation and expansion, the temperature of TC in the sec-
ond row has the similar change trend with that in the
first row, as shown in Fig. 1(d). It can be seen from
Fig. 1 that the change trend of the temperature of TCs
in the same column and the adjacent columns, rising
first and then falling, is the typical characteristic of
the temperature when breakout occurs.

Figure 2 displays the change trend of temperature un-
der different modes, such as normal casting condition,
breakout, and false alarm. The temperature changes
steadily with time under normal casting conditions, as
shown in Figs. 2(a)–(c). Figures 2(d)–(f) are the temper-
ature of TC in the first and second rows during break-
out. It can be seen that the temperature of TC in the
first row rises and then falls, and subsequently the tem-
perature of TC in the second row starts to rise, which is
completely consistent with the change trend of the tem-
perature described Fig. 1.

False alarm refers to an incorrect alarm issued by
BPS which misjudges the temperature under normal
casting conditions as that of breakout, such as the tem-
perature shown in Figs. 2(g)–(i). In Fig. 2(g), although
the temperature of TC in the second row has a rising
trend after that in the first row rises for a period of
time, there is no falling trend in the temperature of
the first row. In Fig. 2(h), the temperature of TC in
the second row has an obvious rising and falling trend,

Table 1 Main parameters of the cast

Item Value

Caster type Curved-type

Caster radius (m) 10.75

Number of strands 1

Casting speed (m/min) 0.6–1.4

Mold length (mm) 900

Effective mold length (mm) 800

Metallurgical length (m) 28.8

Lubrication Powder

Mold flux feeding Manual
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Fig. 2 The temperature variation of different modes: a–c normal casting conditions, d–f breakout, and g–i false alarm

Fig. 1 TCs arrangement in the mold and temperature variation of the breakout
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while that in the first row does not appear the rising
trend. In Fig. 2(i), the temperature of TC in the first
row has a typical change trend of rising first and then
falling, but the temperature of TC in the second row
rises simultaneously with that in the first row, regardless
of the time lag caused by the propagation and expan-
sion of breakout. It can be seen that the temperatures
shown in Figs. 2(g)–(i) only have the local similarity
compared with the breakout temperatures. However,
there is still an essential difference between the temper-
ature change trend shown in Figs. 2(g)–(i) and the
change trend of the temperature during breakout, so
the breakout prediction performance of the BPS still
needs to be improved.

3 Determination of temperature typical
feature vector

3.1 Feature extraction of temperature

The temperature features of the first and second rows’
TCs which are close to the meniscus are extracted from
the perspectives of temperature, change rate, temporal
and spatial scale, respectively. The extraction process
is shown in Fig. 3.

Figures 3(a) and (b) are feature extraction of temper-
ature and change rate, respectively, in which the shadow
grid denotes the Sliding Time Window (STW) of tem-
perature and change rate. The features extracted in STW
include:

1st−Rising−T−Amplitude(°C): amplitude of rising temper-
ature of 1st row;
1st−Rising−T−Slope(°C/s): slope of rising temperature of
1st row;
1st−2nd−Timelag−T (s): temperature time-lag between 1st
and 2nd rows;
1st−Rising−V−Ave(°C/s): average change rate of rising
temperature of 1st row;
1st−Rising−V−Max (°C/s): maximum change rate of ris-
ing temperature of 1st row;
1st−Falling−V−Ave(°C/s): average change rate of falling
temperature of 1st row;
2nd−Rising−V−Ave(°C/s): average change rate of rising
temperature of 2nd row;
2nd−Rising−V−Max (°C/s): maximum change rate of ris-
ing temperature of 2nd row;

1st−2nd−Timelag−V(s): time-lag of maximum change rate
of rising temperature between 2nd and 1st rows.

Fig. 3 Feature extraction of temperature: a temperature, b temperature
change rate

Fig. 4 CVS results with different numbers of features selected
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Fig. 5 The Pearson correlation coefficient matrix for each two typical features

Fig. 6 The TFV constructed from the temperature in Fig. 2: a TFV of Fig. 2(a–c); b TFV of Fig. 2(a–c); c TFV of Fig. 2(a–c)
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I t can be seen f rom Fig. 3 tha t the va lue of
1st−2nd−Timelag−V is much larger than that of other features
constructed from the same temperature , as wel l
as 1st−2nd−Timelag−T. Therefore, in order to convert the val-
ue of each feature to the same scale, 1st−2nd−Timelag−V and
1st−2nd−Timelag−T are converted into the distances traveled
by the slab, called moving distancelag−T dmð Þ and
moving distancelag−V dmð Þ. The conversion equations are as
follows:

moving distancelag−T ¼ 10⋅Vc⋅1st−2nd−Timelag−T
60

ð1Þ

moving distancelag−V ¼ 10⋅Vc⋅1st−2nd−Timelag−V
60

ð2Þ

where, Vc denotes the casting speed.

3.2 Feature selection and dimension reduction

The features mentioned above comprehensively contain the
important details of temperature and change rate that distin-
guish the temperature variation under breakout and normal
casting conditions. However, some of them are strongly cor-
related and redundant. Therefore, it is necessary to use feature
selection for reducing the negative impact of redundant fea-
tures on the prediction effect. In addition, feature dimension
can be used to increase the calculation speed for satisfying the
real-time requirements of the prediction method.

3.2.1 Feature selection

Recursive Feature Elimination Cross-Validation (RFECV) is
one of wrapper feature selection methods which performs
RFE [11] method with cross-validation. RFECV calculates
cross-validation scores (CVS) of all feature subsets by a learn-
er model, and selects the subsets with the highest CVS.
Figure 4 shows that CVS is up to 0.908 when the number of
features selected is 6. Thus, six typical features are selected by
RFECV automatically: 1st−Rising−V−Max, 1st−Rising−V−Ave,
1st−Falling−V−Ave, 2nd−Rising−V−Ave, 2nd−Rising−V−Max,
and moving distancelag−V .

3.2.2 Dimension reduction

Then, this work calculates the Pearson correlation coefficient
(PCC) between the six typical features selected above by Eq.
(3) to construct the PCC matrix, as shown in Fig. 5:

Rxy ¼ cov x; yð Þ
σxσy

ð3Þ

where cov(x, y) denotes the co-variance of x, y, and σx, σy
denotes the variance of x, y.

A s c a n b e s e e n f r o m F i g . 5 , P C C o f
1st−Rising−V−Max and 1st−Rising−V−Ave is 0.89, and
PCC of 2nd−Rising−V−Max and 2nd−Rising−V−Ave is
0.88, which indicate that there is information redundan-
cy in the characterization of the above features. Because
1st−Rising−V−Ave and 2nd−Rising−V−Ave can reflect the
ove r a l l c h ange t r end o f r i s i ng t empe r a t u r e ,
1s t−Ris ing−V−Max and 2nd−Ris ing−V−Max a re
eliminated.

Based on the above calculation process, the TFV consists
of the remaining features, including: 1st−Rising−V−Ave,
1st−Falling−V−Ave, 2nd−Rising−V−Ave, and
moving distancelag−V . For example, Fig. 6 shows the value of
the TFV constructed from the temperature shown in Fig. 2, of
which Figs. 6(a), (b), and (c) contain the TFV of temperature
in Figs. 2 (a)–(c), (d)–(f), and (g)–(i), respectively.

Fig. 7 The K-means clustering result of training TFV samples

Table 2 Distance between TFV samples in Fig. 6 and cluster centroids

TFV in Fig. 6(a) TFV in Fig. 6(b) TFV in Fig. 6(c)

μB 2.38 2.39 2.39 0.45 0.58 0.15 0.77 2.11 1.96

μN 0.10 0.11 0.11 2.17 2.32 2.42 1.81 0.23 1.01

2712 Int J Adv Manuf Technol (2020) 109:2707–2718



After all these, 90 TFV training samples, including
40 samples of breakout and 50 samples including nor-
mal casting conditions and false alarm, were extracted
to construct TFV set Q.

4 K-means clustering of typical feature vector

4.1 K-means clustering

K-means [12] belongs to a rough clusteringmethod. The train-
ing samples are divided into K non-overlapping clusters, in

Fig. 8 The number of a missing and b false alarm with different M, L, and N

Fig. 9 The effect of N on the number of missing and false alarms (M = 6
and L = 2) Fig. 10 TFV of normal conditions
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which the similarity of samples is high in the same cluster and
low in different clusters.

Because there are two temperature modes of normal and
breakout, K is set to be 2 and K-means++ strategy [13, 14] is
applied to select initial centroids. Then K-means clustering
was performed on the setQ to obtain the breakout and normal
clusters CB, CN and their centroids μB, μN, i.e.:

μB ¼ 0:87;−0:50; 1:01; 1:92f g; μN

¼ 0:08;−0:02; 0:07; 0:00f g

The clustering result is shown in Fig. 7, in which horizontal
and vertical coordinates are distances of TFV to μB and μN.

As can be observed in Fig. 7, the TFV samples of normal
and breakout separate from each other and locate in two
regions. The former is represented by black diamonds,
and the latter by red circles, which indicates that the
samples falling into the area where the latter locates
are most likely to be a breakout.

The above results demonstrate that the clustering model
based on TFV can effectively gather the breakout sample
and meanwhile separate normal samples. Therefore, a “region
of breakout” (ROB) can be constructed bymode segmentation
thresholds to identify and distinguish TFV samples. The
thresholds are determined based on defining the smallest
ROB under the premise of completely covering all the
TFV breakout samples. In this respect, the thresholds
are set, x = 0.65 and y = 1.60, and the ROB is shown
in the shadow region of Fig. 7.

Table 2 demonstrates the distance between the TFV sam-
ples in Fig. 6 and cluster centroids μB, μN. It can be seen from
Table 2 that the TFV samples of breakout in Fig. 6(b) are
located in the ROB, while that under normal casting condi-
tions and false alarm in Figs. 6(a) and (c) are all located out of
the ROB.

4.2 Breakout prediction approach

1) TFV construction: obtain TFV from the temperature of all
40 columns TCs;

2) Distance measurement: calculate the distances between
TFV and μB, μN to obtain distB and distN;

3) Abnormal time marking: if distB and distN are located into
the ROB, mark the time as abnortime; otherwise, return to
1) and calculate the next second;

4) Abnormal TC column marking: if distB and distN satisfy
the condition 3) for continuousM seconds, mark this TC
column as TCcol;

5) Adjacent TC column judgment: if at least one col-
umn of the left and right TC columns of TCcol

satisfies the condition 4), meanwhile, the time inter-
val of their abnortime is less than N seconds, mark
the corresponding TC column as TCadj, and the total
number of columns of TCadj is denoted as L;

6) Breakout identification: if corresponding TFV satisfy 4)
and 5), issue a breakout alarm and then mark the abnor-
mal TC columns; otherwise, return to 1) and continue
checking and judging.

4.3 Determination of prediction parameters

The simultaneous judgments of M, L, and N greatly
weaken the influence of the ROB on missing and false

Fig. 11 TFV of false alarms

2714 Int J Adv Manuf Technol (2020) 109:2707–2718



alarm. M characterizes the accumulation and evolution
of abnormal time along the casting direction. L charac-
terizes the propagation of sticking in the spatial horizon-
tal direction. N characterizes the connection and transi-
tion of the sticking in temporal and spatial. To charac-
terize the sticking propagation and expansion in tempo-
ral and spatial precisely, it is of great importance to
regulate and match the prediction parameters reasonably,
so as to avoid missing the true alarms and reduce the
false alarms.

The prediction results of different combination pa-
rameters are illustrated in Fig. 8(a) and (b), which de-
note the number of missing and false alarms when L =

1, 2, 3, and 4. The requirements of breakout prediction
are that there is no missing alarms and the number of
false alarms is as little as possible.

With the increase of M, the number of missing
alarms increases and that of false alarms decreases, as
shown in Fig. 8(a) and (b). In addition, the number of
missing alarms is 0 when M ≤ 6. Taking into account
missing and false alarm comprehensively, M should be
set to six. As observed in Fig. 8(b), the number of false
alarms reduces significantly with the decrease of L.
However, the missing alarm occurs when L = 1, as ob-
served in Fig. 8(a). Hence, there is no missing alarm
and the false alarms are relatively minimal when L = 2.

Fig. 12 The clustering results of TFV of normal conditions and false alarms
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Figure 9(a) and (b) shows the number of missing and false
alarms with the change of N when M = 6 and L = 2. As ob-
served in Fig. 9(a) and (b), the number of missing alarms is
zero and that of false alarms are the lowest whenN = 11, 12, or
13. Based on the above analysis, this work takesM = 6, L = 2,
and N = 12.

5 Result and discussion

The breakout prediction method built above was applied to
test the historical temperature data from year 2016 to year
2018. In the online testing process, the TFVs are simulta-
neously constructed for the temperature corresponding to each
moment of all the 40 columns of TC, and they are judged
whether they meet the requirements in section 4.2.

Figures 10 and 11 show the temperature of TC in the first
and second rows at 01:08:05 at the position of 13th and 18th
columns of TC on the wide face, respectively. The former is
the temperature under normal casting conditions, while the
latter is the false alarm temperature judged by BPS. The tem-
perature data including that under normal casting conditions
and false alarm were tested online, and the test process is
shown in Fig. 12.

As can be seen from Fig. 12, the TFV of 19th and
4th columns of TC on the loosed wide face both satisfy
condition 3) at 01:08:02, which is marked as abnortime,
but condition 4) is not satisfied because the duration is
less than 6 s. The 18th column of TCs on the fixed
wide face is marked as TCcol due to the TFV is located
in the ROB and lasts for 7 s from 01:08:03.
Subsequently, the adjacent 16th column of TC on the
fixed wide face is located in the ROB at 01:08:08, but
only lasts for 2 s, which does not satisfy condition 5).
Therefore, the above temperature variation is not con-
sidered as a breakout.

Figure 13 shows the temperature of TC in the first and
second rows at 11:59:50 at the position of the 8th column of
TC on the wide face. The temperature data under breakout
were tested online, and the test process is shown in Fig. 14.

As observed in Fig. 14, all the TFV are far away
from the ROB at 11:59:44. The 8th column on the fixed
wide face locates in the ROB from 11:59:45 for 8 s, so
it should be marked as TCcol. After the moment, the 9th
column on the fixed wide face steps in ROB and main-
tains this status for continuous 6 s. The abnortime time
interval between the 8th and 9th columns is only 2 s.
Therefore, a breakout alarm is issued immediately, and
the two abnormal TC columns are labeled. It is worth

noting that the 7th column also stays for a few seconds
after 11:59:50, which indicates that the breakout starts
near the 8th column and extends to the adjacent 9th and
7th columns in a short time.

Table 3 shows the test results of the casting temperature
data and its comparison with BPS. It can be seen from Table 3
that the proposed method can detect all 56 cases of true break-
out, compared with BPS, the number of false alarms decreases
from 555 to 217, which greatly reduces the false alarm rate.

It should be noted that no further modifications were made
to M, N, and L after determining the prediction parameters
during the test of a 3-year historical data, which is not possible
to achieve by logical judgment and neural network methods.

6 Conclusion

In view of the shortcomings of existing breakout pre-
diction methods in adaptability and migratability, the

Fig. 13 TFV of breakout temperature
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present work proposed a novel prediction method inte-
grating the feature dimension reduction with the K-
means clustering algorithm. In order to avoid the human
intervention and meet the applicability requirements of

the online breakout detection, the TFV is extracted and
constructed from the typical features of temperature and
its change rate by using the feature selection and di-
mension reduction. The clustering model based on K-

Fig. 14 The clustering results of TFV results of breakout

Table 3 Comparison of the
number of missing and false
alarms

BPS The proposed method

True alarm False alarm Missing alarm True alarm False alarm Missing alarm

2016 36 164 0 36 54 0

2017 6 279 0 6 103 0

2018 14 112 0 14 60 0

Total 56 555 0 56 217 0

2717Int J Adv Manuf Technol (2020) 109:2707–2718



means algorithm is built to obtain the TFVs’ centroids
and region partition, and the ROB is subsequently used
to identify the breakout and normal casting conditions.
The prediction result shows that the number of missing
alarms is zero, and the false alarms are reduced from
555 to 217 compared with the on-line breakout predic-
tion system (BPS). The proposed method gets rid of the
limitations of traditional breakout prediction methods in
parameter setting and training samples’ preparation. At
the same time, using TFV as the model input also great-
ly improves the detection speed, making the efficiency
and accuracy of online detection and prediction of
breakout improve significantly. The proposed approach
provides a reference for application of machine learning
in abnormality prediction during the continuous casting
process.
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