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Abstract
Catastrophic tool failure (CTF) in milling process can cause damage to the product’s machined surface and the machine tools,
leading to huge financial losses. It is therefore critical to detect CTF in advance and promptly respond to it. Because of the safety
and quality requirements imposed in practice, there are far fewer failure samples than normal samples, and this disequilibrium
makes it difficult to detect failures. The aim of this study is to develop a new, easy, and practical automatic system for tool
breakage detection using the acoustic emission (AE) technique. Components of AE raw data are analysed to locate the moments
of tool breakages and to screen the corresponding AE feature samples. A support vector machine-based cost-sensitive breakage
detection model is established and optimized. The proposed model is applied and validated by experiments conducted on a
factory’s milling machine. The model achieves an accuracy of 91.18% in the detection of breakages. The results show the
practicability and validity of the proposed method.
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1 Introduction

The turbine generator is one of the most important pieces of
equipment in the power industry. As a core component of the
generator, the generator rotor is high-value-added and compli-
cated. It is manufactured through a milling process with a high
flexibility and high removal rate. A high level of accuracy and
surface quality can be achieved using hard tools; however, this
increases the risk of unexpected catastrophic tool failure
(CTF) [1, 2]. Without a tool breakage detection system, CTF
during the cutting procedure can cause damage to the ma-
chined surface of the product and the machine tools, causing
huge financial losses. Hence, it is crucial to build an automatic

monitoring system to detect tool breakages and prevent the
occurrence of CTF during the milling operation.

Monitoring techniques of machining operations are tradi-
tionally categorized into either direct measurement methods or
indirect measurement methods. Compared with direct mea-
surement methods, indirect measurement methods have the
advantage of real-time detection. They also have few influ-
ence on the machining process, making themmore suitable for
practical applications [3, 4]. Various signals, such as acoustic
emission (AE) [5–7], acceleration [8, 9], cutting force [10,
11], and power [12] corresponding to tool condition, quality
of machining, and defects in the workpiece, have been
researched. Studies have well examined that the sensing sig-
nals during the cutting process provide one of the most effec-
tive means to detect tool breakages [13, 14]. Rehorn et al. [15]
and Zhou et al. [4] reviewed these various methods that have
been adopted to monitor tool condition, indicating that AE can
provide marked and rapid responses to the changes in a tool’s
condition. Furthermore, it is easily recorded and unaffected by
vibrations and noises since the frequency of the AE signal is
much higher than the frequency of that [16].

Many techniques can be used to detect tool breakages, such
as support vector machines (SVMs) [17–19], artificial neural
networks [20], Bayesian networks [21], and hidden Markov
models [22]. Most of these methods require a great number of
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labelled samples under constant conditions to establish the mod-
el. However, SVMs can effectively deal with small training data
sets and can produce a higher classification accuracy than other
traditional methods [23, 24]. In terms of the manufacturing pro-
cess of a generator rotor, labelled samples, particularly samples
of broken tools, are rare. The sample size is too small for most
methods except SVMs. Additionally, there are far fewer broken
tool samples than normal samples, and this disequilibrium
makes it more difficult to recognize the minority class (the bro-
ken tool samples) than the majority class (the normal samples)
[25, 26]. To deal with this imbalance, techniques such as sam-
pling methods [27], cost-sensitive methods [28, 29], and other
methods have been proposed. Various empirical studies have
shown that cost-sensitive methods are superior to sampling
methods in many imbalanced learning domains [25, 26].

The small sample size and disequilibrium of labelled samples
make it difficult to detect tool breakage, and auto detection
systems rarely exist in the power industry. Therefore, it is worth
to develop reliable industrial systems for tool breakage detec-
tion. This paper proposes a new method based on an SVM to
detect tool breakages and presents an industrial monitoring sys-
tem for the milling process. This research was conducted on a
factory’s special rotor slot milling machine, where the milling
machine, machine tool, and workpiece material are all large
scale and customized. It is difficult to obtain large samples as
it is almost impossible to get these items in a laboratory condi-
tion. Additionally, the strict safety and quality requirements im-
posed during production limit the number of tool breakages, so
there are far fewer samples of broken tools than normal samples.

Our proposed tool breakage detection system is built based
on a cost-sensitive method, which allows us to deal with the
imbalanced samples. It has two main phases: the “model es-
tablishing” phase, and the “online detection” phase. First, the
frequency components of the AE waveform are analysed to
screen the tool breakage samples. Second, an SVM-based
model is established to reflect the relationship between the
AE features and the tool breakages. Third, the performance
of the tool breakage detection model is optimized and tested.
Our paper provides three main contributions:

1. Because the tool breakages cannot be measured or iden-
tified visually during the milling process, we use compo-
nents of the AE waveform to locate the moments of tool
breakages. We then use these moments to retrieve the AE
feature samples to establish the breakage detection model.

2. Because there are far fewer broken tool samples than nor-
mal samples, we use a cost-sensitive method to improve
the performance of SVM on the imbalanced data set.

3.In contrast to previous research, we value the accu-
racy of the breakage samples and the misclassification rate
of the normal samples, respectively. When evaluating the
performance of the model, we weigh both rates and then
determine the model parameters.

2 Overview of the method

Although the processing technology and the cutting condi-
tions during generator rotor machining process are fixed, in-
sert breakages have inevitably occurred in the past. The ob-
jective of our study is to prevent the occurrence of damage to
the machined surface and the machine tools by detecting se-
vere breakages. As shown in Fig. 1, the proposed insert break-
age detection method has two phases: the model establishing
phase and the online detection phase. Since the model estab-
lishing phase is an offline process, it is acceptable to have
complicated calculation methods. The online detection phase
is an industrial application, so that the detection method needs
to be easily calculated and have low latency.

In the model establishing phase, we use an AE system to
continuously collect raw streaming data and features during
the milling process. After the milling process, we use a micro-
scope to measure the breakage value of the inserts. To estab-
lish the model, a frequency component analysis method—
short-time Fourier transform (STFT)— is applied to screen
out the abnormal samples (i.e. the breakage samples) from
the normal samples. First, the moments when severe break-
ages occurred are identified by analysing the frequency com-
ponents of the AE raw signal. Then, the features of the iden-
tified moments are screened out as the abnormal samples.
Finally, both the normal and abnormal samples are used to
train and optimize an SVM-based breakage detection model.

In the online detection phase, the AE features are extracted
and delivered into the breakage detection model in real time
during the milling process to decide whether severe breakages
have occurred.

3 Experimental setup and instrumentations

3.1 Machining procedure

The experiments were conducted on a factory’s customized
rotor slot milling machine, as shown in Fig. 2. A piezoelectric
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Fig. 1 Schema of the proposed insert breakage detection method
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AE sensor from the physical acoustics corporation (PAC) was
fixed to the surface of the workpiece with a magnetic attrac-
tion fixture. A specialized semi-solid acoustic couplant was
used to reduce signal transmission loss between the contact
surfaces. The next section details the AE signal acquisition
setting. The workpiece material is 25Cr2Ni4MoV, a high-
strength structural steel. The cutting tool is a W40 disc-type
milling cutter, on which 36 SNC55 inserts are mounted as
cutting edges. The SNC55 insert is a type of tungsten carbide
insert, the parameters of which are shown in Fig. 3. Table 1
shows the experiment conditions.

Five subsequent experiments were conducted under
identical experimental conditions except the mechanical
properties of the workpiece material. To characterize me-
chanical performance of the workpiece, tension tests
were performed. For each workpiece, six samples from
different parts were tested. The averages and standard
deviations of yield strength and tensile strength are
shown in Table 2.

3.2 AE system

Since the frequency of the AE signal produced in this
type of milling is 100–400 kHz [30], the adopted AE
sensor is R15α with an operating frequency range of

100–450 kHz, as shown in Fig. 2. A commercial, two-
channel AE signal acquisition and digital signal process-
ing system integrated on a full-size PCI card by PAC
was used. The system can provide 18-bit A/D conver-
sion, with up to 10 MHz AE data streaming continuous
recording on one channel, or 5 MHz on two channels,
and a built-in, real-time AE feature extraction. There are
two types of real-time extracted AE features: time do-
main features, which include the rise time (RT), counts
(C), amplitude (A), root mean square (RMS), average
signal level (ASL), counts to peak (CP), signal strength
(SS), and absolute energy (ABE), and frequency domain
features, which include the average frequency (AF), re-
verberation frequency (RF), initiation frequency (IF), and
frequency centroid (FC). Figure 4 is a schematic AE
signal onto which some of the features have been
shown. The calculating formula of the features is de-
tailed in Table 3. The AE signals are sampled at
2 MHz according to the sampling theorem and are proc-
essed by AEwin software from PAC. The principal pa-
rameters of the recording equipment are detailed in
Table 4.

The raw AE streaming data, as shown in Fig. 5, is a type of
waveform signal. The 12 real-time extracted AE features are a
time series signal with time-domain and frequency-domain
information. Figure 6 shows the variations of three typical
features during one slot milling process. The variation consists
of three stages: the start stage, stable cutting stage, and end
stage. The start stage and end stage are both unstable transition
parts and will be jettisoned when processing the signals. For
one slot, 2760 feature samples are extracted during the milling
process. We exclude 510 samples corresponding to the start
stage and end stage and use the 2250 samples corresponding
to the stable cutting stage as the sample to be studied.

3.3 Breakage measurement

We used an optical microscope to measure the breakage
values of the inserts. The maximal magnification of the mi-
croscope is × 160, and the measurement resolution is 1 μm.
There are 4 cutting edges on each SNC55 insert, which are
independent from one another. In this experiment, 234 cutting
edges were measured. The majority of these cutting edges
only had slight breakage, shown in Fig. 7a, which was treated
as flank wear. A few cutting edges had severe breakage that
far exceeded the normal wear, as shown in Fig. 7b. The ac-
ceptable limit of flank wear is 0.6 mm for rough machining
[31]. Consequently, the enterprise norm indicates that a cut-
ting edge with more than 1 mm of breakage should be re-
placed to prevent the occurrence of workpiece damage.
There were 17 cutting edges with more than 1 mm of break-
age, and these were used as our breakage samples.

L = W = 15.875 mm, S = 7.94 mm, R = 0.5 mm 45 , A = 90 .

Fig. 3 Shape and dimension of cutting insert. L = W = 15.875 mm, S =
7.94 mm, R = 0.5 mm × 45°, A = 90°

Fig. 2 Experimental setup
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4 Signal screening

Since the machine tool is continuously rotating, an insert
breakage cannot be identified immediately. We use a time-
frequency analysis method to identify the moments of insert
breakages. These identified breakage samples, together with
the normal samples, are then used to train and optimize the
breakage detection model.

The raw AE streaming data, shown in Fig. 5, are a type of
waveform signal. Therefore, it cannot be used directly for break-
age recognition. The twelve real-time extracted AE features, as
previously detailed in Table 2, are time series signals with either
time-domain or frequency-domain information. These features
have been proved to be related to tool condition [7, 32] and
can be used as the input of the learning machine.

Insert breakages cannot be identified by visually inspecting
the AE signals (neither the features nor the waveform) or by
monitoring the machine tool because it is continuously turning.
The frequency components of the AE raw signal vary with the
tool condition, and they can be analysed using a time-frequency
analysismethod [30, 33]. Previous studies havewell documented
that the STFT method can be used to deal with nonstationary
signals and it has been applied to complex signal processing [34,
35]. Frequency components, which are different from the main
signal, can be distinctly separated [36]. Furthermore, the STFT
method is more suitable than wavelet filters for the analysis of
disturbance data, which do not give easy insight in the time
behaviour [37]. In view of this, we use the STFT method to
locate the moments of insert breakages by analysing the frequen-
cy components of the AE raw signal.

The procedure of STFT is to partition a longer temporal
signal into shorter segments of equal duration with a window
function and to compute the Fourier transform of each shorter
segment, respectively. The Fourier spectrum of each shorter

segment can then be plotted as a function of time. Assuming
an energy-limited signal, f(t) can be decomposed by STFT:

STFTð Þ f tð Þð Þ ¼ ∫∞−∞ f tð Þg t−uð Þe−jωtdt ¼ f tð Þ;φu;ω

� �
: ð1Þ

Here g(t) is a sliding window function (we use the
Hamming window in this paper). We can then obtain a local-
ized time–frequency atom φ:

φu;ω tð Þ ¼ ejωtg t−uð Þ: ð2Þ

We use a spectrogram, the energy density |STFT(f(t))|2, to
analyse the frequency components. For convenience, the raw
signal is divided into parts with equal duration of 10 s. The
length of the Hamming window is 256, and the number of
overlapped samples is 250. As shown in Fig. 8a, when all
machine tool inserts are intact, the spectrogram of the raw
AE signal is mainly limited to 50~150 kHz and the energy
density in other frequency bands is less than − 100 dB. In the
case shown in Fig. 8b, the spectrogram contains not only the
50~150 kHz frequency component but also a short-lived,
greater than 200 kHz frequency component. When all factors
except for the machine tool condition remain unchanged, we
derive the relation between the signal exceptions and insert
breakages. From this, we obtain the moments of the insert
breakages. We then use these moments to retrieve the AE
features corresponding to the insert breakages. Seventeen
AE feature samples are screened out, and the number is equal
to the number of broken cutting edges.

Unlike breakage samples, normal samples do not need to
be screened. The signals of the first slot of the experiment, as
shown in Fig. 8a, acquired when all cutting edges are intact,
are therefore chosen as the normal samples. As shown in Fig.
6, the normal samples exclude the start and end stages, and
only 2250 samples of the stable cutting stage are reserved. The

Table 1 Experiment conditions
Machine INGERSOLL rotor slot milling machine

Cutting tool W40 disc-type milling cutter with 36 SNC55 inserts divided into upper, middle, and lower
three places, with a diameter of 1100 mm, and a cutting width of 42.1 mm.

Work material 25Cr2Ni4MoV steel, with a tensile strength of more than 760 MPa, a
diameter of 1130 mm, and a length of 6250 mm.

Cutting
conditions

Dry cutting, with a spindle speed of 35 rpm, a feed rate of 350 mm/min,
and a cutting depth of 50 mm.

Table 2 Mechanical properties of
the workpiece material Workpiece no. 1 2 3 4 5

Average of yield strength (MPa) 696.3 697.5 710.8 699.5 702.8

Standard deviation of yield strength (MPa) 7.2 11.1 8.4 19.4 12.5

Average of tensile strength (MPa) 799.3 813.3 825.8 807.8 808.3

Standard deviation of tensile strength (MPa) 3.7 7.5 5.3 10.6 7.5

1412 Int J Adv Manuf Technol (2020) 109:1409–1418



17 abnormal samples and 2250 normal samples are used to
form the learning sample set.

5 Detection of insert breakage

5.1 Breakage detection model

The detection of severe breakages is a very sophisticated prob-
lem that involves the establishment of a detection model and
optimization of the model’s performance. The screened sam-
ple set can be expressed as

X ¼ xi; yið Þ; i ¼ 1; 2;⋯; nf g: ð3Þ

Here xi = (RTi, Ci, Ai, AFi, RMSi, ASLi, CPi, RFi, IFi, SSi,
ABEi, FCi)

T is the signal feature vector of the ith sample, y-
i ∈ {1, −1} is the class label of the ith sample, and n is the size
of the dataset.

The large differences in the scales and magnitudes of the
twelve features can impact the accuracy of the model.
Therefore, it is critical to standardize the features to enhance
their comparability. In this paper, we employ dispersion to
standardize the features. Taking the RT for example, the cal-
culation formula is

RT*
i ¼

RTi−RTmin

RTmax−RTmin
i ¼ 1; 2;⋯; n: ð4Þ

The standardized features, with a distribution range of [0,
1], form the input matrix of the breakage detection model:

X * ¼ x*1; x
*
2;…; x*n

� � ¼
RT*

1 RT*
2 ⋯ RT*

n
C*

1 C*
2 ⋯ C*

n
⋮ ⋮ ⋱ ⋮
FC*

1 FC*
2 ⋯ FC*

n

0
BB@

1
CCA: ð5Þ

Table 3 Definitions of AE features

Features Abbreviation Definition

Rise time RT The time between an AE hit starts, and it reaches the peak amplitude.

Counts C The number of AE signal excursions over the AE threshold.

Amplitude A A = 120 logVmax − P (dB), where P is preamplification gaining.

Root mean square RMS RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N
i¼1V

2
i

q
.

Average signal level ASL ASL ¼ 120logV (dB).

Counts to peak CP The number of C between its start and peak amplitude.

Signal strength SS SS ¼ 1
2 f s

∑N−1
i¼1 Vi þ Viþ1ð Þ, where fs is sample rate.

Absolute energy ABE ABE ¼ 1
10kΩ∑N

i¼1V
2
i , where 10kΩ is the reference resistance of the recording equipment.

Average Frequency AF AF =C/HT, where HT is the duration of an AE hit.

Reverberation Frequency RF RF ¼ C−CP
HT−RT.

Initiation frequency IF IF =CP/RT.

Frequency centroid FC
FC ¼ ∑ f ⋅eV

∑eV is calculated from fast Fourier transform (FFT), where eV is

the magnitude of FFT element and f is corresponding frequency.

Fig. 4 Schematic diagram of the AE signal

Table 4 Parameters of
the recording equipment Threshold 45 dB

Pre-amplifier 20 dB

Analogue filter 100–400 kHz

Digital filter Disabled

Maximum duration 100 ms

Streaming record length 10 s

RMS/ASL time constant 500 ms
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The output values of the breakage detection model are set
to 1” and “−1” for the abnormal and normal samples, respec-
tively. The output vector for training and detection is

Y ¼ y1; y2;⋯; ynð ÞT : ð6Þ

The standard SVM is proposed for binary classification
problems. The fundamental of the SVM is to maximize the
certainty factor by finding a separating hyperplane, which
maximizes the margin between two classes.

Assume that the input matrix and their labels are x*i ; yi
� �

,
i = 1, 2, ⋯, n, and yi ∈ {1, −1}. The modelling process of the
SVM can be converted into solving this dual problem:

min
α

1

2
∑
n

i¼1
∑
n

j¼1
αiα jyiy jK xi; x j

� �
− ∑

n

i¼1
αi

s:t: 0≤αi≤C; i ¼ 1; 2;⋯; n ∑
n

i¼1
αiyi ¼ 0:

ð7Þ

Here, αi, i = 1, 2,⋯, n are the parameters to be solved, C is
the penalty factor corresponding to the trade-off between the
empirical error and the regularized term, and K(xi, xj) = 〈Φ(xi)
⋅Φ(xj)〉 is the kernel function, which can ensure the model to
be exempt from “dimension disaster” in high-dimensional
feature space. In this paper, we employ radial basis function:

K xi; x j
� � ¼ exp −γ xi−x j

		 		2
 �
: ð8Þ

This is a convexity quadratic programming problem that
has a unique solution. The solving process and solution are
relevant only to the input matrix.

Our acquired data set contains 17 breakage samples and
2250 normal samples. A usual classifier that classifies all the
samples into the majority can reach an accuracy of 99.3%.
However, the minority samples, which are our focus, would
all bemisclassified. Therefore, to improve the detection rate of
the breakage, we adopt a type of cost-sensitive SVM. This is
implemented by introducing different penalty factors, C1 and
C−1, for the minority samples and majority samples during
training, and the standard SVM problem is transformed into

min
α

1

2
∑
n

i¼1
∑
n

j¼1
αiα jyiy jK xi; x j

� �
− ∑

n

i¼1
αi

s:t: 0≤αi≤Ci; i ¼ 1; 2;⋯; n ∑
n

i¼1
αiyi ¼ 0:

ð9Þ

Here,Ci ¼ C1 i∈ i yi ¼ 1jf gf C−1i∈ i yi ¼ −1jf g. The in-
troduction of different penalty factors enables the learning
machine to treat the minority and the majority, respectively,
namely, the cost of misclassification of abnormal samples is
much higher than the normal ones. The higher misclassifica-
tion cost of the abnormal samples can contribute to the lower
misclassification rate of the abnormal samples; consequently,
the breakage detection performance of the model can be im-
proved. Thereafter, the classification results can be calculated
through this optimal function:

f xð Þ ¼ sgn ∑
n

i¼1
α*
i yiK xi; xtestð Þ þ b0

� 

: ð10Þ

Start stage Stable cutting End stage

Start stage Stable cutting End stage

Start stage Stable cutting End stage

Samples

Samples
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Fig. 6 Variations of some
features

Fig. 5 AE streaming data
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Here, xtest is the sample to be classified, and b0 is the clas-
sification margin calculated using any one of the support
vectors.

When performing prediction we wish not only to obtain the
predicted label but also gain an uncertainty, or a probability of
the respective label. This uncertainty or probability gives
some kind of confidence of the prediction. However, SVM
produces an uncalibrated value that is not a probability. So
that we use Platt’s probabilistic outputs [38], which train an
additional sigmoid function to transform the original SVM
outputs into probabilities. It is a posterior probability approx-
imated by a sigmoid function:

Pr y ¼ 1jxð Þ≈PA;B f 0ð Þ≡ 1

1þ exp Af 0 þ Bð Þ ; ð11Þ

where f 0 ¼ ∑
n

i¼1
α*
i yiK xið ; xtestÞ þ b0 is the unthresholded out-

put of the SVM. The best parameter setting z∗ = (A∗, B∗) is
obtained by solving this regularized maximum likelihood
problem (with N+ of the yi positive, and N− negative):

min
z¼ A;Bð Þ

F zð Þ ¼ − ∑
n

i¼1
tilog pið Þ þ 1−tið Þlog 1−pið Þð Þ;

for pi ¼ PA;B f i
0ð Þ; and ti ¼

Nþ þ 1

Nþ þ 2
if yi ¼ þ1

1

N− þ 2
if yi ¼ −1

8><
>: ; i ¼ 1;⋯; n::

ð12Þ

The optimization algorithm of (12) is Newton’s method
with backtracking [39].

5.2 Model training and optimization

The performance of a method is generally evaluated by its
accuracy. In this paper, a total of 17 abnormal samples and
2250 normal samples are screened out for the model training
and testing. Assumed the model classifies all the samples into
the majority, it can achieve an accuracy of 99.3%; however, it
would also misclassify all of the breakage samples. We there-
fore use the true positive rate (TPR) and the false positive rate
(FPR) to evaluate the performance of the model. TPR and
FPR can be calculated using

TPR ¼ TP
TP þ FN

; ð13Þ

FPR ¼ FP
FP þ TN

: ð14Þ

Here, TP is the number of correctly classified majority (the
normal data set) samples with label “−1,” FN is the number of
misclassified minority (the breakage data set) samples with
label “1,” FP is the number of misclassified majority samples,
and TN is the number of correctly classified majority samples.

For the 2250 normal samples, we use the first 2000 samples
as the training dataset and use the remaining 250 samples as
the testing dataset to validate the model. As a result, the train-
ing and testing data set of the majority have enough samples.
In contrast, the minority data set is made up of only 17

Fig. 8 a STFT of the normal AE
signal. b STFT of the abnormal
AE signal

(b)(a)

Fig. 7 a Slight breakage of
majority. b Severe breakage of
minority
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samples, where each sample has the potential to be different
because of the random manner in which breakages occur. To
eliminate the adverse impact of individuality of minority sam-
ple on model validation, we select samples for validation ten
times using the random sampling method. The minority sam-
ples are labelled from 1 to 17 at each validation, where 7 of
them are selected randomly as the testing dataset and the re-
maining 10 are used as the training dataset. The random sam-
pling results are presented in Table 5. While optimizing the
breakage detection model, the model is trained using the train-
ing data, and tested with the testing data together with training
data ten times, with an average FPR and TPR, then calculated
to evaluate the model.

The performance of the model depends on the choice of Ci

in (9) and γ in (8). For the pairing of C and γ, the grid search
method is applied for model optimization:

(1) Search well performance range of γ and Ci. Set C1 =
C−1 = C = 2α, γ = 2β, then let α, β = − 20 : 2 : 20,
change by exponential mean to perform successive
grid search. For every combination of γ and C, the
model is trained and tested using the ten sets of sam-
ple data, and the average FPR and TPR are calculated
to evaluate the model.

(2) Shrink the scope of γ and C. In the first step, rough
variations of FPR and TPR with γ and C are gained.
Then, shrink the scope and step size of α to α = 0 :
0.5 : 20, and shrink the scope and step size of β to β =
− 5 : 0.25 : 5. The optimal combination of these is deter-
mined to be γ = 2−3.25, C ≥ 210.

(3) Search C1 and C−1 using the grid search method. On the
basis of the last step, set γ to a optimal value2−3.25 and let
C1 and C−1 change by exponential mean. In the same
way, the model is trained and tested with ten sets of
sample data and the average FPR and TPR are calculated
to evaluate the model. Grid images of the average TPR
and FPR are drawn, as shown in Fig. 9. At the top left of
line transition 1, the average TPR can reach 100%; how-
ever, the FPR is higher than 15.57%, which means that
too many negative samples are misclassified as positive.
Between the line transition 1 and line transition 2, the
average TPR is in the range of 88.82~100%, and the
average FPR is between 0.21 and 15.57%. The average
TPR reduces when the average FPR reduces. At the bot-
tom right of line transition 2, the average TPR stabilizes
at around 91.18%, and the average FPR stabilizes at
around 0.03%. The circled area is the boundary region,
where the average TPR declines sharply together with
the average FPR.

5.3 Breakage detection results

Ultimately, the optimal combination of the three parameters,
γ, C1, and C−1, is determined by analysing the variation of the
average FPR and TPR with the parameters. It is difficult for
the average TPR and FPR to attain superiority simultaneously.
Consequently, we weigh the advantages and disadvantages of
their influence on breakage detection.

Table 6 shows the optimization results of two param-
eter settings. Here, TPR and FPR are the indicators
mentioned above, and N1 is the number of misclassified

Table 5 Sampling results for validation

Sample no. Sampling results

1 1 2 3 6 8 11 17

2 1 2 3 8 10 13 17

3 2 3 13 14 15 16 17

4 1 3 5 7 8 9 13

5 4 5 9 10 11 13 16

6 2 4 10 11 12 14 17

7 1 2 4 9 14 16 17

8 1 3 5 8 10 14 15

9 1 2 3 8 9 10 15

10 1 5 7 8 13 16 17

Fig. 9 a Average TPR of the
model. b Average FPR of the
model
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abnormal samples, N−1 is the number of misclassified
normal samples, E is the error obtained after training,
P1 is the mean classification probability of test abnor-
mal samples, and P−1 is the mean classification proba-
bility of test normal samples. It should be noted that
these indicators are all the average of ten test runs.

In our opinion, the optimal parameter values are γ =
2−3.25, C−1 = 216.5, and C1 = 218 when the average TPR =
91.18% and FPR = 0.03%. Under this condition, the mean
of misclassified abnormal samples is 1.5, and the mean of
misclassified normal samples is 0.6. In another case, when
the average TPR = 93.53% and FPR = 0.64%, the values of
the parameters are γ = 2−3.25, C−1 = 211, and C1 = 215.5.
Under this condition, the mean of misclassified abnormal
samples is 1.1 and the mean of misclassified normal sam-
ples is 14.5. Here, the number of misclassified abnormal
samples decreases few at the cost of much higher misclas-
sification of the normal samples. Under the first condition,
the error obtained after training is even smaller although it
is quite small in both cases. The mean classification prob-
ability of test normal samples approaches to 1, indicating it
is almost impossible to misclassify normal samples. The
mean classification probability of test abnormal samples
is near to that in another case. Therefore, our suggested
optimal parameter values are shown to be generally bal-
anced and well performing.

6 Conclusions

In this paper, we propose a tool breakage detection method
based on short-time Fourier transform (STFT) and a support
vector machine (SVM) to detect catastrophic tool failure.
Acoustic emission (AE) streaming data and twelve real-time
extracted features of a milling process are obtained from a
factory’s special rotor slot milling machine. We use an
STFT method to analyse the frequency components of the
AE streaming data. Seventeen moments of tool breakages
are located, and the corresponding AE feature samples are
screened out as the abnormal data set. We then establish a
cost-sensitive breakage detection model and optimize the pa-
rameters using a grid search method. To evaluate the perfor-
mance of our model, we consider both the true positive rate
(TPR) and the false positive rate (FPR).We determine optimal
parameter values, which are shown to be generally balanced

and well performing. As a result, our model achieves an aver-
age TPR = 91.18% and FPR = 0.03%, which demonstrates the
validity and practicability of our proposed method.

Our method consists of two phases: the model establishing
(offline) phase and the online phase. The complicated compu-
tational procedures are completed in the model establishing
phase. In the online phase, the insert breakages are detected in
real time using real-time extracted AE features and a pre-
trained model. Our method can promptly detect almost all
severe breakages, which prevents damage to the product’s
machined surface and the machine tools. The proposed meth-
od guarantees the quality of the machined surface and the
efficiency of the machining process.

There are some limitations in our study. First, subject to
false detection rate, the undetected rate of breakage samples is
still a little high. Second, the experiments were carried out
under particular conditions, and if the cutting conditions or
the properties of the material change, the detection model will
need to be retrained. Considering these limitations, Future
studies will focus on (a) designing better detection methods
to further improve detection accuracy and false detection rate
and (b) developing methods that are easily applied to different
milling conditions.
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