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Abstract
Friction stir welding is an advanced joining technology that is particularly suitable for aluminum alloys. Various studies have
shown a significant dependence of the welding quality on the welding speed and the rotational speed of the tool. Frequently, an
inappropriate setting of these parameters can be detected through an examination of the resulting surface defects, such as
increased flash formation or surface galling. In this work, two different learning-based algorithms were applied to improve the
surface topography of friction stir welds. For this purpose, the surface topographies of 262 welds, which were performed as part
of ten studies, were evaluated offline. The aim was to use reinforcement learning and Bayesian optimization approaches to
determine the most appropriate settings for the welding speed and the rotational speed of the tool. The optimization problem was
solved using reinforcement learning, specifically value iteration. However, the value iteration algorithm was not efficient, since
all actions and states had to be iterated over, i.e., each possible parameter combination had to be evaluated, to find the best policy.
Instead, it was better to solve the optimization problem directly using the Bayesian optimization. Two approaches were applied:
both an approach in which the information from the other studies was not used and an approach in which the information from the
other studies was used. On average, both the Bayesian optimization approaches found suitable welding parameters significantly
faster than a random search algorithm, and the latter approach improved the result even further compared with the former
approach. Future research will aim to show that optimization of the surface topography also leads to an increase in the ultimate
tensile strength.
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1 Introduction

In friction stir welding (FSW), the mechanical properties [1]
as well as the surface topography [2] are strongly affected by
process parameters such as the welding speed vs and the tool
rotational speed n (r/min rate). These parameters are typically
determined by trial and error, based on handbook values, and
by manufacturers’ recommendations [3]. This selection may
neither yield optimal nor near-optimal welding performance.
Furthermore, it may cause additional energy and material con-
sumption andmay also result in low-quality welds [3]. For this
reason, several algorithms have already been developed to

optimize the process parameters in friction stir welding.
Some of these are presented in the following section.

1.1 State of the art—Use of optimization algorithms
in the field of FSW

Various statistical and mathematical methods have been used
to investigate the influence of process parameters on mechan-
ical properties, in particular the ultimate tensile strength, and
subsequently optimize the mechanical properties [4]. In many
of these investigations, either the robust parameter design
(RPD) method [5] or the response surface methodology
(RSM) [6] was applied:

The RPDmethod focuses on choosing levels of parameters
in a process to ensure that the mean of the output response is at
a desired target and to ensure that the variability around the
target value is as small as possible [5]. Taguchi [7] proposed
an approach to solve the RPD problem based on designed
experiments and novel methods for analyzing the resulting
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data [5]. He also simplified the use of orthogonal arrays [8].
An approach that has already been applied to FSW several
times is the L9 orthogonal array. This method aims at under-
standing the influence of four independent factors with three
steps each. With the L9 method, only nine experiments have
to be performed in order to study four variables at three levels.
So this design reduces 81 (34) configurations to nine experi-
mental evaluations [8].

Lakshminarayanan et al. [9] determined the optimum set-
tings for the rotational speed n, the welding speed vs, and the
axial force Fz at FSW by adapting the Taguchi L9 orthogonal
array method and maximizing the signal-to-noise (S/N) ratio.
In the Taguchi method, the S/N ratio is used to determine the
deviation of the quality characteristics from the desired value
[9]. In order to investigate nonlinearities, each of the three
process parameters was varied in three levels. Welding exper-
iments were conducted for only nine out of the 27 possible
parameter combinations. For each of the nine applied param-
eter combinations, three tensile tests were performed, and the
mean of the ultimate tensile strength was calculated. Based on
the mean values for the S/N ratio and the ultimate tensile
strength, an ideal parameter set was determined. The expected
ultimate tensile strength UTSexp, when using this ideal param-
eter set, was calculated with the following formula [9]:

UTSexp ¼ UTSn;L þ UTSvs;L þ UTSFz;L − 2 � UTS ð1Þ

whereby UTSn;L, UTSvs;L, and UTSFz;L are the mean ultimate
tensile strengths at level L of the corresponding process pa-

rameters n, vs, and Fz, and UTS is the overall mean of all 27
determined ultimate tensile strengths. Subsequently, the ex-
pected maximum ultimate tensile strength UTSexp was com-
pared with the actual ultimate tensile strength obtained by
adjusting the previously determined ideal parameter set, and
the deviation was 2.6%. It was also determined that the rota-
tional speed n had an influence on the tensile strength of 41%,
the welding speed vs of 33%, and the axial force Fz of 21%.
The remaining 5% were referred to as errors. Ugender et al.
[10] also used the Taguchi technique and the S/N ratio to find
an optimum setting for the ratio of the diameter of the shoulder
Ds to the diameter of the probe dp, the tilt angle, and the
welding speed. The results showed that the Ds/dp ratio and
the welding speed are the most important factors, followed
by the tilt angle, when deciding on the mechanical properties
of friction stir welds of aluminum alloys. Ganapathy et al.
[11], Abbas et al. [12], and Ma et al. [13] also adopted
Taguchi’s L9 orthogonal array design and maximized the
S/N ratio to optimize FSW process parameters. Vijayan
et al. [14] investigated an approach using the Taguchi-based
grey relational analysis (GRA) [15] instead of the S/N ratio.

The RSM is an approach to solve the RPD problem that not
only allows the use of Taguchi’s robust design concept but
also provides a more sound and more efficient approach to

experiment design and analysis [5]. Furthermore, the RSM is
a collection of mathematical and statistical techniques for an-
alyzing problems in which several independent variables in-
fluence a dependent variable and the goal is to optimize the
dependent variable [16]. Rajakumar et al. [3] applied the RSM
and established an empirical relationship between the inde-
pendent variables (tool rotational speed, welding speed, axial
force, shoulder diameter, probe diameter, and tool material
hardness) and the dependent variable, which was the ultimate
tensile strength of the joint. For this purpose, a multiple re-
gressionmodel was developed for the ultimate tensile strength
of the weld. The model was able to predict the ultimate tensile
strength of FSW joints within the 95% confidence level.
Khansare et al. [17] proposed a hybrid optimization method-
ology based on the combination of the RSM and a genetic
algorithm (GA) [18] to approximate the optimal welding
speed and tool rotational speed in which a maximum ultimate
tensile strength could be achieved.

Tansel et al. [19] developed a genetically optimized neural
network system (GONNS) for modeling and optimizing the
FSW process. The GONNS was introduced by Tansel et al.
[20] by using artificial neural networks (ANNs) in combina-
tion with a GA. The GONNS models the system by using the
ANNs trained with the experimental data or observations. The
optimal operating conditions are estimated by using a GA
[19]. Tansel et al. [19] used one GA for searching the optimal
tool rotational speed and welding speed by using five ANNs
representing the FSW operation. The five separate neural net-
works with two identical inputs (welding speed and tool rota-
tional speed) estimated the mechanical and metallurgical
properties of the friction stir welds.

1.2 State of the art—Evaluation of the surface of
friction stir welds

Trueba et al. [21] performed an optimization experiment using
a factorial design to evaluate the effect of process parameters
on the weld temperature, surface and internal quality, and
mechanical properties during bobbin-tool friction stir welding.
To evaluate the surface appearance, a semi-quantitative visual
appearance rating (VAR) was developed based on the pres-
ence and severity of visually observable defects. The rating
scale ranged from nine (poorest surface quality) to zero (best
surface quality), and the criteria wormhole, galling, flash, and
narrow beadwere included. The wormholewas defined as an
internal void extending to the surface. It was found that high
levels of tool rotational speeds and welding speeds resulted in
high welding temperatures and insufficient weld metal con-
straint. This in turn led to galling and the formation of
wormholes with a corresponding decrease in surface quality.
It was taken into account that there is a relationship between
rotational speed, weld temperature, surface appearance, and
void formation.
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According to Zuo et al. [2], the surface topography of fric-
tion stir welds plays an important role in the performance of
the joints. A larger surface roughness leads to a more serious
stress concentration, which will cause the occurrence of fatigue
damage and the reduction of fatigue strength of the parts [2].
Important process parameters to control the surface topography
of friction stir welds are the welding speed and the rotational
speed of the tool [22]. Hartl et al. [23] presented key indicators
for quantifying the surface topography of friction stir welds and
showed that some of these can be predicted by evaluating process
variables such as the process forces or temperatures [24].

To date, there have not been any investigations regarding the
very promising algorithm-based optimization of the surface to-
pography of friction stir welds or on the application of rein-
forcement learning (RL) [25] and Bayesian optimization (BO)
in the field of FSW, which is why these modern learning-based
algorithms are used in this work. The fundamentals regarding
these algorithms are contained in Appendix I.

2 Methodology

2.1 Approach

Previous investigations have shown that the surface quality of
friction stir welds significantly depends on the welding speed vs
and the rotational speed n of the tool. The optimal setting of these
parameters depends on factors such as the sheet thickness, the
aluminum alloy, and the tool geometry used, for instance. Due to
the complex interrelations, the ideal welding speed vs and tool
rotational speed n can often only be found through experience
and trial and error. In this work, a learning-based system was
developed that helps the FSW user to find optimal settings for
these two parameters. Since the production of friction stir welds
is time-consuming, as few parameter combinations as possible
should be sampled to find suitable parameters.

The evaluation of the surface quality was conducted on the
basis of surface topography indicators for friction stir welds,
which were presented in Hartl et al. [23]. The task was ad-
dressed as an optimization problem:

argmin
vs;nð Þ∈X⊆ℝ2

def vs; nð Þ ð2Þ

Here, def is a function that indicates how defective the
surface of the friction stir weld is for the given parameters.
The function value def(vs, n) is smaller than the function value
def(vs′, n′) if the parameter combination (vs, n) leads to fewer
surface defects than the parameter combination (vs′, n′). The
evaluation of def(vs, n) can be equated with the explicit testing
of the parameter combination (vs, n), i.e., the production of the
friction stir weld with the given parameters, the recording of
the surface topography, and the calculation of the topography

key indicators based on Hartl et al. [23]. Since this process is
associated with considerable effort, the number of evaluations
of def should be kept as low as possible. When implementing
the algorithms, it had to be taken into account that there was
no information about the gradient of def. Additionally, def
contains an error: even if the process parameters are identical
for two experiments, the surface topography of these two
welds will not be completely identical. Small measurement
inaccuracies may also occur when recording the surface to-
pography with the three-dimensional profilometer. However,
for simplification purposes, it was assumed that def has no
error. To solve the optimization problem, three different ap-
proaches were considered:

I. For the first approach, the optimization problem was
modeled as a Markov decision process (MDP) and solved
using the RL-based value iteration algorithm.

II. For the second approach, the optimization problem was
solved with BO. In the further discussion, the second
approach will be called single-task.

III. For the third approach, the optimization problem was
also solved using Bayesian optimization. In contrast to
the single-task approach, here the Gaussian process (GP)
was providedwith additional data that it could use to find
the optimum. The GP was provided with information
about the type of aluminum alloy, the sheet thickness,
and the shoulder geometry used. In the further discus-
sion, the third approach will be called multi-task.

2.2 Welding experiments

The welding experiments were conducted on a four-axis mill-
ing machining center MCH 250 from Gebr. Heller
Maschinenfabrik GmbH, which was adapted for friction stir
welding. The maximum axial force of the system was 30 kN.
In the experiments, the sheets were joined in the butt joint
configuration and a rigid clamping device avoided gaps be-
tween the two joining partners. All tests were performed in
position-controlled operation with a 2° tilt angle of the tool.
Two-piece tools consisting of a shoulder and a conical
welding probe with a thread and three flats were used. A total
of 262 welding experiments were conducted within the scope
of 10 studies. In the 10 studies, the type of aluminum alloy, the
tool shoulder geometry, and the sheet thickness were varied.
Table 1 provides an overview of the different studies. Some of
the studies have already been described in more detail in pre-
vious research conducted by Hartl et al. [23, 26]. The evalu-
ated weld seam length varied in the ten studies, but was al-
ways between 70 and 170 mm. The evaluated weld seam area
started 10 mm after the plunge point and ended approximately
20 mm before the exit hole.

3147Int J Adv Manuf Technol (2020) 110:3145–3167



The welding speed vs and the tool rotational speed n were
varied in a large parameter window. As high welding speeds vs
are becoming increasingly important for industrial applications,
especially in the context of electromobility [27], welding speeds
of up to 1500 mm/min were employed. In order to protect the
welding equipment, the minimum n/vs ratio was limited to
1 mm−1. In studies no. 1 to 8, the welding speed vs and the tool
rotational speed n were varied in a full factorial manner in four
steps, respectively. Thereby, the welding speeds vs ranged from
500 to 1500 mm/min and the tool rotational speeds n from 1500
to 3500 min−1. In study no. 9, a total of 13 different rotational
speeds n from 1500 to 3500min−1 were set at a welding speed vs
of 833mm/min. In study no. 10, the welding speed vs was varied
in eleven steps from 500 to 1500 mm/min and the rotational
speed n was varied in eleven steps from 1500 to 3500 min−1 in
a full factorial design.

2.3 Data preprocessing

The topography of the friction stir welds was recorded
using a three-dimensional profilometer VR-3100 from
Keyence Deutschland GmbH which was based on phase-
coded structured light projection. Thereby, white LEDs
projected light from two places onto the welds and the
reflected light was measured by a CMOS sensor. The
smallest measurable difference in the height direction nor-
mal to the sheet surface was 1 μm. The sheet surface was
defined as the zero height. The distance between the in-
dividual topography points in the plane of the sheet sur-
face was approximately 24 μm. A total of about 250,000
height information points per 10 mm weld seam length
were generated. The point cloud was processed to deter-
mine the key indicators listed in Table 2 for each weld. A
more detailed description of the key indicators is given in
Hartl et al. [23].

Table 3 shows the ideal value for each of these eight key
indicators as well as the best and the worst values obtained for
the 262welding experiments performed. The value of −2.80mm
for the largest seam underfill was notably high. This value was
caused by a lack of fill occurring in some experiments in study
no. 2 (see alsoHartl et al. [23]). Themaximumvalue for the peak
material volume of 37.36 ml/m2 was also remarkably high. This
high value could be explained by flash that reached into the
weld. The values displayed in Table 3 were therefore all consid-
ered plausible.

The eight topography indicators obtained for the 262 welds
were then scaled to values between 0 and 1. The ideal value
for each topography key indicator was scaled to a value of 0
and the worst occurring value for each topography key indi-
cator was scaled to a value of 1. The ideal value for the ratio
rarc is 1 [23]. The largest deviation from this ideal value was
0.95 at an rarc of 1.95, which is why that deviation was scaled
as 1. The eight scaled values N for the eight topography indi-
cators were then averaged for each weld according to:

def ¼ N f m þ Num þ NS f þ NSu þ NSd þ Nrarc þ NVmp þ NSw

8
ð3Þ

and a scaled and averaged key indicator def was obtained that
took into account all eight topography indicators defined be-
fore (see Table 2). In Eq. 3, all defined topography key indi-
cators were weighted equally. If a quality characteristic would be
particularly relevant in the application, for example, the flash
height, this could be weighted more prominently in Eq. 3. The
perfect friction stir weld surface would therefore have the value
def of 0. The best actual weld of all 262 conducted experiments
was experiment no. 53, which had the value def of 0.021. The
worst obtained value for def was 0.603 for experiment no. 123.
Figure 1 shows the evaluated areas of these two welds as color
and topography images. The images were generated using the
three-dimensional profilometer. Experiment no. 53, on the one
hand, contained no surface defects. Neither pronounced flash

Table 1 Welding experiments used for this work

Study no. Experiment no. Number of exp. Number of different … Aluminum alloy Shoulder geometry Sheet thickness

… vs … n

1 001–016 16 4 4 EN AW-5754-H111 Concave 4 mm

2 017–032 16 4 4 EN AW-5754-H111 Spiral 4 mm

3 033–048 16 4 4 EN AW-6082-T6 Concave 4 mm

4 049–064 16 4 4 EN AW-5754-H111 Rings 4 mm

5 065–080 16 4 4 EN AW-6082-T6 Rings 4 mm

6 081–096 16 4 4 EN AW-6082-T6 Rings 4 mm

7 097–112 16 4 4 EN AW-5754-H111 Concave 2 mm

8 113–128 16 4 4 EN AW-5754-H111 Rings 4 mm

9 129–141 13 1 13 EN AW-6082-T6 Concave 4 mm

10 142–262 121 11 11 EN AW-6082-T6 Rings 3 mm
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formation, nor surface galling, nor cracks were visible on the
surface of the weld. The topography image in Fig. 1 shows that
the seam underfill was also low and regular. Experiment no. 123,
on the other hand, showed a very strong flash formation and
pronounced surface galling. The defined key figure def was
therefore assessed as suitable for documenting the surface quality
in a scalar quantity.

3 Results

3.1 Reinforcement learning

In order to solve the optimization problem using RL, it first
had to be formulated as an MDP. Two formulations, labeled
as formulation 1 and formulation 2, were implemented, which
differed in the state transition function and the possible ac-
tions. In both formulations, the state transition function was
deterministic. For a clearer presentation, the state transition
function p was represented deterministically with the two
functions T(s, a): S × A → S and r(s, a): S × A → ℝ. These
two functions described in which state s′ the environment
resulted and which reward r the agent received when the agent
executed the action a in the state s. The state transition func-
tion could be derived from both functions as follows:

p s
0
; r

� �� s; a� ¼ 1 if s
0 ¼ T s; að Þ and r ¼ r s; að Þ

0 else

�
ð4Þ

Both formulations were solved using the value iteration
algorithm. The parameter δ (see AlgorithmA2) was set to 10−8.

In both formulations, the states S were the parameter com-
binations of welding speed vs and tool rotational speed n. For
example, from study nos. 1 to 8, each of which included 16
different parameter combinations, S was assigned:

S ¼ vs; nð Þ ¼ 500; 833; 1167; 1500f g
� 1500; 2167; 2833; 3500f g ð5Þ

The reward function r should lead the policy π (see
Appendix I) into a minimum as fast as possible, which is
why the following reward function was chosen for both for-
mulations:

r s; að Þ ¼ −def T s; að Þð Þ−bs ð6Þ
where def was the function to be optimized and bs ∊ ℝ+

was a constant. This reward function gave the agent a
higher reward r, the smaller the value of def was, i.e.,
the less defective the topography of the friction stir weld
was. In addition, the agent received a penalty of bs for
each step, because each step was coupled with an explicit
evaluation of def and thus connected with effort. The val-
ue for bs was set to 1. Since the value of def was between
0 and 1, the reward r for each step was between − 2 and − 1.

In formulation 1, only the following four different actions
were allowed:

A ¼ fincrease welding speed vs; reduce welding speed vs;

increase rotational speed n; reduce rotational speed ng
ð7Þ

Table 2 Key indicators derived from the three-dimensional point cloud to quantify the features of the weld surface

Surface feature Key indicator 1 Key indicator 2

Flash formation Mean flash height fm Standard deviation of flash height Sf
Seam underfill Mean seam underfill um Standard deviation of seam underfill Su
Surface galling Peak material volume Vmp [28] n/ a

Arc texture formation Standard deviation of the difference between the
local minima and the following local maxima
along the weld center line Sd

Ratio between the measured number and the
theoretical number of local extrema along the weld center line rarc

Weld seam width Standard deviation of the weld seam width Sw n/a

Table 3 Ideal values for each of
the eight key indicators as well as
the best andworst values obtained
for one of the 262 welding
experiments performed

Key indicator fm um Sf Su Sd rarc Vmp Sw

Unit mm mm mm mm mm - ml/m2 mm

Ideal value 0 0 0 0 0 1 0 0

Best occurred value 0.09 − 0.02 0 0 0 1.00 0.27 0.05

Worst occurred value 3.79 − 2.80 0.90 0.75 0.37 0.21/1.95 37.36 4.31
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For example, for study nos. 1 to 8, the state transition func-
tion T for formulation 1 was defined as:

T s; increase welding speed vsð Þ ¼ vs þ 333; nð Þ if vs < 1500
s else

�

T s; reduce welding speed vsð Þ ¼ vs − 333; nð Þ if vs > 500
s else

�

T s; increase rotational speed nð Þ ¼ vs; nþ 667ð Þ if n < 3500
s else

�

T s; reduce rotational speed nð Þ ¼ vs; n − 667ð Þ if n > 1500
s else

�
ð8Þ

Figure 2 shows the 16 different states with the respective
possible actions for formulation 1 for study nos. 1 to 8. The
states and possible actions for study nos. 9 and 10 were
analogous.

In formulation 2, in contrast to formulation 1, the agent was
able to change from any state to any other state. This followed:

A ¼ S ð9Þ

The state transition function was thus simplified to:

T s; að Þ ¼ a ð10Þ

In both formulations, the discount factor γ was set to 1 (see
Appendix I). This expressed the fact that both immediate and
future evaluations of def were equally unwanted [25].
Additionally, the number of iterations no longer depended on
the choice of γ.

To ensure that the algorithm still terminated, the minimum of
def was regarded as the terminal state [25]. This meant that the
value of the value function in the terminal state was always zero.
The algorithm terminated because the agent could get from any
state to the terminal state in finitely many steps and the agent
received a negative reward in every state except the terminal state.
So, in order to get the least negative reward possible, the agent

Experiment no. 123 (def = 0.603)

Color image

Topography
image

-0.2 0 0.2 0.4 mm 0.8 ……

Topography height →

10 mm

10 mm

10 mm

10 mm

Experiment no. 53 (def = 0.021)

Fig. 1 Color images and topography images of the evaluated weld surfaces with the lowest (def = 0.021) and highest (def = 0.603) value for the scaled
and averaged surface topography indicator def

(500, 3500) (833, 3500) (1167, 3500) (1500, 3500) ↓ → ← ↓ → ← ↓ → ← ↓

(500, 2833) (833, 2833) (1167, 2833) (1500, 2833) ↑ → ↓ ← ↑ ↓ → ← ↑ ↓ → ↑ ← ↓

(500, 2167) (833, 2167) (1167, 2167) (1500, 2167) ↑ → ↓ ← ↑ ↓ → ← ↑ ↓ → ↑ ← ↓

(500, 1500) (833, 1500) (1167, 1500) (1500, 1500) ↑ → ← ↑ → ← ↑ → ← ↑

500 1500833 mm/min

1500

2167

3500

min-1

500 1500833 mm/min
Welding speed vs →

R
ot

at
io

na
l s

pe
ed

n
→

Welding speed vs →

(a) (b)

Fig. 2 a Possible states s and b possible actions a in the different states s for study nos. 1 to 8 when using formulation 1
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had to get to the terminal state as quickly as possible. In
Algorithm A1, the slightly modified value iteration algorithm is
described. The changes, compared with Algorithm A2, are
underlined. The changes ensured that the value functions of the
terminal states were always zero. In addition, the algorithm was
adapted for the deterministic formulation.

Algorithm A1 Adapted value iteration algorithm

Figure 3 a shows the values for the scaled and averaged
surface topography indicator def (see Eq. 3) for the 16 different
states in study no. 1. It is evident that the best value for def, 0.041,
in study no. 1 was obtained in the state (500, 1500). This was in
good agreement with the result fromHartl et al. [23], wherein this
parameter combination led to the best-rated result in study no. 1
according to the visual inspection. Figure 3 b shows the initiali-
zation of the value function Vπ(s) with zeros (compare line 1 in
Algorithm A1).

In both formulations, the algorithm evaluated the function
def for all 16 parameter combinations. Figure 4 illustrates the
results for the value iteration algorithm for study no. 1 when
using formulation 1. Thereby, the strategy for each state was
the direction in which the sum of future rewards was maxi-
mized (see Eq. 19 in Appendix I). The algorithm terminated
after five iterations. Figure 4 a shows the values of the value
functionVπ(s) for the first and the fifth (last) iteration. Figure 4
b shows the values of the value function Vπ(s) plus the reward,
if the agent changes from another state to this state for these
two iterations. Figure 4 c demonstrates the direction to the
neighboring state that yields the highest improvement

according to Fig. 4b. For example, for state (1500, 3500) in
iteration 1, that would be the reduction of the welding speed
vs. The terminal state was reached for (500, 1500), so the value
function Vπ(s) for this state is zero from the beginning. The
results for the other studies (see Table 1) led to the same
findings.

Figure 5 displays the results for the value iteration algo-
rithm for study no. 1 when using formulation 2 analogous to
Fig. 4. For formulation 2, the strategy in each state s was the
action (500, 1500). The labeling of the boxes in Figs. 4 and 5
is analogous to the labeling in Fig. 2a.

The results showed that the optimization problem (see Eq.
2) can be solved using RL. However, the value iteration algo-
rithm was not efficient. Since all states s∊S and all actions a∊A
were iterated over, the function def had to be evaluated for
each process parameter combination. There are algorithms for
RL that are more efficient in this respect. For example, the
value function could be approximated using a Gaussian pro-
cess to reduce the number of evaluations [29].

3.2 Bayesian optimization

Optimization of the surface quality In the second approach
(single-task), the optimization problem was solved using
Bayesian optimization (BO). Thereby, only the data from the
respective study were used. Additional information from other
studies or information such as the type of aluminum alloy were
not utilized. Since no information was available at the beginning
of the optimization for the first selection of a parameter set, a
random parameter set had to be selected in the first trial. A pa-
rameter set consisted of the welding speed vs and the tool rota-
tional speed n. To ensure that the results were independent of the
selected starting point, all parameter combinations were used
once as the starting point and then the means and standard devi-
ations of the required number of steps to find good parameter sets
were subsequently calculated.

0.324 0.159 0.131 0.167 0 0 0 0

0.292 0.239 0.162 0.273 0 0 0 0

0.149 0.062 0.167 0.125 0 0 0 0

0.041 0.063 0.096 0.127 0 0 0 0

500 1500833 mm/min

1500

2167

3500

min-1

500 1500833 mm/min
Welding speed vs →

R
ot

at
io

na
l s

pe
ed

n
→

Welding speed vs →

(a) (b)

Fig. 3 a Values for the scaled and averaged surface topography indicator def for study no. 1. b Initialization of the value function Vπ(s)
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In order to avoid overfitting the hyperparameters, it was as-
sumed that they follow certain distributions. For the
hyperparameter length-scale l of theMatérn 5/2 kernel, a uniform
distribution was assumed, since the Gaussian process
degenerated strongly at values below 0.1 and those were thus
excluded. A logarithmic normal distribution was assumed for
the variance σ to determine the approximate interval in
which σ should be located. The exact choice of the

distribution parameters was not significant. The param-
eters in Table 4 in Appendix II were found by trial and
error using the data sets from study nos. 1 to 10, so
that the distributions cover approximately the range of
the hyperparameters that do not degenerate the GP.
Figure 6 shows a degenerate GP for study no. 9 that
had to be avoided. The cause of the degeneration was
that the hyperparameter l was selected to be 0.01 and
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therefore too small. Consequently, the mean in Fig. 6 is
always zero and only spikes at known points. In addi-
tion, the hyperparameter variance σ of 0.001 was too
small.

In the third approach (multi-task), the optimization
problem was also solved using the BO, but in this case,
the GP received the data sets from the nine other stud-
ies as additional information, respectively. It was
suspected that this would allow the GP to better esti-
mate the function to be minimized and to find the opti-
mum more quickly. In order for the GP to be able to estimate
which other studies were similar, it was given additional features
as input variables which influence the setting of the process
parameters. These features were the type of aluminum alloy,
the sheet thickness, and the shoulder geometry. Since they were
identical in study nos. 3↔ 9, 4↔ 8, and 5↔ 6 (see Table 1), the
study number was also used as an additional input variable. This
resulted in the following kernel for the GP:

g vs; n;m f ; t f ; s f ; ið Þ : ℝ� ℝ�M f � T f � S f � 1; 2;…; 10f g→ℝ
M f ¼ EN AW−5754 −H111; EN AW−6082−T6f g;

T f ¼ 2 mm; 3 mm; 4 mmf g;
S f ¼ concave; spiral; ringsf g;

ð11Þ
where Mf, Tf, and Sf represent the quantities of the aluminum
alloys mf, sheet thicknesses tf, and shoulder geometries sf used.
Additionally, i is the number of the study and {1, 2,…, 10} is the
set of natural numbers less than or equal to 10, since data from 10
studies were used in total. For the welding speed vs, the tool
rotational speed n, and the sheet thickness tf, the Matérn 5/2
kernel (see Appendix I) was used. Since the type of aluminum
alloy, the shoulder geometry, and the study number were

categorical values, the coregionalization kernel (see Appendix
I) had to be used for those. In that way, their covariance could
be learned via hyperparameter optimization. The covariance
function k was defined as follows:

k
��

vs; n;m f ; t f ; s f ; i
�
; vs

0
; n

0
;m f

0
; t f

0
; s f

0
; i

0
� ��

¼ kE
��

vs; n; t f
�
;
�
vs

0
; n

0
; t f

0
��

:kM m f ;m f
0

� �
:kS
�
s f ; s f

0
�
:kI i; i

0
� � ð12Þ

where kE is the Matérn 5/2 kernel, kM and kS are
coregionalization kernels for two or three categories, and kI is a
coregionalization kernel for ten categories. Since the GP was
given information from the nine other studies, the first parameter
set to be tested no longer had to be chosen randomly as in the
single-task approach.

In order to prevent overfitting the hyperparameters, it was
also assumed for the multi-task approach that the
hyperparameters follow certain distributions. A uniform dis-
tribution was assumed for the hyperparameter length-scale l of
the Matérn 5/2 kernel. A logarithmic normal distribution was
assumed for hyperparameters, which can only have positive
values, and a normal distribution for all remaining
hyperparameters. Table 5 in Appendix II lists the
hyperparameters for the multi-task approach and their distri-
bution analogous to Table 4.

The number of expected steps until the random search algo-
rithm finds a suitable parameter setting has been calculated as
described below: Let Z be a random variable that indicates after
how many steps a random search finds one of the o optima for
the first time. Thus, pzwas the probability that a random search
has not found an optimum in the previous z steps and finds an
optimum in the (z + 1)-th step:
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ð13Þ
whereby q is the number of possible parameter combinations
and Z ∊ {1, 2,…, q–o + 1}, whereby {1, 2,…, q–o + 1} is the
set of natural numbers less than or equal to (q–o + 1), since
there are at most (q–o) parameter sets that are not an optimum
and one of the optima is found in the (q–o + 1)-th step at the
latest. Thus, the expected number of necessary steps to find an
optimum using random search was:

E Z½ � ¼ ∑
q−oþ1

z¼1
z:pz zð Þ ¼ ∑

q−o

z¼0
zþ 1ð Þ:pz Z ¼ zþ 1ð Þ ð14Þ

Table 6 in Appendix II shows the number of steps re-
quired to find a suitable parameter set for the ten different
studies. Initially, the best 20% of each study were defined
as suitable. This resulted in the number of o20 parameter
sets for each study, which led to an optimum result. If the
random search (RS) algorithm was used, the calculated ex-
pected value until one of the o20 good parameter sets was
found was 4.3 steps on average. When using the single-task
approach and the probability of improvement (PI) acquisi-
tion function, an average of 3.3 steps, and when using the
multi-task approach, an average of 2.4 steps were required
to find a parameter set that was among the best 20%. The
average results for the expected improvement (EI) acquisi-
tion function were almost identical with the results when
using the PI acquisition function. Since the application of
the single-task approach also depended on which parameter
set was tested first, the mean value and standard deviation
are given for each study in Table 6. The BO was started
once with each of the parameter sets. Since the determination
of suitable settings for the welding speed vs and the tool rota-
tional speed n with both the single-task and the multi-task ap-
proaches succeeded faster than an RS algorithmwould suggest,
the use of the BO was considered suitable. It was expected that
the BO would lead to suitable parameters faster than RS, since
the BO models the function to be optimized. This made it
possible to estimate which parameter setting should be tested
next.With RS, the parameter settings were evaluated in random
order. In addition, the information given in Table 6 shows that,
on average, the multi-task approach led to better results than the
single-task approach. The information from the other data sets
could thus be successfully used to determine suitable welding
parameters faster. Since the similarity to the other data sets was
modeled, it was also possible to derive from which of the other
studies the information could be better transferred in the multi-
task approach.

Figure 7 illustrates the number of steps required for the
different studies and approaches. It becomes obvious again that
the multi-task approach led to the best results. Only in study
nos. 7 and 9 the results were the worst for the multi-task ap-
proach. The reason was assumed to be that study no. 7 was the
only study in which a sheet thickness of 2 mm was used (see
Table 1), which is why the information from the other studies in
this case even had a negative effect on the result compared with
the single-task approach. Study no. 9 also differed from the
other studies. In this study, the welding speed vs was not
changed and only the rotational speed n was varied. Due to
the greater difference as compared with the other studies, this
information could therefore not be used advantageously.

Table 7 in Appendix II shows the number of steps required
to find suitable welding parameters for the various approaches
in analogy to Table 6. Now, only the best 5% of each study
were defined as suitable. This resulted in the number of o5
good welding parameter sets for each study. This specifi-
cation could be used for applications that require a very
high surface quality, for example for visible welding seams.
Since the number of optimal parameter sets was now lower,
the number of steps necessary to find good parameter sets was
higher on average. It once again became clear that the use of
the BO reduced the number of necessary steps compared with
RS. The average number of necessary steps was again lower
with the multi-task approach than with the single-task ap-
proach. This time, the differences between the two different
acquisition functions were slightly bigger and the PI acquisi-
tion function was on average better for the single-task ap-
proach, whereby for the multi-task approach, the EI acquisi-
tion function performed marginally better.

Figure 8 illustrates the steps necessary to find a parameter
set that was among the best 5%. Compared with Fig. 7, it is
particularly noticeable that in study no. 2, the multi-task ap-
proach required the most steps to find a good parameter set.
This was assumed to be due to the fact that study no. 2 was the
only study in which a spiral shoulder geometry was used (see
Table 1) and the information from the other data sets was
rather confusing than useful for the multi-task BO algorithm.

Figure 9 a shows the sequence of the tested parameter sets in
study no. 1 based on the multi-task approach. The sequence was
identical for both acquisition functions: PI and EI. Figure 9 b
shows the achieved values for the surface topography def in each
step. From the two figures, it becomes clear that the optimum
parameter set (500, 1500)was already found in the first step. This
was also in agreement with the result fromHartl et al. [23], where
for study no. 1 the parameter set (500, 1500) led to the best result
regarding the visual inspection. Figure 10 shows a color image
and a topography image of the evaluated welding surface from
this experiment. Since the approach tested all 16 parameter set-
tings and have only tested each parameter set once (see
Algorithm A3), the quality of the surface topography decreased
in the subsequent steps (see Fig. 9b).
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Figure 11 visualizes the GP for study no. 1 when using the
BO multi-task approach with the mean function and the 68%

confidence interval. The first three steps have already been
performed, so the points (500, 1500), (500, 2167), and (833,
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1500) in Fig. 11 are already known. Since the acquisition
function for the point (833, 2167) was the highest compared
with the other points not yet evaluated, this point was evalu-
ated next for both the PI and the EI acquisition function.

Figure 12 is analogous to Fig. 11 when using the BO
single-task approach and the first three steps have already
been performed. Thereby, it was specified that in the first step,
the parameter set (500, 1500) was tested. It became clear that
the GP mean function and the associated 68% confidence
interval could estimate the real data considerably less accu-
rately as compared with the multi-task approach, which is
illustrated in Fig. 11.

In the investigations on the multi-task approach presented
so far, all nine other studies shown in Table 1 were used to
find suitable parameters. In the study nos. 3↔ 9, 4↔ 8, and 5
↔ 6, the same aluminum alloy, the same sheet thickness, and

the same shoulder geometry were used. The disadvantage of
these studies, hereinafter referred to as duplicates, was that the
GP needed additional hyperparameters (see Eq. 11), which
made their learning more complex. Furthermore, it was not
possible to investigate how well the other data sets, which had
no duplicates, could be used for the data sets that had dupli-
cates. In further investigations using the multi-task approach,
the duplicates were therefore not used and the study number i
(see Eq. 11) was no longer required for the differentiation,
which also simplified the covariance function. Table 8 in
Appendix II shows which data sets were used to calculate
suitable parameter sets, whereas Table 9 displays a compari-
son of the results with and without the duplicates. On average,
the results could be improved without the duplicates.
The assumed reason for th i s was tha t fewer
hyperparameters had to be learned if the duplicates were
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omitted. Especially in study nos. 2 and 7, which had no
duplicates, the results could be improved. In the studies
that had duplicates, the results were worse if the dupli-
cates were not used. Only in study no. 9 did the results
improve, even though there was a duplicate. This was
probably due to the fact that study no. 3 showed a poor
welding result for the welding speed of 833 mm/min

and a rotational speed of 2167 min−1, whereas study
no. 9 showed the best welding results in this parameter
range.

Overall, it could be shown that Bayesian optimization
can be used very efficiently to find suitable process param-
eters for friction stir welding. The Bayesian optimization
was better suited than reinforcement learning for the aim of
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this project to optimize the surface quality of FSW seams
as efficiently as possible. For the optimization using rein-
forcement learning, a strategy had to be found that maxi-
mizes the expected value of an infinite sum of random
variables and the function def had to be evaluated for each
process parameter combination. Using the Bayesian opti-
mization, the function def could be directly optimized by

searching for values for the welding speed and the tool
rotational speed that minimize the function def.

In this work, only the welding speed and the tool rotational
speed were varied. This can be extended to other process
parameters in further work. For example, the tilt angle or the
immersion depth of the tool could be implemented addition-
ally to optimize the surface quality. The Bayesian
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optimization method can also be transferred to force-
controlled processes in order to find a suitable setting for the
axial force of the tool.

Optimization of the surface quality with consideration of the
welding speed Since the welding speed vs has a direct influ-
ence on the process productivity [30] in any welding oper-
ation in an industrial context, the objective behind the se-
lection of suitable welding parameters is to maximize the
welding speed vs while ensuring an acceptable welding
quality [31]. The growing market for the use of friction stir
welding in the electromobility sector also requires suffi-
ciently high welding speeds in order to enable economic
production [27]. Richter [27] recommends aiming to attain
a welding speed vs of at least 1000 mm/min. Therefore, in
the investigations described in this section, slower welding
speeds were penalized with plvp according to the following

formula:

plvp ¼ lvp:
vsmax − vs

vsmax − vsmin
ð15Þ

with lvp being a factor indicating the magnitude of low
welding speed penalty, vsmax being the maximum welding
speed in a study, and vsmin being the minimal welding speed
in a study. The higher the selected lvp factor, the higher
welding speeds are preferred. The value for plvp was then
added to the values for def, which were calculated according
to Eq. 16 to generate the new variable defvs, which took into
account both the surface quality and the welding speed vs:
def vs ¼ def þ plvp ð16Þ

In this project, the maximum welding speed in all ten studies
was 1500 mm/min and the minimum welding speed was
500 mm/min. Additionally, lvp was chosen to be 0.15. For a
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welding speed vs of 833 mm/min, for example, this resulted in a
plvp of 0.10, which was then added to all values for def where a
welding speed vs of 833mm/minwas applied. Figure 13 a shows
the sequence of tested parameter sets when using the BO multi-
task approach with all ten studies used (including the duplicates)
and punishing low welding speeds vs with plvp. It becomes clear
that parameter settings with a welding speed vs of 1500 mm/min
were preferred then. Figure 13 b shows the corresponding values
for defvs. The optimum for defvs of 0.12 for study no. 1 was
already reached in the first step again, and thus, the parameter
set (1500, 2167) was used.

Figure 14 shows a color image and a topography image of the
evaluated welding surface for the parameter set (1500, 2167). It
becomes clear that the surface has a small irregular flash formation
and slight surface galling compared with the result shown in
Fig. 10. However, the welding speed vs was three times as high.

A possibility was thus found which allows the FSW user to
weight the two criteria surface quality and welding speed in-
dividually adjusted to the requirements by setting the param-
eter lvp and to consider this in the learning-based automated
search for suitable process parameters.

4 Conclusions and future research

A total of 262 friction stir weldswere performedwithin 10 studies.
Subsequently, with reinforcement learning and Bayesian optimi-
zation, two learning-based algorithms were tested for their appli-
cability in optimizing the surface topography by adjusting the
welding speed and tool rotational speed. The following conclu-
sions were drawn:

& The optimization problem could be solved by means of
reinforcement learning, but not efficiently. Furthermore, it
was complicated to solve the problem with reinforcement
learning, because a policy had to be found that maximizes
the expected value of an infinite sum of random variables.
Instead, it was better to solve the optimization problem
directly by using the Bayesian optimization.

& The Bayesian optimization found suitable settings for the
process parameters significantly faster than random search,
both without (single-task approach) and with (multi-task
approach) the aid of the data sets from the other studies.

& In the multi-task approach, the information from the other
studies could be successfully used to find suitable welding
parameters even faster compared with the single-task
approach.

& By penalizing lowwelding speeds, both the surface topog-
raphy and the welding speed could be considered for the
optimization.

In a future project, the aim will be to show that the optimi-
zation of the surface topography in general leads to an increase

in the ultimate tensile strength of the friction stir welded joint.
The transfer of the algorithms developed in this work for the
inline optimization of the weld seam surface is also the subject
of future investigations.
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Appendix I

Reinforcement learning

Reinforcement learning (RL) describes the concept of goal-
oriented learning by an agent through the interaction with its
environment. At each discrete time step, the agent performs an
action, which influences the state of its environment and
which rewards the agent. The agent seeks to maximize its
rewards, whereby the agent is guided towards the goal. In
general, the charm of RL is that the agent learns autonomously
to achieve the goal, while the user only needs to assess, by
using rewards, how well the goal was achieved [32].

The Markov decision processes (MDPs) have become the
standard formalism to mathematically describe sequential
decision-making tasks in stochastic environments, such as
RL problems [33]. An MDP is defined by [25]:

& S is the set of states s, in which the environment can be,
& A is the set of actions a, which the agent can perform in the

environment, and
& p(s′, r | s, a): S × R × S × A → [0,1] is the state transition

function. Thereby, p describes the probability distribution
of the state s′ and the reward r after the agent has executed
the action a in the state s.

At the beginning (time step t = 1), the agent is in an initial
state s1. At every time step t, the environment is in the state st
and the agent executes an action at. According to the state
transition function, the agent is in the state st + 1 at the next time
t + 1 and gets the reward rt. Figure 15 illustrates this cycle.

By using RL, a possibly stochastic policy π(a | s): A × S→
[0,1] is searched for, according to which the agent can act in
the environment. The policy is supposed to maximize the sum
of all expected weighted future rewards Er1;r2;… ∑∞

t¼1γ
t−1 rt

� �
,

where Er1;r2;… is the expected value for the random variables
r1, r2,…, and π(a | s) indicates the probability with which the
agent executes the action a in the state s. To keep the sum of
all future rewards finite, rt is weighted by γ

t-1, where γ ∊ [0, 1].
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A γ smaller than one can also express that immediate rewards
are more important to the agent than future rewards [25].

Value iteration is an algorithm to find a policy π. It uses an
auxiliary function, the value function Vπ(s): S → ℝ, which
represents the sum of all expected weighted future rewards
when the agent follows the policy π [25]:

Vπ sð Þ ¼ Eat ;rt ;stþ1;atþ1;rtþ1;… ∑∞
k¼0γ

k :rtþk j st ¼ s
� � ð17Þ

The value function Vπ can in turn be defined by itself [25]:

Vπ sð Þ ¼ Eat ;rt ;stþ1 rt þ γ:Vπ stþ1ð Þj st ¼ s½ � ð18Þ

The policy is deterministic and returns the action a that
maximizes the expected weighted future reward and can be
defined using the value function Vπ [25]:

π sð Þ ¼ argmax
a∈A

Ert ; stþ1 rt þ γ:Vπ stþ1ð Þ½ j st ¼ s; at ¼ a
i

ð19Þ

The value function is represented by a look-up table. Since
the value function and thus also the values of the look-up table
are unknown, the values are learned with the help of the value
iteration algorithm. First, the value function is initialized arbi-
trarily; then, it is updated until the change is only marginal
(i.e., smaller than δ) [25].

The value iteration algorithm is described in AlgorithmA2.

Algorithm A2 Value iteration algorithm [34]

The value iteration algorithm converges to the optimal val-
ue function, i.e., to the optimal policy as well [25]. But both S
and A must be finite, because the algorithm iterates over all
states s and actions a.

Gaussian processes

A Gaussian process (GP) is a stochastic process, which,
among other things, can be used to model probability distri-
butions over functions. Therefore, the GPs can be used as a
model for regression analysis [35].

Figure 16 shows a GP with the mean of the GP, the 95%
confidence interval, and three samples, whereby four data
points (x, f(x)) ∊ {(− 5.0, 2.5), (− 2.0, 2.0), (3.0, − 0.5), (3.5,
0)} of the unknown function f(x) are known.

Let

ð20Þ

be a finite set of data points [35]. Then, a GP is a stochastic
process Txð Þx∈X in which each finite subset of points
{Tx1 ; Tx2 ; …; Txng follows a multivariate normal distribution
[35]:

Tx1
⋮
Txn

0
@

1
A∼N m;Kð Þ; where

m ¼
m x1ð Þ
⋮

m xnð Þ

0
@

1
A and

K ¼
k x1; x1ð Þ ⋯ k xn; x1ð Þ

⋮ ⋱ ⋮
k x1; xnð Þ ⋯ k xn; xnð Þ

0
@

1
A

ð21Þ

Thereby N denotes the normal distribution, and m(x): X
→ℝ is the mean function which describes the expected value
of the random variable Tx [35]:

m xð Þ ¼ y if x; yð Þ∈D
0 else

�
ð22Þ

and k(x, x′): X � X →ℝ is the covariance function, which can
be represented by a kernel function. The covariance function
describes the relationship between the two random variables Tx
and Tx′, respectively, the similarity between the two points x and

Agent

Environment

atst+1 rt

Fig. 15 The agent-environment
interaction in an MDP [25]

3161Int J Adv Manuf Technol (2020) 110:3145–3167



x′. In particular, an unknown point xn + 1 with the corresponding
random variable Txnþ1 is normally distributed, too [35]:

Txnþ1 j Tx1 ;…; Txn∼N μ; σð Þ

μ ¼ kTK−1m; σ ¼ k xnþ1; xnþ1ð Þ−kTK−1k; k ¼
k xnþ1; x1ð Þ

⋮
k xnþ1; xnð Þ

0
@

1
A

ð23Þ
where Txnþ1 j Tx1 ;…; Txn is the random variable Txnþ1 in condi-
tion on Tx1 ;…; Txn .

A kernel k(x, x′): X � X→ ℝ describes the similarity be-
tween the two points x and x′. The Matérn 5/2 kernel kE is
isotropic, i.e., the kernel depends only on the distance between
the points x and x′ [35]. The bigger the distance between the
two points x and x′, the more different they are from each other
and the smaller kE (x, x′) is [35, 36]:

kE x; x0ð Þ ¼ σ2 1þ
ffiffiffi
5

p
x−x0				

2

l
þ 5 x−x0				 2

2

3:l2

 !
:exp −

ffiffiffi
5

p
x−x0

				
2

l

 !

ð24Þ
where || . ||2 is the Euclidean norm. The Matérn 5/2 kernel has
the two hyperparameters length-scale l ∊ ℝ+ and variance σ ∊
ℝ+. Thereby, the length-scale l scales the distance and the
variance σ scales the value of the function [37]. Along with
the radial basis function (RBF) kernel [35], the Matérn 5/2
kernel is a common choice for kernel functions in the
Euclidean space [35].

The coregionalization kernel kc(x, x’): {1, 2,…, n} × {1, 2,
…, n}→ℝ is used to model the similarity of the output di-
mensions of a function with a multi-dimensional output [38]
and is defined as [36, 39]:

kc x; x
0

� �
¼ WWT þ diag κð Þ
 �

x;x0 ð25Þ
where

& n is the number of output dimensions,
& {1, 2,…, n} is the set of natural numbers less than or equal

to n,
& diag(x):ℝn→ℝn×n is a function that maps a vector with n

dimensions to an n × n diagonal matrix,
& (...)x,x′ is the x′-th entry of the x-th row of the correspond-

ing matrix,
& W∊ℝn×m and κ∊ℝn are hyperparameters and are learned

by hyperparameter optimization, and
& m is an arbitrary natural number, but usually smaller than

the variable n.

With the aid of the coregionalization kernel, functions with
multi-dimensional output can be modeled using a GP [38].
Assuming f: X →ℝn is any function, then f can be represented
by f′ (x,i):X × {1, 2,…, n}→ℝwith f′ (x,i) = f (x)i. This means
that the index of the output of f is seen as an input for the
function f′ [38]. The similarity between the individual output
dimensions of f can be modeled with the coregionalization ker-
nel [38]. This results in a combined kernel [38]:

kmulti
��

x; i
�
;
�
x
0
i
0
��

¼ k x; x
0

� �
⋅kc i; i

0
� �

ð26Þ

where k is the kernel which measures the similarity between the
points x and x′, and kc is the coregionalization kernel which
measures the similarity between the different output dimensions
[38].

A GP can have hyperparameters such as the length-scale l
and the variance σ parameter of the Matérn 5/2 kernel. These
hyperparameters are usually determined using a maximum
likelihood estimate (MLE) [40], i.e., the hyperparameters H
that best explain the data D are searched [35, 37, 40]:

argmax
H

p D j Hð Þ ð27Þ

0 2.5 5.0 7.5 10.0-10.0 -7.5 -5.0 -2.5

0
-1
-2
-3

1
2
3
4

x →

f(x
) 

→

GP mean GP 95% confidence interval
Known data points GP samples

Fig. 16 Example of a Gaussian
process [35]
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If the GP has many hyperparameters and is optimized with
too few data points, the hyperparameters may overfit on the
data points, i.e., they only explain the data that was used to
optimize, but not new data [35]. This can be prevented by
assuming that the hyperparameters follow a certain distribu-
tion p(H) (e.g., a uniform, normal, logarithmic normal, or
gamma distr ibut ion) [40] . This expresses which
hyperparameters are likely and which are not. The
hyperparameters are then determined using a maximum a
posteriori (MAP) estimate [41]. In contrast to the MLE, the
MAP estimation searches for the hyperparameters H that are
most likely for the given data D [35, 40]:

argmax
H

p Hð j DÞ ¼ argmax
H

p Dð j HÞ:p Hð Þ ð28Þ

Bayesian optimization

The Bayesian optimization (BO) is a class of machine learning–
based optimization methods focused on solving the problem [40]:

min
x∈X

f xð Þ ð29Þ

The BO is suited, when the setX and the objective function
f have the following properties [40]:

& It is expensive to evaluate the function f.
& The function f is a black box, i.e., only information about

the input and output of the function is known. It is un-
known how the function calculates the output.

& There is no information about the gradient of the function
f.

& The output of f may contain an error.
& The number of dimensions of X is in the order of 20 or

less.
& The function f is continuous.

The BO is an iterative algorithm which evaluates the func-
tion f at a certain point in each iteration. In order for the
algorithm to know at which point f should be evaluated next,
the function f is first modeled using a GP and the already
known points P. The strategy according to which the BO then
selects the point to be evaluated next is determined by the
maximum of the acquisition function a(x): X→ℝ [40]

One acquisition function is the probability of improvement
(PI). This acquisition function indicates how likely it is that a

point will improve the previous optimum. The probability of
improvement is defined as [42]:

aPI x0ð Þ ¼ pTx0 Tx0 ≤ f min j Tx1 ;…; Txn

� � ð30Þ

where fmin is the best point evaluated so far (in this work the
goal was tominimize the surface defects), Tx′ is the GP at point
x′, and Tx1,…, Txn is the GP at the points evaluated up to now.
The disadvantage of this acquisition function is that it only
indicates the probability of an improvement, but not the mag-
nitude of improvement [42].

Another acquisition function that also includes the magni-
tude of improvement is the expected improvement (EI). EI
provides a good balance between exploration and exploitation
[43]. The EI acquisition function is defined as [44]:

aEI x0ð Þ ¼ ETx0 max 0; f min−Tx0f g j Tx1 ;…; Txn½ � ð31Þ

The BO can also be used to optimize a function f: X→ℝn

with multi-dimensional output [45]. The BO algorithm is de-
scribed in Algorithm A3. At the beginning, m ∊ ℕ random
samples are taken, first to investigate the function to be opti-
mized, and second so that there is at least one point with which
the function f can be modeled in the first iteration.

Algorithm A3 Bayesian optimization algorithm [40]

In Algorithm A3, a(x) is any acquisition function and X
\{x1, …} is the set X without the points already evaluated.

Random search

Random search (RS) is an optimization algorithm that
evaluates the function to be optimized at random points
until a stop criterion is reached. The searched optimum
is the optimum of the evaluated points [46, 47]. The
advantages are that no requirements are placed on the
function to be optimized and no gradients are required
[48]. In addition, RS is useful if a significant part of the
inverse image X maps to an optimum.
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Appendix II

Table 4 Hyperparameters of the
Matérn 5/2 kernel, its distribution,
and the parameters of the
distribution for the single-task
approach

Hyperparameter Distribution Parameters of the distribution

l Uniform distribution a = 0.1; b = 2

σ Logarithmic normal distribution μ = 0; σ = 0.5

Table 5 Hyperparameters for the
multi-task approach, its
distribution, and the parameters of
the distributions

Kernel Hyperparameter Distribution Parameters of the distribution

kE l Uniform distribution a = 0.1; b = 2

σ Logarithmic normal distribution μ = 0; σ = 0.5

kM κ Logarithmic normal distribution μ= 0; σ= 0.5

W Normal distribution μ= 1; σ= 1

kS κ Logarithmic normal distribution μ= 0; σ= 0.5

W Normal distribution μ= 1; σ= 1

kI κ Logarithmic normal distribution μ= 0; σ= 0.5

W Normal distribution μ= 1; σ= 1

Table 6 Number of steps required to achieve a parameter set that was among the best 20% when using BO

PI EI

Study no. Exp. no. Number of exp. o20 RS mean
(std. dev.)

Single-task mean
(std. dev.)

Multi-
task

Single-task mean
(std. dev.)

Multi-
task

1 1–16 16 3 4.3 (2.9) 2.6 (1.0) 1 2.7 (1.2) 1

2 17–32 16 3 4.3 (2.9) 4.1 (2.7) 1 3.1 (1.5) 1

3 33–48 16 3 4.3 (2.9) 2.6 (1.1) 1 2.8 (1.4) 1

4 49–64 16 3 4.3 (2.9) 2.6 (1.1) 1 2.6 (1.1) 1

5 65–80 16 3 4.3 (2.9) 2.8 (1.2) 1 2.8 (1.4) 1

6 81–96 16 3 4.3 (2.9) 3.6 (2.3) 1 3.0 (1.4) 1

7 97–112 16 3 4.3 (2.9) 2.9 (1.4) 11 2.8 (1.3) 11

8 113–128 16 3 4.3 (2.9) 2.9 (1.5) 1 2.8 (1.3) 1

9 129–141 13 3 3.5 (2.3) 4.4 (2.0) 5 3.2 (1.5) 5

10 142–262 121 24 4.9 (4.2) 4.5 (2.9) 1 6.6 (3.2) 1

Ø4.3 Ø3.3 Ø2.4 Ø3.2 Ø2.4
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Table 7 Number of steps required to achieve a parameter set that was among the best 5% when using BO

PI EI

Study no. Exp. no. Number
of exp.

o5 RS mean
(std. dev.)

Single-taskmean
(std. dev.)

Multi-
task

Single-task mean
(std. dev.)

Multi-
task

1 1–16 16 1 8.5 (4.6) 2.9 (0.9) 1 3.3 (1.3) 1

2 17–32 16 1 8.5 (4.6) 13.1 (4.0) 16 9.7 (4.5) 16

3 33–48 16 1 8.5 (4.6) 3.1 (1.1) 1 3.4 (1.5) 1

4 49–64 16 1 8.5 (4.6) 4.0 (1.1) 1 6.9 (2.0) 1

5 65–80 16 1 8.5 (4.6) 3.1 (1.1) 1 8.5 (3.4) 1

6 81–96 16 1 8.5 (4.6) 4.0 (2.4) 1 3.3 (1.3) 1

7 97–112 16 1 8.5 (4.6) 3.5 (1.7) 11 3.6 (1.5) 11

8 113–128 16 1 8.5 (4.6) 5.8 (1.6) 1 7.2 (1.9) 1

9 129–141 13 1 7.0 (3.7) 5.6 (1.7) 5 5.0 (2.1) 5

10 142–262 121 7 17.4 (14.7) 13.0 (8.7) 9 16.5 (10.9) 8

Ø9.2 Ø5.8 Ø4.7 Ø6.7 Ø4.6

Table 8 Data sets used in each case to calculate suitable parameter
settings for the investigations without duplicates

Study no. Auxiliary data sets Study no. Auxiliary data sets

1 2, 3, 4, 5, 7, 10 6 1, 2, 3, 4, 7, 10

2 1, 3, 4, 5, 7, 10 7 1, 2, 3, 4, 5, 10

3 1, 2, 4, 5, 7, 10 8 1, 2, 3, 5, 7, 10

4 1, 2, 3, 5, 7, 10 9 1, 2, 4, 5, 7, 10

5 1, 2, 3, 4, 7, 10 10 1, 2, 3, 4, 5, 7

Table 9 Comparison of the necessary steps until suitable parameter
settings have been found with and without duplicates when using BO

Study no. With duplicates Without duplicates

PI EI PI EI

20% 5% 20% 5% 20% 5% 20% 5%

1 1 1 1 1 2 3 2 3

2 1 16 1 16 1 13 1 13

3 1 1 1 1 1 1 1 1

4 1 1 1 1 1 3 1 3

5 1 1 1 1 1 2 1 2

6 1 1 1 1 1 2 1 2

7 11 11 11 11 2 2 2 2

8 1 1 1 1 1 2 1 2

9 5 5 5 5 4 4 3 3

10 1 9 1 8 1 12 1 5

Ø2.4 Ø4.7 Ø2.4 Ø4.6 Ø1.5 Ø4.4 Ø1.4 Ø3.6
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