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Abstract
Autonomous-guided vehicles (AGVs) are becoming increasingly prevalent and already helping in a variety of activities, ranging
from space exploration to domestic housework. Recent advances in the design of sensors, motors and microelectromechanical
systems are bringing us closer to the realization of autonomous multi robot systems which perform complex tasks. In this work,
we explored the problem of vehicle routing and motion planning for a fleet of AGVs in a flexible manufacturing system (FMS).
Considering concurrently fuzzy demands associated with the workstations and fuzzy travel distances while moving between
workstations, the problem is addressed in the context of uncertainty both in demands and travel times. The proposed motion
planner is combined with a scheduler allowing each AGV to update its destination resource during navigation in order to
complete the transported product. Furthermore, in order to take into account the fuzziness which may arise in the FMS, the
proposed planner is integrated with fuzzy theory on fuzzy sets and fuzzy numbers. The efficiency of the solution procedure is
demonstrated through numerical examples.

Keywords Vehicle routing . Motion planning . Fuzzy logic . Flexible manufacturing system . Autonomous-guided vehicles .
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1 Introduction

1.1 An overview

Given the new competition environment and technical back-
ground, nowadays, global manufacturing industries are pass-
ing from mass production to customized production. This
transition, in combination with the advances in production
management , has crea ted needs for f lex ib i l i ty ,
transformability and cost efficiency [1]. In this context, mobile
robots and especially the AGVs are widely employed in an
ever-growing number of areas, such as material handling in

manufacturing, distribution, transshipment and transportation
[2]. Efficient vehicle routing and motion planning play a sig-
nificant role in the enhancement of AGVs’ performance and
productivity.

In general, vehicle routing and motion planning are two
basic and separate functions, which are designed to improve
an AGVs’ efficiency. Typically, vehicle routing problem
(VRP) lies at the heart of distribution management and logis-
tics. It is faced every day by thousands of companies and
organizations engaged in the delivery and collection of goods
or people. Collection of household waste, gasoline delivery
trucks, goods distribution, snow plough and mail delivery are
the most used applications of the VRP. Because conditions
vary for different applications, the objectives and constraints
encountered in practice are highly variable.

The classical VRP involves a fleet of AGVs set off from a
central depot to serve several workstations positioned at dif-
ferent known locations with various demands and return to the
depot. The objective is to find the optimal routes of minimum
total cost, beginning and ending at a central depot, such that
each customer is visited exactly once by one vehicle, while
satisfying some constraints. An undirected graph is used to
present the network of the depot and the workstations, and

* Paraskevi T. Zacharia
zacharia@upatras.gr

Elias K. Xidias
xidias@aegean.gr

1 Department of Industrial Design & Production Engineering,
University of West Attica, Athens, Greece

2 Department of Products & Systems Design Engineering, University
of the Aegean, Syros, Greece

https://doi.org/10.1007/s00170-020-05755-3

/ Published online: 22 July 2020

The International Journal of Advanced Manufacturing Technology (2020) 109:1801–1813

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-05755-3&domain=pdf
mailto:zacharia@upatras.gr


the VRP is applied to this graph searching for an optimum
route satisfying the related constraints. Since all versions of
VRP belong to the class of NP-hard optimization problems,
robust heuristics algorithms [3] or Petri-net based approaches
[4] are preferable for the solution of these problems. For ex-
ample, in [5], the authors proposed an approach for scheduling
the routes of AGVs in order to ensure the smooth flow of
materials in production and container terminal conditions.
The proposed approach consists of a mixed-integer program-
ming model and two meta-heuristics-based algorithms in or-
der to achieve quality schedules within a reasonable amount of
time. In [6], the authors proposed a new heuristic approach
which is based on Benders decomposition for solving the
conflict-free scheduling and routing of AGVs which operate
in FMS.

On the other hand, motion planning is to plan a path that
enables the AGV to undertake a predefined task avoiding at
the same time collisions with the environment and with the
other AGVs. Existing approaches for motion planning of mul-
tiple AGVs can be classified into two general categories [7]:
(a) the centralized approaches and (b) the decoupled ap-
proaches. The centralized approaches treat the fleet of AGVs
as a composite system [8] generating a composite configura-
tion space which searched for a path for the whole composite
system [9]. In the decoupled approaches [10], a collision-free
path for each AGV is determined independently and then
collisions between the AGVs are resolved by velocity tuning.
The trade-off of these two approaches (centralized and
decoupled) is that the decoupled approaches are considered
faster while the centralized approaches have the advantage of
being complete. Xidias et al. [11] proposed an approach where
the AGVs’ workspace is represented through the Bump-
Surface concept [12]. Then, the problem’s solution is searched
globally onto a solution space in such a way that all moving
AGVs satisfy the Motion Planning Problem objectives.

The problem becomes harder when we take into account
the fuzziness of the system. In many real-world applications,
one or more parameters of the vehicle routing problem tend to
be uncertain in nature, giving rise to the fuzzy vehicle routing
problem. Several researchers have proposed solution ap-
proaches for a version of vehicle routing problem considering
fuzziness. Zarandi et al. [13] address the multi-depot-
capacitated location routing problem in which the travel time
between two nodes is a variable. Credibility theory is used in
parallel with a simulated annealing procedure in order to solve
the problem. The proposed approach aims at the minimization
of the total travel cost of the vehicles including cost of depot
and routing costs. The proposed approach is tested using a
standard test problem, and the numerical results proved the
robustness of the approach. The authors in [14] study the
multi-objective dynamic VRP with fuzzy time windows.
The optimization objectives are four. The total required fleet
size, overall total travelling distance and waiting time imposed

on vehicles are to be minimized, and the overall customers’
preferences for service is to be maximized. The proposed
strategy is based on a genetic algorithm consisting of three
basic modules. Erbao et al. [15] consider the vehicle routing
problemwith fuzzy demands. A hybrid intelligent algorithm is
applied, and fuzzy credibility theory is used for the solution of
the problem. The optimization is achieved in the context of the
total expected distance, which is the total sum of planned route
lengths and the additional distance covered by vehicles.

The authors in [16] solve the location routing problem with
fuzzy demands applying a hybrid simulated annealing with
fuzzy credibility theory. The objective is the minimization of
the total cost. The efficiency of the solution is demonstrated
by numerical examples of different sizes. A multi-objective
evolutionary algorithm is proposed in [17] that incorporates
local search heuristics for the VRP with stochastic demand.
There are three objectives to be optimized: travel distance,
driver remuneration and number of vehicles required. Trade-
off solutions are provided and the relationships among the
three objectives are observed concluding that two of them
are correlated to each other, and for the other two pairs, the
objectives are conflicting with each other.

To the best of our knowledge, the integration of task
routing and motion planning for a fleet of AGVs in real in-
dustrial environments considering fuzziness to deal with un-
certainty embedded in the system has not been well studied. In
this paper, we are motivated by a practical industry application
of a large fleet of AGVs in material handling in a fully auto-
mated FMS such as at Amazon warehouses. We aim to inves-
tigate the integration of the above problems (i.e., vehicle
routing, motion planning and fuzziness) for a fleet of homo-
geneous AGVs by proposing a unified approach.

The proposed approach using a mix of GA and A-star
algorithm solves simultaneously the problem of vehicle
routing and motion planning. In addition, in order to face the
fuzziness of the system, the proposed approach is strength-
ened with the fuzzy set theory. The objective is to determine
the number of AGVs used, the allocation of workstations to
the AGVs and the AGVs’ safe (collisions-free) paths from
depot to workstations and back to the depot, so that all work-
stations are served at the lowest possible cost.

1.2 Main contribution

In this study, the decision-making problem involving the tac-
tical and operational planning is to be analysed; namely the
study will cover the development of vehicle routing and mo-
tion planning problem. This paper studies an Intelligent
Warehouse in which the equipment can be controlled auto-
matically without any human intervention. A central manage-
ment system assigns tasks and schedules the paths of multiple
AGVs which are requested to serve a set of workstations in the
warehouse.
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The main innovations and contribution of the proposed
approach are the following:

& A global optimization problem is studied after integration
of two NP-hard problems: vehicle routing problem and
path planning. An optimum (or near-optimum) solution
can be provided searching all over the search space.

& The paths between successive workstations are not given.
Obstacle avoidance is considered for the determination of
the paths applying the A* algorithm. The optimization is
achieved in the context of travelled distance satisfying the
capacity constraint.

& Unlike the traditional vehicle routing model, fuzzy travel
distances and fuzzy workstation demands are considered
instead of fixed deterministic. In real-world situations,
multi-AGV systems depend on traffic conditions or un-
foreseen circumstances causing uncertainty to the AGV
system.

Most of the versions of the problem assume that each
AGV runs at a fixed route between the workstations.
However, in the actual workshop environment, in order
to avoid obstacles, the AGV’s route is more complicated,
which leads these versions to have poor applications [18].
In most published works, vehicle routing and path plan-
ning problems are usually studied separately. This is be-
cause integrated vehicle routing and path planning form a
very challenging NP optimization problem [19].
Eventually, most papers in literature consider the distances
between nodes for optimization and the problem is limited
to the minimization of the travelled distance.

Since determining the path between nodes is crucial for
optimal vehicle routing and motion planning, the paper at
hand focuses on the determination of the total travel cost.
In this context, the travel cost between the nodes is not
known or easily obtained since obstacle avoidance and

traffic condition should be encountered too. In addition,
the problem is studied as a global optimization problem
that encompasses two NP-hard problems: the vehicle
routing problem considered and the motion planning
problem. The global problem is studied under fuzziness
since there is uncertainty in travel distances and worksta-
tion demands. This type of problem is more challenging
and sophisticated than the classical vehicle routing prob-
lem since it reflects real-life situations. Due to combina-
torial explosion, meta-heuristics are of major importance
because they can produce approximate solutions in poly-
nomial time. Thus, the problem is solved using a genetic
algorithm.

2 Problem statement and general
assumptions

This paper considers a fleet of AGVs moving in a 2D
industrial environment, an example layout of which is
shown in Fig. 1, with L homogenous AGVs, M static ob-
stacles (including storage shelves, machines and walls) and
K workstations in which a fleet of AGVs is requested to
accomplish a task. Here, the AGVs share the same depot.
Furthermore, this paper considers two fuzzy factors: (a)
travel cost between workstations and (b) workstation de-
mands. Determination of the real values of travel costs and
workstation demands prior to their realization is often too
difficult or even impossible because of their uncertain na-
ture. It is assumed that both (traffic condition and de-
mands) are estimated based on expert judgement. The main
assumptions are summarized in the following:

Assumption 1: The obstacles have fixed and known
geometry.

Fig. 1 The warehouse layout
(https://www.mecalux.co.uk/)
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Assumption 2: The AGV is a homogeneous mobile robot
with the basic capabilities for navigation, obstacle avoid-
ance and localization.
Assumption 3: Each AGV has a circular body shape and
respects the kinematical constraints.
Assumption 4: Each AGV has a maximum available ca-
pacity VC.
Assumption 5:The locations of the workstations are fixed
and known.
Assumption 6: Each workstation is associated with a
fuzzy demand, expressed as a triangular fuzzy variable
(see Section 3.2).
Assumption 7: The virtual travel distances between work-
stations are fuzzy variables, expressed as triangular fuzzy
variables.
Assumption 8: There are L possible AGVs, but the num-
ber ℓ of AGVs used is variable.
Assumption 9: In order to handle conditions associated
with AGVs in the FMS (communication among vehicles,
the mapping of the environment etc.), we assume that
there is a central management system which can manage
all these info and design the appropriate velocity profiles
for the robots in order to ensure their safe motion.

Under these assumptions, the overall problem can be de-
fined as follows:

Let G = (V, E) be an undirected network where V is a set of
nodes in the graph G, and E is a set of edges in G connecting
the vertices in V. V contains a central depot location, K work-
stations and M static obstacles. A fuzzy distance and a fuzzy
traffic condition are associated with each element of E. A

fuzzy demand edi is associated with each workstation. The
problem concerns a number of AGVs starting from a depot
to serve a number of workstations at different locations with
various uncertain demands and uncertain travel costs. The aim
is to determine the number of AGVs used and the collision-
free paths starting and ending at the depot so that all worksta-
tions are serviced exactly once. The objective to be minimized
is the total travel cost of the AGVs while satisfying the

demands at workstations regarding that the capacity of each
AGV is not violated.

3 Vehicle routing andmotion planning in FMS

We now present and discuss the developed solution approach.
A schematic overview of the proposed approach is illustrated
in Fig. 2.

3.1 Collision-free path

In order to design a collision-free path for each AGV, we
consider that each AGV is considered as a point while the
obstacles have been enlarged accordingly in order to take into
account the AGV’s shape [8] and the 2D-enlarged FMS envi-
ronment W has been normalized.

The first step is to divide theW into equally spaced subin-
tervals along the two orthogonal directions forming a square
grid. By decomposing the environment W, we reduce the
searching area into a simple two-dimensional array. Each el-
ement in the array represents one of the squares on the grid,
and its status is recorded according to the corresponding state,
i.e. we set the value 0 for a free cell and 1 for a cell occupied
by an obstacle. An example of the divided environment W is
show in Fig. 3.

In the above example, a cell cluttered by an obstacle
(black colour) takes the value 1 while cell in the free
space takes the value 0. The red circles represent the
position of the workstations while the blue star repre-
sents the depot.

Then, using the A-star algorithm, we create a distance ma-
trix by computing the distances from the depot to the work-
stations and between the workstations. Once the paths are
found, our vehicle moves from the centre of one square to
the centre of the next one until the target is reached. These
set of points are called control points.

Fig. 2 A schematic overview of
the developed approach
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3.1.1 Feasible path

The major objective of this sub-section is to calculate a feasi-
ble path for each AGV. We choose to represent the AGV’s
path by a two-degree NURBS curve [20]. We assume that the
point-AGV traces a path C(s) = (u1(s), u2(s)) inW. The path is
given by

C sð Þ ¼ ∑K−1
i¼0 N

2
i sð Þwi pi

∑K−1
i¼0 N

2
i sð Þwi

; s ∈ 0; 1½ � ð1Þ

where pi ∈ [0, 1] × [0, 1] are the control points which define
the AGV’s path. It holds that

& p0 = pK − 1 symbolizes the depot
& The set of points {p1,…, pK − 2} are the workstations and

the number of the squares (Section 3.1)
& N2

i sð Þ is the base function
& wi is the weight factor and initially is set equal to 1

In order to generate for each AGV a path which is smooth
and respects the AGV’s kinematical constraints, we tune the
values of K weight factors wi, i = 1, …, K. It should be men-
tioned that increasing the value wi, i = 1, …, K will pull the
curve toward control point piwhile decreasing the value ofwi,
i = 1, …, K will push the curve away from control point pi.
Figure 4 presents the influence of the weight factor w2 to the
curve. Here, the black dashed polygon represents the control
polygon of a 3-degree NURBS curve which is defined by
three control points (black dots) P1, P2 and P3.

Each set of control points defines the NURBS curve (Eq. 1)
and creates the proposed paths for the AGVs. In this paper,

since the orientation of the AGV’s front wheel is mechanical
limited, a curvature constraintCu(s) is incorporated in the path
C(s) which is described by

Cu sð Þ≤Cumax; s ∈ 0; 1½ � ð2Þ
where Cumax is the maximum allowed curvature. In order to
compute the curvature Cuj at each point Cj, j = 1, …, Np of
C(s), we follow the procedure below:

The path C(s) is discretized by Np − 1 equal sequential
chords where at each point Cj, j = 1,…, Np, the corresponding
curvature Cuj is approximated by

C j ¼ C j−1−2C j þ C jþ1

�� ��≤Cumax; j ¼ 2;…;Np−1 ð3Þ

The tuning of the wi is done by using a GA following the
procedure similar with the paper [21].

3.1.2 Optimization criteria and constraints

Assume that the AGVs are initially filled with goods when
they leave the distribution depot. Each vehicle should fulfil the
fuzzy demands at each workstation before it returns to the
depot. For convenience, the capacity VC of the vehicles is
the same. The available fuzzy capacity of each vehicle after
serving the k workstations will be

eQk ¼ VC− ∑
k

i¼1

edi ð4Þ

If the available fuzzy capacity is greater than the fuzzy
demand at the next node, then the vehicle is sent to the next
node; otherwise, the vehicle should return to the depot. In
other words, the capacity constraint imposes that the fuzzy
demand at each workstation should not exceed the available
fuzzy capacity of the vehicle.

edkþ1≤ eQk ð5Þ

The capacity constraint is checked for each workstation to
establish a decision about sending the vehicle to the next

Fig. 3 The divided layout of a warehouse into squares

Fig. 4 The effect of the weight w2 to the curve’s shape
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workstation or sending it back to the depot. If the capacity
constraint is satisfied, the vehicle should be sent to the next
workstation. If the capacity constraints are violated, the vehi-
cle returns to the depot and the route ends. Another vehicle is
sent from the depot to the next workstation starting a new
route, and this process is repeated until all workstations are
served. Since the vehicles depart concurrently from the depot,
the optimization criterion is the minimization of the maximum
travel distance TDmax among all vehicles that is computed as

TDmax ¼ max TDið Þ; i ¼ 1;…; r ð6Þ
and TDi is given by:

TDi ¼ xid1 þ ∑
k−1

j¼1
xij; jþ1

� �
þ xi1d ð7Þ

where xid1 is the distance from depot to the first workstation of

the route i, xij; jþ1 is the distance from workstation j to work-

station j + 1, xi1d is the distance from the first workstation of
the route i to the depot and r is the total number of routes
resulting from the capacity constraint. It is worth noting that
the distances xid1, x

i
j; jþ1 and xi1d are not the actual distances,

but they are the virtual distances yielded by the fuzzy model
(described in Section 3.2) that have been calculated consider-
ing the traffic conditions.

3.2 Fuzzy sets and fuzzy numbers: concepts and
applications

Data in real-world problems are often afflicted with uncertain-
ty, imprecision and vagueness due to both machine and hu-
man factors; thus, they can only be estimated as within uncer-
tainty. The concept of fuzzy sets, which deal with vague,
ambiguous, incomplete and imprecise information, paved
the way for applying them to real and complex tasks [22].

Fuzzy logic and probabilistic logic are mathematically sim-
ilar (representing degrees of certain kinds of subjective belief)
but conceptually distinct, considering different forms of un-
certainty. Fuzzy set theory is based on the concept of fuzzy set
membership, whereas probability theory is based on the con-
cept of subjective probability. The concept of fuzzy sets was
firstly introduced in [23] and the term fuzzy variable was
presented in [24], and they can both be constructed by a mem-
bership function, where each element in the universe of dis-
course represents a membership grade. Fuzzy numbers can be
used to represent the uncertainty in data variables (demands,
travel distance etc.). In this study, the fuzziness of data is
represented by triangular fuzzy numbers (TFNs) because they
are simple in structure and fit well to represent the fuzzy de-
mands at the workstations, as well as the fuzzy traffic condi-

tions and distances. A TFN eA (see Fig. 5) is denoted as a triplet
(a1, a2, a3), where a2 is the most plausible value, a1 is the most

optimistic value (less than a2) and a3 is the most pessimistic
value (greater than a2). In other words, the actual data variable
may be equal to a2 (most plausible value), smaller (up to the
optimistic value a1) or greater (up to pessimistic value a3) than
a2. Thus, the value of α2 corresponds to a grade of member-
ship of 1. In practice, a dispatcher or analyst studying the
problem can subjectively estimate the boundaries (α1, α3) of
the variable data as well as the most plausible value (α2) based
on experience and/or intuition.

The triangular membership function corresponding to TFNeA is defined by

μeΑ xð Þ ¼
x−a1
a2−a1

; a1≤x≤a2

a3−x
a3−a2

; a2≤x≤a3

8>><
>>: ð8Þ

3.2.1 Fuzzification of demands

Since demands are modelled as triangular fuzzy numbers,
fuzzy operations are needed for the calculations. Ranking
fuzzy numbers is important in the context of comparing fuzzy
numbers. A flexible method has been developed in [25] for
ranking fuzzy numbers based on the integral value concept. It
is independent of the type of the membership functions and
uses an index of optimism to reflect the decision-maker’s op-
timistic attitude. According to this method, the total integral

value for a TFN eA ¼ a1ð ; a2 ; a3Þ is a convex combination of
the left and right integral values through an index of optimism
β ∈ [0, 1]. The left integral is used to reflect the optimistic
viewpoint and the right integral is used to reflect the pessimis-
tic viewpoint of the manager. The left integral value is com-
puted by

EL Að Þ ¼ 1

2
a1 þ a2ð Þ ð9Þ

and the right integral value is computed by

Fig. 5 A typical triangular fuzzy number A
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ER Að Þ ¼ 1

2
a2 þ a3ð Þ ð10Þ

The total integral value is

Eβ Að Þ ¼ βER Að Þ þ 1−βð ÞEL Að Þ

¼ 1

2
βa3 þ a2 þ 1−βð Þa1ð Þ ð11Þ

and is used as the ranking function. Therefore, for any two
fuzzy numbers Α and Β, if Eβ(A) < Eβ(Β), then Α < Β; if
Eβ(A) = Eβ(Β), then Α = Β and if Eβ(A) > Eβ(Β), then Α > Β.
The index of β represents the degree of optimism of a deci-
sion-maker. A larger β indicates a higher degree of optimism,
and a smaller β indicates a pessimistic decision-maker’s view-
point. For a moderate decision-maker, β is equal to 0, 5.

3.2.2 Fuzzification of travel cost

Fuzzy sets can be used with little knowledge about the histor-
ical data. They express intuitive knowledge rather than exact
uncertainty distribution. Fuzzy systems have the capability of
translating the expert knowledge into linguistic rules inside a
robust mathematical framework in order to draw conclusions
and generate responses.

Based on the concept of virtual distance proposed in [26], a
fuzzy model is formulated for determining the travel cost be-
tween the workstations. The decision system consists of two
input variables (actual distance and traffic condition) and one
output variable (virtual distance). Figure 6 displays the block
diagram of the system, which is regulated by 25 fuzzy rules
resulting from the five triangular membership functions used
for each input. Each input variable is characterized by five
fuzzy sets. The linguistic values corresponding to actual dis-
tance are: {very short (VS), short(S), medium (M), large (L),
very large (VL)}. The linguistic values corresponding to

traffic condition are: {poor (PR), fair (F), good (G), excellent
(E), perfect (PT)}. The virtual distances are represented by
seven linguistic variables namely {extremely short (ES), very
short (VS), short(S), medium (M), large (L), very large (VL),
extremely large (EL)}. Themembership functions of the fuzzy
decision system, shown in Fig. 7a, b and c, have been de-
signed based on the experience gained from studying the
system.

Expert knowledge, often afflicted with uncertainty, is sum-
marized in the proposition:

The larger the actual distance and the heavier the traffic
condition is, the larger the virtual distance should be.

In other words, as far as the traffic condition deviates from
its perfect condition, the travel cost associated with the virtual
distance gets even worse. The fuzzy associative memory
(FAM) of the system (Table 1) obtained through experience
consists of 25 rules. For the rule evaluation, the “min” opera-
tor is used, and for the aggregation mechanism, the “max”
operation is used. The centroid defuzzification method is used
to determine the virtual distance.

3.3 The evolutionary algorithm and solution
methodology

The integration of vehicle routing and motion planning under
fuzziness is a very challenging problem that can hardly be
solved using traditional methods. Genetic algorithms (GAs)
are proved to be a very promising tool for solving a wide
variety of real-world combinatorial optimization problems.
While traditional optimization techniques require one starting
point, GAs perform a search in a population of points and are
based on probabilistic transition rules instead of deterministic
rules. As a result, they are more likely to escape from local
optima and converge to the near global solution very fast. In
this study, a modified GA is developed as shown in Fig. 8 and
its main characteristics described analytically in the following:

Chromosome representation and initialization An integer-
point representation is applied, where each chromosome is a
K-dimensional vector that is a permutation of integer num-
bers. Each integer number represents a workstation; thus, the
set of integer numbers represents the order with which the
vehicle visits the workstations.

The initial population is generated randomly in an attempt
to produce solutions over the search space expressed by uni-
form distribution. Each chromosome represents a possible
path for the AGV starting and ending to the depot.

The evaluation mechanism The fitness function expresses the
possibility that the chromosome will survive and reproduce in
the next generation and is strongly associated to the objective
function. The fitness function of the problem at hand is
expressed byFig. 6 The block diagram of the system
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fitness ¼ 1
�
TD ð12Þ

Genetic operators In the proposed GA, reproduction is based
on the roulette wheel selection scheme, where the parent chro-
mosomes are selected with rates proportional to their fitness.
In general, chromosomes with higher fitness value have more

chances to be selected for reproduction.Crossover is a recom-
bination operator that combines the genetic information of the
parents to produce new offspring. The Order Crossover (OX)
[27] is applied according to a randomly chosen crossover rate.
Mutation is applied in order to inject new genetic material into
the population and thereby maintain genetic diversity. The
inversion [27] is used for mutation according to a randomly
chosen mutation rate.

4 Experimental results

In this section, numerical results are provided to illustrate our
treatment. The simulations ran using Matlab version R2015b
and the machine used is a dual-core Celeron 2.16 GHz PC.
The control settings were selected after extensive experimen-
tal efforts with various control schemes adopted following the
indications of the literature. The control settings for the pa-
rameters are as follows: population size = 100, maximum gen-
eration number = 300, a random crossover rate taken values in

Fig. 7 The membership functions for the two inputs and the output

Table 1 FAM of the system

Actual distance

VS S M L VL

Traffic condition PR VS S M VL EL

F VS S M L VL

G ES VS M L L

E ES VS M M L

P ES VS S M L

1808 Int J Adv Manuf Technol (2020) 109:1801–1813



the range [0.7–0.85], a random mutation rate taken values in
the range [0.06–0.1].

4.1 Numerical results

In this sub-section, we study the performance of the proposed
method through several simulation experiments for a fleet of
vehicles moving in a cluttered environment. For each fuzzy
demand, a triangular fuzzy number is built (see Fig. 5). For all
the test instances examined in this sub-section, the demands
are fuzzified by setting the two extreme (least likely) values of
the triplet α1 = α2 ∙ δ1 and α3 =α2 ∙ δ2, where δ1 = 0.85 and
δ2 = 1.3. Concerning the index of β, for a moderate decision-
maker, β is set to 0.5. In Section 4.2, we will investigate the
impact of δ1 and δ2 values as well as the impact of index β on
the solution quality. In the following, an example is indica-
tively presented and discussed.

The experimental tests are conducted on the 2D indoor
industrial environment shown in Fig. 3, containing several
rooms with wide corridors and a single depot. A fleet of
AGVs are requested to deliver supplies to the workstations

(WSs). For sake of simplicity, AGVs have the same capacity
quantity. The total number of WS is 10.

The problem is solved for different values of vehicle’s ca-
pacity, and full characteristics for the solutions provided are
summarized in Table 2, where d stands for depot.
Furthermore, the crossover and mutation rate generated to
obtain the optimal solution for each test case are given in
Table 3 while the distance matrix is given in Table 4.

It is clear from the results that increasing the vehicle’s
capacity, the number of vehicles used is decreased, since each
vehicle can fulfil more demands and serve more workstations.
In addition, an increase in the vehicle’s capacity leads to a
decrease of the total travel distance since fewer vehicles result
in lower total travel cost.

As presented in Table 2, for a vehicle’s capacityC = 30, the
optimal fleet size is two and the optimal routing yielded by the
proposed GA is: AGV1 d→ 4→ 6→ 9→ 8→ 5→ 7→ d
and AGV2 d→ 2→ 1→ 10→ 3→ d. The fuzzy demands
fulfilled by each AGV is (21.3, 25.0, 32.5) and (16.2, 19.0,
24.7) and the travel distance is 408.6 and 410.5, respectively.
Therefore, the total travel distance is 819.1. In Fig. 9, the two
optimal tours are illustrated. The brown closed curve shows

Fig. 8 The flowchart of the developed genetic algorithm

Table 2 Characteristics of the best solution attained by the proposed approach

Vehicle
capacity

Fleet
size

Routes for each vehicle Fuzzy demands fulfilled from
each vehicle

Integral value of fuzzy
demands

Travel distance for
each vehicle

Total travel
distance

10 7 d–4–9–d (6.0, 7.0, 9.1) 7.3 214.4 1523.4
d–5–7–d (6.0, 7.0, 9.1) 7.3 244.0

d–10–d (4.3, 5.0, 6.5) 5.2 255.5

d–2–1–d (7.7, 9.0, 11.7) 9.3 255.5

d–6–d (4.3, 5.0, 6.5) 5.2 240.0

d–3–d (4.3, 5.0, 6.5) 5.2 98.3

d–8–d (5.1, 6.0, 7.8) 6.2 215.6

20 3 d–10–3–8–d (13.6, 16.0, 20.8) 16.6 318.5 1001.6
d–2–1–9–6–d (14.5, 17.0, 22.1) 17.6 363.1

d–5–7–4–d (9.4, 11.0, 14.3) 11.4 320.0

30 2 d–4–6–9–8–5–7–d (21.3, 25.0, 32.5) 25.9 408.6 819.1
d–2–1–10–3–d (16.2, 19.0, 24.7) 19.7 410.5

40 2 d–3–7–5–8–2–6–9–4–d (29.8, 35.0, 45.5) 36.3 462.1 855.8
d–10–1–d (7.7, 9.0, 11.7) 9.3 393.7

50 1 d–3–8–6–5–7–10–1–2–9–4–d (37.4, 44.0, 57.2) 45.7 662.7 662.7
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the tour solution for AGV1, and the red closed curve shows
the tour for AGV2. Similarly, the optimal tours for the rest
simulation tests are illustrated in Fig. 10. One should keep in
mind that the resulted optimal tours are not the shortest tours,
but they are the tours that have been yielded considering the
traffic conditions as well as the fuzzy demands at the work-
stations. This fact can explain why the resulted optimal tours
are not the expected VRP tours.

As already mentioned, decreasing the vehicle’s capacity
leads to increasing the number of vehicles used, which in turn
leads to the increase of travel cost due to the fact that more
routes from depot and to depot are added. The maximum
travel costs among all vehicles used to fulfil the demands are
depicted in Fig. 11, for the different values of vehicle’s capac-
ity. As expected, the maximum travel distance is increased,
since less vehicles are requested to serve the workstations
implying that each vehicle will serve more workstations
resulting in an increase of the travel cost corresponding to
each vehicle. Figure 11 depicts the maximum travel costs
considering fuzziness in distances, as well as considering the
conventional travel distances (ignoring traffic condition). As
resulted from Fig. 11, the maximum travel distance consider-
ing fuzzy virtual distances is greater from the corresponding
one considering conventional distances implying that traffic
condition tends to increase the real travel cost.

4.2 Discussion and validation of results

In this sub-section, we conduct a sensitivity analysis through
simulation in order to validate the results of the proposed
model. In an attempt to control the uncertainty of the demands
fulfilled by each AGV, one should control the uncertainty of
the demands at the workstations. This is achieved byminimiz-
ing the support of the demands. In practice, this means that the
more accurate the minimum and maximum values of the de-
mands are, the better the estimate of the support is. Moreover,
controlling the decision-maker’s attitude toward a situation by
feeling more or less optimistic (i.e. the choice of β) has an
impact on the capacity constraint.

To investigate the effect of the uncertainty in demands at
the workstations on the uncertainty of the demands fulfilled by
each AGV, two different approaches are applied. First, chang-
ing the width of the intervals, and second, choosing different
values for β for the computation of total integral value of fuzzy
demands.

Table 3 The parameter setting in GA to obtain optimal solution

Vehicle capacity Crossover rate Mutation rate

10 0.8 0.09

20 0.7 0.08

30 0.7 0.1

40 0.7 0.07

50 0.7 0.06

Table 4 The derived distance matrix (ws = workstation)

Depot ws 1 ws 2 ws 3 ws 4 ws 5 ws 6 ws 7 ws 8 ws 9 ws 10

Depot 0 103.65 111.41 39.30 37.33 93.88 77.02 78.98 60 71.73 60

ws 1 103.65 0 20 88.5 75.12 70.31 41.87 96.03 53.68 37.69 141.28

ws 2 111.41 20 0 106.37 81.6 90.31 41.87 115.81 71.55 40.84 159.15

ws 3 39.30 88.5 106.37 0 46.11 55.9 80.14 40.84 42.25 66.68 52.81

ws 4 37.33 75.12 81.6 46.11 0 87.45 41.35 84.46 51.14 41.87 95.14

ws 5 93.88 70.31 90.31 55.9 87.45 0 92.29 37 43.75 75.42 96.26

ws 6 77.02 41.87 41.87 80.14 41.35 92.29 0 95.62 50.99 18.02 132.06

ws 7 78.98 96.03 115.81 40.84 84.46 37 95.62 0 45 80 63.55

ws 8 60 53.68 71.55 42.25 51.14 43.75 50.99 45 0 35 87.86

ws 9 71.73 37.69 40.84 66.68 41.87 75.42 18.02 80 35 0 119.46

ws 10 60 141.28 159.15 52.81 95.14 96.26 132.06 63.55 87.86 119.46 0

Fig. 9 The solution tours for the two AGVs when C = 30
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Firstly, we change the width of the intervals fromwhich the
parameters of the fuzzy demands are withdrawn. We consider
the following three combinations: (δ1, δ2) = (0.85, 1.3),
(δ1, δ2) = (0.7, 1.6) and (δ1, δ2) = (0.9, 1.2). It is obvious that
choosing a low value for δ1 and a high value of δ2 causes more
uncertainty in the demands. On the contrary, a higher value for
δ1 and a lower value for δ2 results in a narrow support for the
demands. The results for the fulfilled fuzzy demands are
shown in Fig. 12. As one can see from Fig. 12, more uncer-
tainty in demands at the workstations results in a wider sup-
port (i.e. more uncertainty) of the fulfilled fuzzy demands. On
the contrary, less uncertainty in demands (i.e. when δ1 = 0.9
and δ2 = 1.2) results in more accuracy of the generated ful-
filled fuzzy demands (see green triangles in Fig. 12 a and b).
Similar results are yielded from both AGVs. Therefore, we
can conclude that increasing the uncertainty in demands at
the workstations, the supports of the fulfilled fuzzy demands
are broadened. Conversely, decreasing the uncertainty in

Fig. 10 The solution tours for the AGVs when a C = 10, b C = 20, c C = 30, d C = 40

Fig. 11 The maximum travel distances versus the vehicle’s capacity
considering virtual distances and conventional distances
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demands at the workstations, the supports of the fulfilled
fuzzy demands are narrowed.

The second approach employed considers different values
for β for the computation of total integral value of fuzzy de-
mands. As already mentioned, the index of β expresses the
degree of the decision-maker’s optimism. For a pessimistic
decision-maker, β = 0; conversely, for an optimistic deci-
sion-maker, with β = 1. Lower values of β express the pessi-
mistic decision-maker’s viewpoint regarding the expected de-
mands at workstations. Therefore, lower values of β indicate
the decision-maker’s confidence that each AGV is able to
serve as many demands as possible, since each fuzzy demand
is evaluated by lower values. In other words, lower values of β
express higher values for the expected available capacity. On
the contrary, higher values of β express the optimistic deci-
sion-maker’s viewpoint, i.e. higher values for the demands
served by each vehicle and therefore lower values for the
expected available capacity. As shown from Fig. 13, an

increase in the value of β results in a decrease of the integral
value of available capacity of each AGV.

5 Conclusions

This study contributes to the literature of vehicle routing and
planning problems in the following aspects: (a) studying the
integration problem of vehicle routing problem and path plan-
ning as a global optimization problem, (b) proposing a fuzzy
model of the problem considering fuzziness in distances and
demands to deal with uncertainty in real-world problems and
(c) determining the paths between successive workstations
considering obstacle avoidance.

The paper presents an innovative approach for routing and
motion planning a fleet of AVs used for logistics operations in
indoor factory environments. The proposed approach can deal
with uncertainty embedded in real-world factory environ-
ments affecting both the demands at workstations and the
travel distance between the workstations. The objective is to
determine the fleet size, the allocation of workstations to the
AGVs, and the AGVs’ safe (collisions-free) paths starting and
ending to the depot, so that all workstations are served at the
lowest possible cost.

In the proposed approach, an A-star algorithm is applied on
an image of the environment to construct a distance matrix
between the depot and the workstations and among the work-
stations. In order to resolve the derived optimization problem,
a genetic algorithm is proposed which is based on fuzzy sets
and fuzzy numbers to deal with uncertainty in demands and
distances. Numerical examples of different vehicle’s capacity
are conducted to validate the efficiency and effectiveness of
the proposed method. On this basis, a genetic algorithm is
applied, which is integrated with a fuzzy model foe distances
and capacity. The optimal solution is presented for different

Fig. 12 The effect of range of fuzziness on the resulted demands fulfilled by a AGV1 and b AGV2

Fig. 13 The integral value of fuzzy demands versus the β index for C =
30
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values of vehicle’s capacity. A sensitivity analysis is also pre-
sented to assess the effect of uncertainty in the total amount of
demands fulfilled by eachAGV. This analysis showed that the
better estimate we can have for the demands at workstations,
the less uncertainty we get for the total amount of demands
fulfilled by each AGV. Moreover, the choice of β-index af-
fects the available capacity of each AGV.

Future work will be devoted to apply the proposed concept
in dynamic partially known environments, where a fleet of
AGVs is assigned to serve a set of workstations while moving
safely and concurrently avoiding collisions with static and
dynamic obstacles getting advantage of artificial intelligent
methods.
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