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Abstract
The nature of electrical discharge machining makes it difficult to predict or even measure machining performance, which is why
great attention has been paid to methodologies for measuring these performances. In this work, an experimental approach for
measuring machining electrical discharge performance and geometric errors was presented. This can improve the authenticity of
the parameters measured. A technique for identifyingmachining parameters using a multi-output system based on fuzzy logic has
been proposed. The objective was to determine the influence of machining parameters on the machining performance and
associated geometric errors. It is shown that the fuzzy model is capable of giving results providing a good correlation between
the real and predicted values. The average error of the model was approximately 1.51% for material removal rate, 3.386% for tool
wear rate, 2.924% for wear rate, 5.285% for surface roughness, 4.004% for radial overcut, 4.381% for circularity, and 2.937% for
cylindricity.

Keywords Electrical dischargemachining (EDM) .Machining performance .Geometrical errors .Machining parameters . Fuzzy
logic . Prediction

1 Introduction

Electrical discharge machining (EDM) has become one of the
most used processes in manufacturing technology; it plays a
crucial role in the field of mechanical production, and there-
fore, it is an open process for making faced with several im-
provements. Due to the complexity and optimization objec-
tives, a large number of studies and research are oriented to-
wards new technologies in order to increase productivity, im-
prove the quality of machined parts, and minimize costs and
times of production.

In the process of machining by electrical discharge, the
machining parameters such as current, voltage, and pulse
time, as well as the dielectric, the geometry of the electrodes,
and the workpieces play a very important role in the choice of
machining performance and quality.

To achieve the required machining performance and qual-
ity, it is necessary to take into account an optimal selection of

the machining parameters. This selection not only guarantees
a reduction in costs and production times but also guarantees
control of the phenomena accompanying the machining pro-
cess, which directly affect the machining performance and
quality of the machined parts.

In the context of improving the machining performance
and quality of parts machined by electrical discharge machin-
ing (EDM), research work in this direction has been analyzed
in order to propose better solutions and to support existing
scientific research work by remedying certain observed short-
comings and proposing alternative solutions that lead to im-
provements in the performance measurements of the electrical
discharge machining process.

A bibliographic synthesis was carried out to study the ef-
fect of the different machining parameters on the performance
characteristics of electrical discharge machining. The research
carried out in the analyzedworks mainly relates to the effect of
the parameters of electrical discharge machining such as the
current, the voltage, the pulse time, ... and how these affect the
performance characteristics of machining as MRR, TWR,
EWR, Ra, ROC, and electrode material.

S. Dhanabalan et al. [1] studied the effect of different elec-
trode materials on the machining performance characteristics
of the titanium alloy. Copper, brass, and aluminum electrodes

* Abderrahim Belloufi
abelloufi@yahoo.fr

1 Département de Génie Mécanique, Faculté des Sciences Appliquées,
Université Kasdi Merbah Ouargla, 30000 Ouargla, Algeria

https://doi.org/10.1007/s00170-020-05718-8

/ Published online: 25 July 2020

The International Journal of Advanced Manufacturing Technology (2020) 109:2065–2093

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-05718-8&domain=pdf
http://orcid.org/0000-0002-6978-9957
mailto:abelloufi@yahoo.fr


and kerosene as the dielectric fluid were used in this research.
They considered current as an input parameter and MRR,
EWR, and Ra as an output parameter. It has been found that
a higher MRR is achieved by using brass and aluminum elec-
trodes and that the brass electrodes provide high wear, while
the aluminum and copper electrodes provide low wear. A.
Torres et al. [2] evaluated the effect of machining parameters
of the Inconel 600 alloy machined by EDM and tool materials
(graphite) on the electrode wear (EW), the rate of material
removal (MRR), and the roughness of machined surfaces for
different polarities. The results showed that a higher material
removal rate is obtained with a negative polarity. While the
low value of electrode wear (EW) and low roughness was
obtained with positive polarity. H. Fazlollahtabar et al. [3]
analyzed the effect of machining parameters on machining
performance. They have developed mathematical models
based on the interpolation approach which link the parame-
ters: duty cycle, on time and current by the fineness surface,
corrosion rate of the electrode, material removal rate. They
also used a fuzzy adaptive neural network to optimize and
predict machining performance. Rahul et al. [4] have studied
the machinability of four different qualities of Inconel super-
alloy; they have examined the influence of the variation of
interval voltage, peak discharge current, pulse duration, duty
cycle, and flushing pressure of the dielectric circulation on the
material removal rate, the electrode wear rate; surface rough-
ness and density of surface crack machined by EDM. They
showed that increasing the peak current resulted in an im-
provement in the MRR for different grades of Inconel with
an increase in Ra. M. Hanif et al. [5] have studied the influ-
ence of the dielectric type, the polarity of the electrodes, the
discharge current, and the spark/discharge difference on the
material removal rate (MRR) and the surface roughness (Ra)
for machining AISI D2 steel. Their results revealed that the
kerosene oil and the polarity of the positive led to optimal
machining. MK. Pradhan et al. [6] used a neuro-fuzzy model
for predicting the material removal rate (MRR), electrode
wear, and radial overcut when machining AISI D2 steel.
They showed that the discharge current has a very important
influence on the material removal rate and the radial overcut.
On the other hand, the electrode wear rate is very influenced
by the pulse duration. A A. Khan [7] found that when machin-
ing aluminum and mild steels with copper and brass elec-
trodes, an increased wear was produced on the electrodes as
the discharge current increased. The material removal rate
(MRR) also increased with the discharge current. Y. Shen
et al. [8] analyzed the effect of peak current, pulse interval,
pulse duration on the material removal rate (MRR), and ener-
gy consumption during the machining of the titanium alloy Ti-
6Al-4V by EDM. They concluded that the most important
factor affecting bothMRR and energy consumption is current.
P. Ong et al. [9] have studied the effect of the machining
parameters: the peak current, the pulse interval and the pulse

duration on the material removal rate (MRR) and the electrode
wear rate (EWR). They found that an increase in the pulse
interval will lead to a reduction in MRR, and that an increase
in pulse duration is accompanied by an increase in electrode
wear rate (EWR). They also developed a new optimization
algorithm to find the optimum machining conditions. T.R.
Newton et al. [10] examined the influence of EDM process
parameters on the formation of the recoat layer on Inconel 718
samples. They concluded that the average thickness of the
recoat layer increased with current discharge, peak, and pulse
duration. S.A.K. Rajesha et al. [11] have experimentally stud-
ied the effects of variables in the EDM process: pulse current,
sensitivity, utilization factor, dielectric rinse pressure, and gap
control) on the EDM surface recoat layers splashed. It was
concluded that the duty factor and the pulse current influenced
the propagation of the cracks. J.H. Zhang et al. [12] proposed
an empirical model, built both on the peak current and on the
pulse duration, for the electrical discharge machining of ce-
ramics. They concluded that the discharge current had a sig-
nificant effect on the material removal rate (MRR), while the
pulse time had a significant influence on the white layer. M.
Kiyak et al. [13] found that with a high current and high pulse
time, a high surface finish could be produced, but with a low
material removal rate (MRR). They also found that with a high
pulse time, a high pulse current, and a low pulse time, you get
a highMRR, but with a poor surface finish. HT. Lee et al. [14]
noted that the value of the MRR and the surface roughness
increased with increasing pulsed current values, but that after
certain values, the MRR and the surface roughness decreased
due to the expansion of the electric plasma. The pulse current
affects the surface crack density; however, the pulse duration
influences the degree of crack opening. J.C Rebelo et al. [15]

Fig. 1 Sinking EDM machine ONA NX4
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presented an experimental study on the effect of electrical
discharge machining parameters on the material removal rate
(MRR) and surface quality (Ra) during the machining of cop-
per alloys/high resistance beryllium. The treatment parameters
for rough, finishing and micro-finishing, or polishing regimes
were analyzed. S. Raj et al. [16] evaluated the effect of differ-
ent parameters on the machining of EN 45 steel with a copper
electrode. The input parameters were peak current (Ip), pulse
on time (Ton), pulse off time (Toff), and voltage (V). Pulse on
time and current are highly significant parameters, while pulse
off time is a less important factor for the material removal rate
(MRR). Vikas et al. [17] studied various parameters of the
electrical discharge machining process on the surface rough-
ness of the EN41 material. The parameters studied were the
peak current (Ip), pulse on time (Ton), pulse off time (Toff),
and the voltage (V). They concluded that the discharge current
had a greater impact on the roughness of the machined sur-
faces and that the effect of the other parameters was less sig-
nificant and can be ignored. Ay et al. [18] studied the influ-
ence of electrical discharge machining parameters: the dis-
charge current and the pulse duration on the machining per-
formance of the nickel-based Inconel 718 Super Alloy. They
found that the discharge current was more effective on perfor-
mance than the pulse duration. S. Singh [19] used the Taguchi
method and gray relational analysis to analyze the influence of
pulse current, pulse duration, duty cycle, and interval voltage

on MRR, tool wear rate, and surface roughness. They came to
the conclusion that among all the process parameters, the
pulse current showed the strongest effect on all performance.
YF. Chen et al. [20] investigated the effect of peak current and
pulse duration on MRR, electrode wear rate and surface
roughness. They found that the two parameters significantly
affected the MRR and the surface roughness. KT. Chiang [21]
carried out a survey to study the effect of the parameters:
discharge current, pulse time, utilization factor, and open dis-
charge voltage on the variation of MRR, electrode wear rate,
and surface roughness. They found that the discharge current
and the service factor were the important factors affecting the
MRR. YF. Tzeng et al. [22] studied the influence of the EDM
process parameters (circuit voltage, pulse duration, duty cycle,
pulsed peak current) on surface roughness and geometric pre-
cision with the Tagauchi method. They optimized the geomet-
ric variation of the machined product by around 28%. Y.
Keskin et al. [23] studied the influence of machining param-
eters: power, pulse time, and spark time on the quality of
surfaces machined from steel by EDM. They showed that
surface roughness increasing with an increase in discharge
duration. SN grigor’ev et al. [24] analyzed the effect of break-
down voltage, peak current, voltage gain, andworking voltage
on the precision parameters of small diameter holes machined
by EDM on oxide carbide ceramic. They concluded that the
increase in breakdown voltage, peak current, voltage gain, and
working voltage causes changes in the hole diameter. V.
Muthukumar et al. [25] predicted the radial overcut by the
response surface method according to the machining parame-
ters: the current, pulse on time, pulse off time, and voltage. It
was concluded that current and voltage have a significant
effect on the radial overcut.

From the literature search presented above, it can be con-
cluded that there is a great need for the development of more
precise methods for measuring the performance of electrical
discharge machining (EDM) as well as the errors related to the
machined shapes. It is also clear that the construction of
models for predicting the electrical discharge machining

Table 1 Chemical
composition of AISI
1095 steel

Element Content (%)

C 0.95–1.05

Mn 0.15–0.30

Si 0.15–0.30

P ≤ 0.03
S ≤ 0.02
Cr ≤ 0.025
Ni ≤ 0.2
Cu ≤ 0.2

Fig. 2 Workpiece
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performance depends not only on the method used for the
construction of the models but also on the experimental pro-
cedure followed. Most scientific research on this subject uses
data from the literature, which requires more experimental
development to measure machining performance.

In most of the work carried out, two or three machining
performances have been considered as outputs of the predic-
tion system. In addition, little scientific research has already
tackled the problem of geometric errors associated with elec-
trical discharge machining.

This is why, in this paper, on the basis of experimental
measurement tests of the electrical discharge machining per-
formance and the geometric errors associated with the ma-
chining of the holes, the effects of the machining parameters,
on these performances, and these errors are predicted with an
intelligent method based on a fuzzy multi-output inference
system. The prediction results found by this model have been
approved by other experimental tests.

2 Experimental procedure

2.1 Materials and equipment

All tests were carried out under industrial conditions using an
ONA NX4 machine tool (13.7 KVA connected load, working
table dimension 800 × 600 mm, maximum working height
400 mm) which is a Sinking EDM machine as shown in
Fig. 1.

The tests were carried out by machining prismatic parts of
AISI 1095 treated steel.

AISI 1095 is specially designed for the manufacture of
molds, tools, impression plates, punches and dies; they are
also used in the manufacture of finished or semi-finished parts
which require wear resistance high.

The chemical composition of AISI 1095 steel is described
in Table 1.

The workpieces used in this study delivered in the stan-
dardized state allows after thermal tempering to obtain a sig-
nificant surface hardness (60 to 65 HRC) and were prepared
for the size of 50 × 30 × 5mm± 0. 2 as shown in Fig. 2 and the
upper surface has been highly finished to obtain a real flatness;
the density of the materials is 7.78 g/cm3.

Surface roughness measurements were made after the
finishing process of each part to ensure that the part was ready
for testing. The roughness of the surface found on all the parts
varied between 0.1 and 0.17 μm.

The electrodes used in this study are cupro-tungsten elec-
trodes (Fig. 3a): an alloy made from the powder metallurgy
process, with 40% copper (Cu), with a grain size < 150 (μ)
and 60% tungsten (W) has an average grain size between 20
(μ) and 100 (μ). This alloy has unique physical properties.
One of the most important benefits of tungsten is high-
temperature resistance, while copper increases thermal and
electrical conductivity.

The electrodes were machined so as to obtain a length of
50 mm and a diameter of the working part 10 ± 0.05 mm (Fig.
3b). The base surface and the side surface of the electrode
were highly finished, using abrasive paper, to obtain a fine
surface.

The properties of the tungsten copper electrodes used in the
tests are given in Table 2.

Fig. 3 Electrodes used in the tests

Table 2 Properties of electrodes
Electrodes Density

(g/cm3)
Hardness (HB
≥)

Electrical
resistivity

Electrical conductivity (IACS %
≥)

Cu40W60 12.75 140 3.7 47
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For the measurement of the circularity and the cylindricity
of the machined holes, a coordinate measuring machine,
OPTIV Performance 443 Dual Z (MMT) manufactured by
HEXAGON METROLOGY SAS, was used. This machine
combines optical and tactile measurement in a single system;
it supports multi-sensormeasurements using the vision sensor,
the touch trigger, and the scanning probe (Fig. 4).

Voyager Pro digital density meter Model: VP6102 C
(Fig. 5) is used to measure the density of electrodes and
workpieces.

The workpieces and the electrode were weighed before and
after the machining of each experiment on an AP 250 D bal-
ance (Fig. 6) with precision 0.0001 g to determine the weight
loss. These values were then used to calculate the material
removal rate and the tool wear rate.

For surface measurement a roughness meter (Mitutoyo-
sufftest-211), shown in Fig. 7 is used. It consists of a stylus
that moves mechanically over a surface to record the rough-
ness of the surface over a determined sample length.

2.2 Experimental setup

Twenty-seven (27) tests were carried out using three input
(control) parameters; each of these parameters varies to three
discrete level values as illustrated in Table 3. These parame-
ters are current (I), voltage (V), and pulse on time (Ton).

There are many machining parameters that affect the elec-
trical discharge machining performance. Current, voltage, and
pulse on time are the most active influence parameters on
machining performance. Advantageously, these parameters
are also the easiest to adjust, and can directly modify their
value in EDM machine with no additional cost. Thus, other
important parameters were not considered (such as pulse off
time, polarity, gap) whose values were kept constant through-
out experiments. The constant parameters and corresponding
values were pulse off time = 50 μs; polarity: direct; gap =
0.5 mm; fluid pressure = 16 kg/cm2).

The tests concern the production of 3.5-mm-deep holes. On
each part, three holes were made with variation of the three
control parameters according to the experiment plans chosen
(Fig. 8). Each test ends when the electrode reaches a depth of
3.5 mm.

In addition to this, another series of tests (seven tests) was
carried out with the same experimental conditions but with
other input parameters. The results of these tests were later
used to validate the models built.

Fig. 4 Three-dimensional measuring machines 443 Dual Z

Fig. 5 Voyager Pro digital density meter Model: VP6102 C

Fig. 6 AP 250 D balance

Fig. 7 Roughness meter (Mitutoyo-sufftest-211)
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A view of all the parts machined during the twenty-seven
(27) tests carried out was provided in Fig. 9.

It is important to note that in order to improve the reliability
of the measurements, the points below are taken into account:

1. All measurements are carried out in a fully closed con-
trolled room at a temperature of 20 ± 1 °C and the humid-
ity is 50 ± 5%.

2. Each part has been thoroughly cleaned with acetone be-
fore measurement.

3. Measurements are performed in a short time by a single
operator using the same equipment.

4. Ensure the fidelity of measuring instruments and devices:
the calibration of the measuring instruments and devices
was carried out before each test.

The three-dimensional measuring machine 443 Dual Z
is calibrated according to normative reference: ISO
10360-2.

The digital micrometer is calibrated according to the
normative reference: ISO 3611.

The roughness meter (Mitutoyo-sufftest-211) is cali-
brated according to the normative reference: ISO 5436.

5. Ensure the measurement trueness: each measure was
conducted three times and the average of the obtain-
ed results was considered. Standard deviation of the
three readings after each of the 27 experiments was
calculated and the rel iabi l i ty coeff ic ient is
determined.

2.2.1 Determination of the material removal rate

The average weight of material removed from the work-
piece per unit of time during machining is called the
material removal rate. It directly determines the machin-
ing efficiency of the process. It is generally measured in
mm3/min. Mathematically, it can be expressed as

Table 3 Settings of process control parameters

Parameters Unit Levels

P M G

Current (I) A 12 14 16

Voltage (V) V 120 160 200

Pulse on time (Ton) μs 100 200 400

Fig. 8 The machining configuration of workpiece

Fig. 9 Workpieces used in the tests after machining

Fig. 10 Microscopic visualization of the machined surface
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MRR ¼ 1000ΔWW

ρWT
ð1Þ

ΔWW is the weight loss of the working material during
machining;

ρW is the density of the workpiece material;
T is the machining time.

2.2.2 Determination of the tool wear rate (EWR)

The average weight of the material lost of the tool per unit of
time during machining is called the tool wear rate (TWR). It is
directly linked to the precision and profitability of the machin-
ing. The tool life plays an important role in increasing produc-
tivity. It is expressed by this equation:

Video camera system 

Pc-dmis software 

Fig. 11 Measure of circularity

Fig. 12 Measure of cylindricity
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Fig. 13 Experimental setup
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TWR ¼ 1000ΔWT

ρTT
ð2Þ

ΔWT is the weight loss of the electrode material during
machining;

ρT is the density of the electrode material;

2.2.3 Determination of the wear rate

The wear rate is defined as the ratio between the tool removal
rate and the material removal rate. It is usually expressed as a
percentage as shown in Eq. (3)

WR ¼ 100TWR
MRR

ð3Þ

Table 4 Experimental conditions
and results Test I

(A)
V
(V)

Ton
(μs)

MRR
(mm3/min)

TWR
(mm3/min)

WR
(%)

Ra
(μm)

ROC
(mm)

CIR
(mm)

CYL
(mm)

1 12 120 100 51.48 1.97 3.83 1.45 0.162 0.031 0.0233

2 14 120 100 45.87 2.02 4.40 3.39 0.171 0.0329 0.0258

3 16 120 100 53.83 1.59 2.96 6.05 0.161 0.0388 0.0468

4 12 120 200 48.35 1.74 3.59 1.03 0.211 0.0606 0.0686

5 14 120 200 44.82 1.75 3.90 1.18 0.218 0.0575 0.0389

6 16 120 200 45.65 1.93 4.23 1.72 0.207 0.0418 0.0284

7 12 120 400 49.46 2.03 4.11 0.7 0.238 0.0505 0.0703

8 14 120 400 48.52 1.80 3.71 3.27 0.227 0.0592 0.0684

9 16 120 400 55.24 2.02 3.65 1.3 0.251 0.068 0.0628

10 12 160 100 47.03 1.68 3.57 3.05 0.186 0.0462 0.0483

11 14 160 100 39.56 1.31 3.31 3.81 0.189 0.047 0.0395

12 16 160 100 43.61 1.55 3.56 6.42 0.172 0.0458 0.03

13 12 160 200 47.85 1.82 3.20 1.78 0.221 0.0479 0.0493

14 14 160 200 48.44 1.46 3.02 0.46 0.198 0.0329 0.0631

15 16 160 200 48.23 1.25 2.59 2.05 0.241 0.0446 0.0684

16 12 160 400 59.81 1.53 2.01 2.59 0.26 0.0499 0.0696

17 14 160 400 55.93 1.65 2.94 1.88 0.258 0.0416 0.0679

18 16 160 400 55.03 1.33 2.41 6.62 0.256 0.0468 0.0532

19 12 200 100 54.43 1.34 2.46 3.96 0.176 0.067 0.04

20 14 200 100 48.07 0.95 1.97 2.56 0.177 0.0453 0.0316

21 16 200 100 46.75 1.45 3.11 5.06 0.156 0.0371 0.0667

22 12 200 200 57.01 1.76 3.09 6.59 0.219 0.0472 0.0462

23 14 200 200 56.28 1.59 2.82 1.38 0.226 0.0534 0.062

24 16 200 200 59.95 1.09 1.82 2.28 0.24 0.0513 0.0553

25 12 200 400 59.49 1.53 2.57 3.16 0.233 0.0558 0.052

26 14 200 400 52.95 1.22 2.31 1.64 0.248 0.0439 0.0654

27 16 200 400 57.70 1.54 2.67 2.34 0.248 0.0465 0.0436

Fig. 14 Fuzzy system
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2.2.4 Surface roughness measurement

In EDM, the fatigue strength of the machined component is
strongly influenced by the quality of the machined surface.
The quality of the machined surface strongly depends on the
energy per spark and the size of the craters. Figure 10 illus-
trates the surface machined during a test among the twenty-
seven tests carried out.

Surface roughness measurement was taken at 3 different
locations, and average values are reported, where cutoff length
is kept at 0.8 during the surface roughness measurement.
Standard deviation of the three roughness readings varies be-
tween 0.082 and 0.93, and the reliability coefficient
(Cronbach’s alpha) is around 0.976.

2.2.5 Radial overcut

The radial overcut is expressed as the difference in the radius
of the hole produced compared to the radius of the electrode
used. It is given by Eq. (4)

ROC ¼ Dh−DTð Þ
2

ð3Þ

Dh is the diameter of the hole.
DT is the diameter of the tool.

The diameter of the holes was measured three times, using
the three-dimensional measuringmachine 443 Dual Z, and the
average of the results obtained was considered. Standard de-
viation of the three measures varies between 0.002 and 0.007,
and the reliability coefficient (Cronbach’s alpha) is around
0.9984. A negligible variation is noted when measuring the
diameter of the electrodes.

2.2.6 Measure of circularity

The circularity is considered as a difference between the radial
distances from the nearest point and the furthest from the
geometric center of the hole.

To produce the desired tolerance, the electrical discharge
machining process faces a challenge to produce zero circular-
ity; this is due to debris exiting the hole with the dielectric
fluid under pressure, which causes wear on the upper part of
the hole.

In this work, the circularity is measured using the automatic
element estimation mode on the PC-DMIS Vision software
which controls the three-dimensional measuring machine
443 Dual Z (Fig. 11).

The circularity was measured three times and the average
of the results obtained was considered. Standard deviation of
the three measures varies between 0.0003 and 0.004, and the
reliability coefficient (Cronbach’s alpha) is around 0.9939.

2.2.7 Measure of cylindricity

Cylindricity defines the shape deviation of a cylinder. Their toler-
ance defines a band between two concentric cylinders inwhich the
real shape of the cylinder to which the tolerance must apply.

In this work, the cylindricity measured using the cylinder
measurement option in the PC-DMIS software which controls
the three-dimensional measuring machine (Fig. 12).

The cylindricity was measured three times and the average
of the results obtained was considered. Standard deviation of
the three measures varies between 0.0003 and 0.002, and the
reliability coefficient (Cronbach’s alpha) is around 0.9994.

The configuration of the experimental setup is presented in
Fig. 13.

The study of the variation of various performance measures
as a function of the parameters leads to finding the values of
these parameters mentioned in Table 4.

3 Fuzzy models

In this work, the fuzzy model designed to predict various
performance measures for electrical discharge machining uses
three inputs and seven outputs (Fig. 14). Current (I), voltage
(Volt), and pulse on time (Ton) are the inputs and the cutting
electrical machining discharge performance is the output of
the system.

The first step in the study of the performance measures for
electrical discharge machining algorithm is to choose the
forms of the membership functions for the process variables
according to the experimental database, which were used on
the machine tool. Fuzzy expressions for current (I), voltage
(V), and pulse on time (Ton) and performances measures for

Fig. 15 Linguistic variables for current (I)

Fig. 16 Linguistic variables for voltage (V)

Fig. 17 Linguistic variables for pulse on time (Ton)
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electrical discharge machining: material removal rate (MRR),
tool wear rate (TWR), wear rate (WR), surface roughness
(Ra), radial overcut (ROC), circularity (CIR), and cylindricity
(CYL) are shown in Figs. 15, 16, 17, 18, 19, 20, 21, 22, 23,
and 24, respectively.

3.1 Fuzzy expressions

The numerical values of current (I) are linked by linguistic
variables as shown in Fig. 15.

The numerical values of voltage (V) are linked by linguistic
variables as shown in Fig. 16.

Numerical pulses on time (Ton) values are linked by lin-
guistic variables as shown in Fig. 17.

The numerical values of material removal rate (MRR) are
linked by linguistic variables as shown in Fig. 18.

The numerical values of tool wear rate (TWR) are linked
by linguistic variables as shown in Fig. 19.

The numerical values of the electrode wear rate (WR) are
linked by linguistic variables as shown in Fig. 20.

The numerical values of surface roughness (Ra) are linked
by linguistic variables as shown in Fig. 21.

The numerical values of radial overcut (ROC) are linked by
linguistic variables as shown in Fig. 22.

The numerical values of circularity (CIR) are linked by
linguistic variables as shown in Fig. 23.

The numerical values of cylindricity (CYL) are linked by
linguistic variables as shown in Fig. 24.

Membership functions come in many forms. In this study,
triangular membership functions for the input variables and
trapezoidal for the output parameters were used for the con-
struction of the first model.

The choice of this type of membership function is
due to the nature of the experimental data; it is noted
that the values of the input parameters are limited (each

parameter is determined by three values). The triangular
membership functions are suitable for this type of data
and it suffices to determine the central value and the
slope of each side.

On the other hand, the output seems more complicated
because it is represented by several values; these values are
divided into intervals. These intervals are represented by trap-
ezoidal shapes.

For the second model, the Gaussian membership functions
for the input variables and the PIMFmembership functions for
the output parameters were used.

The triangular membership functions for the input and the
trapezoidal membership functions for output parameters of the
first model are illustrated in Fig. 25.

The Gaussian membership functions for the input and the
PIMF membership functions for output parameters of the sec-
ond model are illustrated in Fig. 26.

3.2 Fuzzy rules

The fuzzy model was created from twenty-seven (27) fuzzy
rules defined on the basis of experimental work (the twenty-
seven tests carried out).

The fuzzy system created has three input parameters to
produce seven outputs; the fuzzy rules can be described in
matrix form. Table 5 shows the set of matrix rules between
input parameters and output performances.

The second column indicates the fuzzy sets for current
(P: low current, M: medium current, G: high current) from
low current to high current. The third column indicates the
fuzzy sets for voltage varying from low voltage to high
voltage (P: low voltage, M: average voltage, G: high volt-
age), the fourth column indicates the fuzzy sets for Pulse
on time varying from low pulse on time to high pulse on
time (TP: low pulse on time, M: average pulse on time G:

Fig. 18 Linguistic variables for
material removal rate (MRR)

Fig. 19 Linguistic variables for
wear rate (TWR)
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high pulse on time). Contents of the matrix are the result
obtained, which is the outputs for this study. The fuzzy
operators used in the rules will apply are: “and”, “or.”
Some examples of fuzzy rules in linguistic form are pre-
sented below:

1. If I is (P: low) and V is (P: low) and Ton is (P: low)
Then: MMR is (F) and TWR is (J) and WR is (J) and Ra
is (B) and ROC is (A) and CIR is (A) and CYL is (A)
2. If I is (M: average) and V is (P: low) and Ton is (P:
low) Then: MMR is (C) and TWR is (K) and WR is (K)
and Ra is (E) and ROC is (B) and CIR is (A) and CYL is
(A)
3. If I is (G: high) and V is (P: low) and Ton is (P: low)
Then: MMR is (G) and TWR is (F) andWR is (E) and Ra
is (H) and ROC is (A) and CIR is (B) and CYL is (D)

27. If I is (G: high) and V is (G: high) and Ton is (G: high)
Then:MMR is (H) and TWR is (E) andWR is (D) and Ra
is (D) and ROC is (G) and CIR is (D) and CYL is (D)

3.3 Defuzzification and study of the error
and accuracy of fuzzy models

The constructed model uses a continuous universe for all the
input and output variables. So the input can be any combina-
tion of three variables (current, voltage and pulse on time) and
the outputs are: material removal rate (MRR), tool wear rate
(TWR), wear rate (WR), surface roughness (Ra), radial over-
cut (ROC), circularity (CIR), and cylindricity (CYL).
Defuzzification makes it possible to merge the different rules
generated by the inference engine to give it only one value of
each output and to transform this linguistic output variable

into digital data by calculating the abscissa of the center of
gravity of the membership function.

Seven new tests that are not entered into the model creation
process were carried out. It will be used to verify the model.
These tests were carried out under the same conditions as the
previous tests, but with different machining parameters.

To calculate the error percentage of the seven tests, we use
Eq. (4):

ei ¼
Outputexp−Outputpred
�
�

�
�

Outputexp

" #

� 100 ð4Þ

To calculate the percentage of the accuracy of the 7 tests,
Formula (5) is used:

A ¼ 1

N
∑
N

i¼1
1−

Outputexp−Outputpred
�
�

�
�

Outputexp

" #

� 100 ð5Þ

4 Results

Table 6 groups the values of the outputs obtained with the two
fuzzy logic models in terms of the maximum, minimum, stan-
dard deviation, and coefficient of variation, the accuracy, and
the error rate for the seven new tests are also presented in this
table.

The difference in the precision of the two models shows
that it is possible to use either of themwith little preference for
the first model.

4.1 Result of material removal rate

The results of defuzzification of the first output (MRR) are
shown in Fig. 27.

Fig. 20 Linguistic variables for
electrode wear rate (WR)

Fig. 21 Linguistic variables for
surface roughness (Ra)
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Figure 28 shows the capacity of the fuzzy model construct-
ed to predict the material removal rate (MRR). For the same
machining parameters, the material removal rate obtained by
the fuzzy model and the confirmation tests are shown in
Fig. 28.

The results of the confirmatory tests have shown that the
fuzzy model constructed gives values of the material removal
rate (MRR) close to the real values. The maximum and min-
imum deviation of the predicted material removal rate (MRR)
and the real material removal rate (MRR) is observed at
0.084 mm3/min and 1.544 mm3/min, respectively. The pre-
dicted accuracy of the fuzzy model constructed is 98.489%.

4.2 Result of tool wear rate

The results of defuzzification of the second output (TWR) are
shown in Fig. 29.

Figure 30 shows the ability of the fuzzy model constructed
to predict the tool wear rate (TWR). For the same machining
parameters, the tool wear rate obtained by the fuzzymodel and
the confirmation tests are shown in Fig. 30.

The results of the confirmation tests have shown that
the fuzzy model constructed gives tool wear rate (TWR)
values close to the real values. The maximum and mini-
mum deviation of the predicted tool wear rate (TWR)
values with the real tool wear rate (TWR) is observed at
0.01 mm3/min and 0.099 mm3/min, respectively. The

prediction accuracy of the fuzzy model constructed is
96.614%.

4.3 Result of wear rate

The results of defuzzification of the third output (WR) are
shown in Fig. 31.

Figure 32 shows the ability of the fuzzy model constructed
to predict the wear rate (WR). For the same machining param-
eters, the wear rate (WR) obtained by the fuzzy model and the
confirmation tests are shown in Fig. 32.

The results of the confirmation tests have shown that the
fuzzy model constructed gives values of the wear rate (WR)
close to the real values. The maximum and minimum devia-
tion of the wear rate (WR) values predicted with the real wear
rate (WR) is observed at 0.004% and 0.205%, respectively.
The prediction accuracy of the fuzzy model constructed is
97.076%.

4.4 Result of surface roughness

The results of defuzzification of the fourth output (Ra) are
shown in Fig. 33.

Figure 34 shows the ability of the fuzzy model constructed
to predict the surface roughness (Ra). For the same machining
parameters, the surface roughness (Ra) obtained by the fuzzy
model and the confirmation tests are shown in Fig. 34.

Fig. 22 Linguistic variables for
radial overcut (ROC)

Fig. 23 Linguistic variables for
circularity (CIR)

Fig. 24 Linguistic variables for
cylindricity (CYL)
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Current (I) Voltage (V)

Pulse on time (Ton) Material removal rate (MRR)

Tool Wear Rate (TWR) Wear rate (WR)

Surface roughness (Ra) Radial overcut (ROC)

Circularity (CIR) Cylindricity (CYL)
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Fig. 25 Membership functions for input and output parameters using triangular and trapezoidal membership
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Current (I) Voltage (V)

Pulse on time (Ton) Material removal rate (MRR)

Tool Wear Rate (TWR) Wear rate (WR)

Surface roughness (Ra) Radial overcut (ROC)

Circularity (CIR) Cylindricity (CYL)
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Fig. 26 Membership functions for input and output parameters using Gaussian and Pimf membership
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The results of the confirmation tests have shown that the
fuzzy model constructed gives values of surface roughness
(Ra) close to the real values. The maximum and minimum
deviation of the predicted surface roughness (Ra) values with
the real surface roughness (Ra) is observed at 0.5 μm and
0.17 μm, respectively. The predicted accuracy of the fuzzy
model constructed is 94.715%.

4.5 Result of radial overcut

The results of defuzzification of the fifth output (ROC) are
shown in Fig. 35.

Figure 36 shows the ability of the fuzzy model constructed
to predict radial overcut (ROC). For the same machining pa-
rameters, the radial overcut (ROC) obtained by the fuzzy
model and the confirmation tests are shown in Fig. 36.

The results of the confirmation tests have shown that the
fuzzy model constructed gives values of Radial overcut
(ROC) close to the real values. The maximum and minimum
deviation of the predicted radial overcut (ROC) values with

the real radial overcut (ROC) is observed at 0.0047 mm and
0.017 mm, respectively. The predicted accuracy of the fuzzy
model constructed is 95.996%.

4.6 Result of circularity

The results of defuzzification of the sixth output (CIR) are
shown in Fig. 37.

Figure 38 shows the ability of the constructed fuzzy model
to predict circularity (CIR). For the same machining parame-
ters, the circularity (CIR) obtained by the fuzzy model and the
confirmation tests are shown in Fig. 38.

The results of the confirmation tests have shown that
the fuzzy model constructed gives circularity (CIR) values
close to the real values. The maximum and minimum
deviation of the predicted circularity (CIR) values with
the real circularity (CIR) is observed at 0.0001 mm and
0.0033 mm, respectively. The prediction precision of the
fuzzy model constructed is 95.619%.

Table 5 Inference table

Test I (A) V (V) Ton (μs) MRR (mm3/min) TWR (mm3/min) WR (%) Ra (μm) ROC (mm) CIR (mm) CYL (mm)

1 P P P F J J B A A A

2 M P P C K K E B A A

3 G P P G F E H A B D

4 P P M D H H A D G G

5 M P M B H J B D F C

6 G P M C J K C D C B

7 P P G E K K A F E G

8 M P G E I I E E G G

9 G P G G K I B G H F

10 P M P D G H E C D D

11 M M P A C G F C D C

12 G M P B E H H B D B

13 P M M E E G C E D D

14 M M M E D F A C A F

15 G M M D B C C F D G

16 P M G I B A D G E G

17 M M G H G E C G C G

18 G M G G C B H G D E

19 P G P G C B F B H C

20 M G P E A A D B D B

21 G G P C D F G A B G

22 P G M H H F H D D D

23 M G M H F D B E E F

24 G G M I A A D F E E

25 P G G I E C E F F E

26 M G G F B B C G C F

27 G G G H E D D G D D
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4.7 Result of cylindricity

The results of defuzzification of the seventh output (CYL) are
shown in Fig. 39.

Figure 40 shows the ability of the fuzzy model con-
structed to predict cylindricity (CYL). For the same ma-
chining parameters, the cylindricity (CYL) obtained by
the fuzzy model and the confirmation tests are shown in
Fig. 40.

The results of the confirmation tests have shown that
the fuzzy model constructed gives values of cylindricity
(CYL) close to the real values. The maximum and min-
imum deviation of the predicted cylindricity (CYL)
values with the real cylindricity (CYL) is observed at
0.0001 mm and 0.0033 mm, respectively. The predic-
tion precision of the fuzzy model constructed is
97.063%.

5 Graphical representation of electrical
discharge machining performances

5.1 Material removal rate

The influence of the current on the MRR is shown in Fig.
41a and b. It can be observed in these figures that the
variation in the current is not significant and remains al-
most stable. This tendency can be at the interval of the
current chosen in this study which has high levels [12,
16]. This tendency has been observed at high current
levels, due to excessive and counterproductive discharge.
This leads to an increase in the size of the plasma channel
over time during discharge, which results in a loss of en-
ergy in the dielectric causes a decrease in material removal.
The same observation was noted by O. Pauline et al. [9]
and F. Klocke et al. [26].

Table 6 Fuzzy system error and accuracy for the confirmation tests

Outputs Model Output min Output max Standard deviation Coef. of variation Error % Accuracy %

MRR (mm3/min) Model 1 46.1 57.2 3.642 0.069 1.511 98.489

Model 2 45.6 57.1 3.762 0.072 1.51 98.49

TWR (mm3/min) Model 1 1.26 1.86 0.248 0.164 3.386 96.614

Model 2 1.25 1.86 0.234 0.153 4.142 95.858

WR (%) Model 1 2.34 3.84 0.602 0.202 2.924 97.076

Model 2 2.33 3.79 0.574 0.191 4.861 95.139

Ra (μm) Model 1 1.01 2.51 0.521 0.301 5.285 94.715

Model 2 1.00 2.50 0.563 0.339 9.192 90.808

ROC (mm) Model 1 0.191 0.25 0.024 0.111 4.004 95.996

Model 2 0.043 0.247 0.068 0.359 4.333 95.667

CIR (mm) Model 1 0.0366 0.0545 0.006 0.122 4.381 95.619

Model 2 0.0358 0.0566 0.006 0.140 5.016 94.984

CYL (mm) Model 1 0.0449 0.0632 0.006 0.119 2.937 97.063

Model 2 0.0466 0.0632 0.006 0.114 3.139 96.861

Fig. 27 Variation of the
experimental and predicted
material removal rate (MRR) as a
function of the number of tests
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The influence of pulse on time on the MRR is shown in
Fig. 41a and b.

Figure 41 b shows that increasing pulse on time results in a
significant increase inMRR. This figure also shows the largest
increase in the MRR produced in the low current region. A
high pulse on time transfers more discharge energy to the
workpiece and therefore increases the removal rate of the
material.

Figure 41c shows that the MRR turns out to be maximized
in the region with a short pulse on time and maximum voltage
values. Although the quantity of moltenmaterial will be small,
but when the voltage is increased, the intensity of the electric
field in the volume between the electrodes is greater than the
resistance of the liquid dielectric (at least in certain places),
which allows current to flow between the two electrodes. As a
result, rapid tearing of the material is produced. This may be

due to an increase in the density of surface crack caused by the
localized effect of limited heat dissipation. The most influen-
tial factor among the three machining parameters on the ma-
terial removal rate is pulse on time with a maximum contribu-
tion of 28.37%

5.2 Tool wear rate

Figure 42 shows a graphical representation of the fuzzy tool
wear rate (TWR) as a function of the three machining
parameters.

Figure 42a shows a decrease in EWR with the increase in
voltage. This returns according to P. Ong et al. [9] to the
decrease of current participating in the removal of material.
The decrease of current is caused by the formation of a viscous

Fig. 28 Comparison of predicted
and experimental material
removal rate (MRR)

Fig. 29 Variation of the
experimental and predicted tool
wear rate (TWR) as a function of
the number of tests
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layer slowing the exchange of species in the environment of
the electrode.

Figure 42b and c show that an increase in Pulse on
time leads to a reduction in EWR. According to Y.C.
Lin et al., [27] this is due to the deposition of the cracked
pyrolytic carbon from the dielectric on the electrode,
which leads to the formation of a protective layer. On
the other hand, an increase in EWR is observed at cur-
rents greater than 14 A (Fig. 42b) and at small voltage
values (Fig. 42c). This is due to the fact that the conduc-
tivity of the electrode is much higher than the conductiv-
ity of the room, and therefore, the heat given off by the
electrode is faster which is indicated in the work of C.P.
Mohanty [28].

The most influential factor among the three machining pa-
rameters on the tool wear rate (TWR) is the voltage with a
maximum contribution of 39.80%.

5.3 Wear rate

Figure 43a, b, and c show the variation of WR. And as WR
represents the ratio between the tool removal rate and the
material removal rate, then its variation is explained by the
same reasons for variation of MRR and TWR.

The most influential factor among the three machining pa-
rameters on the wear rate (EWR) is the voltage with a maxi-
mum contribution of 52.62%.

Fig. 30 Comparison of predicted
and experimental tool wear rate
(TWR)

Fig. 31 Variation of the
experimental and predicted wear
rate (WR) as a function of the
number of tests
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5.4 Surface roughness

Figure 44 graphically shows the effect of current (I), voltage
(V), and pulse on time (Ton) on the surface roughness.

As seen in Fig. 44a, the surface plot consists of two regions:
a high slope region and a low slope region. In the region with a
low slope, the roughness of the surface gradually increases
with the voltage. Also, in this region, the roughness increases
with the increase of the current.

In the second region V > 160 V and I < 14A, the roughness
increases rapidly when the voltage increases due to surface
damage, which is attributed to the formation of cracks. The

increase of the current in this voltage range causes greater
melting of the material which leads to a reduction in crack
formation. Slowing the formation of cracks reduces the size
and depth of craters generated due to the high thermal decom-
position point of the part material; therefore, the roughness
decreases.

Figure 44b clearly shows that the roughness of the
surface is controlled by the current and pulse on time
which is explained by the quantity of energy applied dur-
ing the duration of the pulse. With a longer pulse on time
and a high current, more material of the part will be
melted. Increased discharge current causes impulsive

Fig. 32 Comparison of predicted
and experimental wear rate (WR)

Fig. 33 Variation of the
experimental and predicted
surface roughness (Ra) as a
function of the number of tests
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force acting on the workpiece. This improves the forma-
tion of a wider and deeper crater which will increase the
surface roughness. On the other hand and despite the dis-
charge time is important but the application of a low cur-
rent caused less spark energy released. This led to the
formation of tiny-sized craters on the machined surface
and therefore caused a good surface finish this has been
reported in the work of Rahul et al. [4].

Figure 44c shows that a combination of the low
values of pulse on time and the average values of the
voltage leads to maximum values of surface roughness.

The most influential factor among the three machining pa-
rameters on the surface roughness (Ra) is pulse on time with a
maximum contribution of 81.24%.

5.5 Radial overcut

Figure 45 shows the evolution of radial overcut as a function
of current, Volatge and Pulse on time.

Generally, we see that the value of radial overcut increases
with Pulse on time.

Fig. 34 Comparison of predicted
and experimental surface
roughness (Ra)

Fig. 35 Variation of the
experimental and predicted radial
overcut (ROC) as a function of
the number of tests
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Figure 45a shows that radial overcut decreases with
increasing current and voltage to a value of 14 A for
current and a value of 160 V for voltage. Beyond these
values, there is a slight increase in radial overcut.

Figure 45b shows that radial overcut increases with in-
creasing pulse on time regardless of the current value; this
increase according to Dhar et al. [29] is due to the
prolonged presence of sparks thus producing an increase
in energy per spark.

A combination of the maximum values of voltage and
pulse on time leads to maximum values of radial overcut as
shown in Fig. 45c.

The most influential factor among the three machining pa-
rameters on the radial overcut (ROC) is pulse on time with a
maximum contribution of 36.11%.

5.6 Circularity

Figure 46 shows the evolution of circularity as a function of
current, voltage, and pulse on time.

In general, as shown in Fig. 46a and b, the precise tolerance
of circularity is obtained for mean values of three variables
(I = 14 A, V = 160 V, and Ion = 200 μs).

Fig. 36 Comparison of predicted
and experimental radial overcut
(ROC)

Fig. 37 Variation of the
experimental and predicted
circularity (CIR) as a function of
the number of tests
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As shown in Fig. 46c, the combination of maximum pulse
on time values and minimum voltage values leads to an in-
crease in the tolerance of circularity.

The most influential factor among the three machining pa-
rameters on circularity (CIR) is the voltage with a maximum
contribution of 49.54%.

5.7 Cylindricity

Figure 47 shows the evolution of cylindricity as a function of
current, voltage, and pulse on time.

The combination of the minimum values of voltage and
pulse on time with maximum values of the current leads to a
minimum cylindricity as illustrated in Figs. 47a, b. The in-
crease in pulse on time and voltage leads to a rapid increase
in cylindricity up to a voltage of 160 Volts. Above this value,
the cylindricity stabilizes (Fig. 47c).

An increase in the pulse duration results in deterio-
ration of the lateral side of the hole due to the recoat
layer formed on the lateral face of the hole, for which
the surface quality deteriorates, and consequently the
increase in cylindricity. This is due, according to Ay

Fig. 38 Comparison of predicted
and experimental circularity
(CIR)

Fig. 39 Variation of the
experimental and predicted
cylindricity (CYL) as a function
of the number of tests
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Fig. 40 Comparison of predicted
and experimental cylindricity
(CYL)

(a) (b)

(c)
Fig. 41 Variation of the material removal rate predicted by fuzzy logic according to the machining parameters
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(a) (b)

(c)
Fig. 42 Variation of the tool wear rate predicted by fuzzy logic according to the machining parameters

(a) (b)

(c)
Fig. 43 Variation of the wear rate predicted by fuzzy logic according to the machining parameters
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(a) (b)

(c)
Fig. 44 Variation of the surface roughness predicted by fuzzy logic according to the machining parameters

(a) (b)

(c)
Fig. 45 Variation of the radial overcut predicted by fuzzy logic according to the machining parameters
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(a) (b)

(c)
Fig. 46 Variation of the circularity predicted by fuzzy logic according to the machining parameters

(a) (b)

(c)
Fig. 47 Variation of the cylindricity predicted by fuzzy logic according to the machining parameters
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et al. [18], to the higher discharge energy causing vio-
lent sparks and a resulting deeper erosion crater on the
surface.

The most influential factor among the three machining pa-
rameters on the cylindricity (CYL) is pulse on time with a
maximum contribution of 63.10%.

6 Conclusions

In the present work, an experimental study of the electrical
discharge machining process (EDM) is carried out on AISI
1095 treated steel parts. The factors considered in this study
are current (I), voltage (V), and pulse on time (Ton). Several
conclusions are summarized as follows:

The experimental approach used in this work to measure
the performance of electrical discharge machining (EDM) and
the associated geometric errors can be used in a practical way.
It is useful to be an economical way to follow the machining
performance evolution of AISI 1095 treated steel with EDM.

The experimental approach for measuring the electrical
discharge machining performance and the associated geomet-
ric errors is easy to implement and use. The response of the
measurement system to the nature of the machining operation
is adequate and the results show that the machining perfor-
mance has been measured satisfactorily whatever the machin-
ing conditions used.

The membership functions and the fuzzy rules developed
were based on experimental measurements of the machining
electrical discharge performance and associated geometric
errors.

The effects of the machining parameters, on the electrical
discharge machining performance and the associated geomet-
ric errors, have been studied and it has been found that certain
cutting parameters have a greater effect than others such as
follows:

– The most influential factor among the three machining
parameters on the material removal rate is pulse on time
with a maximum contribution of 28.37%.

– The most influential factor among the three machining
parameters on the tool wear rate (TWR) is the voltage
with a maximum contribution of 39.80%.

– The most influential factor among the three machining
parameters on the wear rate (WR) is the voltage with a
maximum contribution of 52.62%.

– The most influential factor among the three machining
parameters on the surface roughness (Ra) is pulse on time
with a maximum contribution of 81.24%.

– The most influential factor among the three machin-
ing parameters on the radial overcut (ROC) is pulse
on time with a maximum contribution of 36.11%.

– The most influential factor among the three machining
parameters on circularity (CIR) is the voltage with a max-
imum contribution of 49.54%.

– The most influential factor among the three machin-
ing parameters on the cylindricity (CYL) is pulse
on time with a maximum contribution of 63.10%.

The suitability of the fuzzy model has been checked
and found adequate with a level of precision of
98.489% for material removal rate (MRR), 96.614%
for tool wear rate (TWR), 97.076% for wear rate
(WR), 94.715% for surface roughness (Ra), 95.996%
for radial overcut (ROC), 95.619% for circularity
(CIR), and 97.063% for cylindricity (CYL) which dem-
onstrates that the model can be used to predict the elec-
trical discharge machining performance of AISI 1095
treated steel.

The comparison and validation of the fuzzy results
with the results of the experimental tests confirmed the
high accuracy of the model. The fuzzy modeling tech-
nique could be an economical and effective method for
predicting other electrical discharge machining (EDM)
performance.

The strategy based on operator qualification to select
the machining parameters for machining AISI 1095
treated steel can be described by fuzzy set theory.
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