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Abstract
Directed energy deposition (DED) is an important additive manufacturing method for producing or repairing high-end and high-
value equipment. Meanwhile, the lack of reliable and uniform qualities is a key problem in DED applications. With the
development of sensing devices and control systems, in situ monitoring (IM) and adaptive control (IMAC) technology is an
effective method to enhance the reliability and repeatability of DED. In this paper, we review current IM technologies in IMAC
for metal DED. First, this paper describes the important sensing signals and equipment to exhibit the research status in detail.
Meanwhile, common problems that arise when gathering these signals and resolvent methods are presented. Second, process
signatures obtained from sensing signals and transfer approaches from sensing signals for processing signatures are shown.
Third, this work reviews the developments of the IM of product qualities and illustrates ways to realize quality monitoring.
Lastly, this paper specifies the main existing problems and future research of IM in metal DED.
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1 Introduction

Additive manufacturing (AM) can produce a product directly
from a three-dimensional (3D) model data with advantages on
the capability of producing sophisticated and customizable
components, reducing production time, and flexible use for
various repairs and freeform fabrication [1, 2]. Wohlers
Report 2019 stated that the income in AM field is expected
to reach 15.8 billion dollars in 2019 [3]. As an important field,
metal AM has been used widely in many areas, such as in
aerospace, transportation, medical, and remanufacturing. The

revenue from metal AM increased by approximately 41.9%
and continued a 5-year streak with more than 40% growth
annually [3]. Therefore, the society will pay increasing atten-
tion to metal AM for a long time.

AM has seven process categories, namely, binder jetting,
directed energy deposition (DED), material extrusion, materi-
al jetting, powder bed fusion (PBD), sheet lamination, and vat
photopolymerization [4]. DED and PBD are the two main
methods used for processing metal materials. DED is an AM
process that uses thermal energy to fuse materials by melting
while being deposited [4]. PBD is an AM process, in which
thermal energy fuses regions of a powder bed selectively [4].
DED technology is the main object reviewed in this paper.
The energy sources of DED mainly include laser, electron
beam, and arc plasma. Figure 1 shows the advantages and
disadvantages of three DED methods [5]. This paper will de-
scribe the three methods as laser-based directed energy depo-
sition (L-DED), electron-based directed energy deposition (E-
DED), and arc-based directed energy deposition (A-DED).
Two types of feedstocks, powders and wires, are mainly used
in metal AM. Metal powders are usually applied in L-DED.
Metal wires can be used in all types of DED that include laser
beam, electron beam, gas metal arc, gas tungsten arc, and
plasma arc as energy sources [6].
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DED is an advanced technology used in 3D deposition
forming, surface cladding, and part remanufacturing. The sche-
matic is seen in Fig. 2. It has the advantages of multifunctional
homogeneous or heterogeneous structures because of the layered
manufacturing technology and the multiple-powder handling ca-
pability. Moreover, DED can produce metal parts with superior
quality and strength because of its inherent rapid heating and
cooling feature [10]. However, despite all these advantages,
many technical challenges, including low repeatability and qual-
ity, difficulty in achieving the adaptive control, problematic and
expensive post-process inspection, and accumulative error, con-
tinue to hamper the widespread adoption of DED and achieving
its full potential [11].

To overcome the aforementioned challenges, IMAC tech-
nology has attracted increasing attention from researchers in
this field. IMAC technology acquires various sensing signals
by sensing equipment in situ. The sensing signals can be gen-
erated from the DED process itself and can also be produced
from other devices, such as an X-ray radiation source and a
structured light laser diode. Subsequently, these signals are
processed, identified, and transformed into process signatures,
which can indicate product qualities. Lastly, the process qual-
ities are be controlled adaptively online or layer-to-layer based
on the relationships among process parameters, process signa-
tures, and product qualities. Online IMAC technology ex-
hibits the monitoring and control behavior in the same layer.
Layer-to-layer IMAC technology implements the control be-
havior in the other layers after exhibiting the monitoring be-
havior. The diagrammatic sketch of IMAC technology is
shown in Fig. 3.

IMAC technology is beneficial to DED. First, some pro-
cess signatures, including molten pool geometric characteris-
tics and feedstock, temperature, and spectrum process signa-
tures, are obtained through the studies of IMAC to indicate

product qualities, such as geometric accuracy, defects, micro-
structure, and property. Therefore, if the process signatures
can be monitored and controlled in real time, then the quality
and repeatability of the products can be guaranteed. Second,
the nondestructive test after the DED process cannot discover
the problems in time during the processing. This phenomenon
wastes time and material resources when defects or deviations
emerge. Thus, process signature is an opportunity for the com-
puter or the operating crew to correct the technological param-
eters or cancel long builds when the defects or deviations
emerge. Third, some areas or structures, such as net-like ones,
which are difficult to be post-process inspected, can be exam-
ined by IM technology during the processing. Finally, the
monitoring data will be used in revealing the processing
mechanisms and verifying theory and simulation models.

Recently, several reviews are devoted to IMAC for DED.
Tapia and Elwany [12], Everton et al. [13], and Chua et al.
[14] reviewed the IM of DED and summarized the sensing
equipment and monitored objects that have been realized. Yan
et al. [15] reviewed the thermal characteristics and parameter–
thermal behavior–quality relationships during PDF and DED
processes. Bandyopadhyay and Traxel [16] explained the
existing monitoring methods that could be applied in model-
ing verifications. He et al. [17] mainly described the optical
monitoring techniques and an emerging full-field deformation
in laser-based DED. Aiming at the adaptive control of DED,
Tapia and Elwany [12] and Shamsaei et al. [18] reviewed the
studies that focused on control methods and objects of DED.
Some beneficial reviews [19–22] for PBF that could be con-
sidered in DED were also available. Compared with the pre-
vious reviews of IMAC in DED, this paper refers to them
suitably, combines the studies in recent years, and focuses
on the three parts of IM technology, namely, sensing signals,
process signatures, and monitorable product qualities.
Therefore, this work mainly describes existing sensing signals
and relevant devices, illustrates process signatures that can be
acquired by these signals, and reviews ongoing studies about
product qualities monitored by process signatures. Lastly,
existing problems and future research will also be specified.

2 Commercial sensing, monitoring,
and control systems

Many companies that produce AM devices have integrated
IM modules or toolkits in DED devices. In addition, some
companies focus on building a system or providing a solution
that will improve product qualities through IMAC. The toolkit
name, developer, monitored process signatures or objects,
possible parameter that can be altered, and sensing equipment
are shown in Table 1. An open-source toolkit was also men-
tioned in the literature [23].

Fig. 1 Advantages and disadvantages of DED with different energy
sources [5]
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3 Sensing signals and equipment

The interaction between the high-energy beam and metal mate-
rial is a complex coupled process with physical metallurgy
changes that lead to the processing region, such as molten pool

in a heat, convection, and mass transfer state. Meanwhile, the
process signatures during theDEDprocess are directly correlated
with product qualities. However, these process signatures are
difficult to monitor and identify accurately because of a complex
process environment. In this section, we provide an overview of

Fig. 2 Schematic of a L-DED [7],
b E-DED [8], and c A-DED [9]
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the acquired sensing signals and sensing equipment that are used
to obtain the signals. The sensing signals can be categorized into
image signals with a visible spectrum, image signals with an
infrared spectrum, special spectral intensity signals of a limited
small region, acoustical signals, X-ray signals, and other signals
in terms of the types of monitored signals. Sensing signals, sens-
ing equipment, process signatures, and research literature inDED
can be seen in Table 2. Studies that focused on the IM of E-DED
are limited and are mostly conducted by the National
Aeronautics and Space Administration (NASA) [115, 116].

3.1 Image signals with a visible spectrum and sensing
equipment

Image signals usually refer to pictures of the molten pool,
depositing layers, and feedstocks, which can be commonly
monitored by visible light signal sensors, such as charge-
coupled device (CCD) and complementary metal-oxide-
semiconductor (CMOS) cameras. The main problems in the
acquisition of image signals with a visible spectrum include
heat source interference, spatter interference, and difficulty in
tracing the small dynamic molten pool. Therefore, researchers
and engineers consider several key points, including technical
parameters and installation methods of cameras, illumination
devices, optical filters, and structured light, when using these
cameras.

Technical parameters of cameras Except for common techni-
cal parameters, such as pixels and frame rate, dynamic range is
an important parameter when using a visible light camera in a
high-energy beam process. The use of high dynamic range
cameras is considered effective in avoiding heat source and
scatter interferences. However, low image quality is the barri-
er to spread commercial high dynamic range cameras.
Although the frame rate of this camera is low, it basically
meets the sensing requirement of an adaptive control because
of the image processing time.

Installation methods of cameras Image signal acquisition
methods are classified as coaxial [24, 111] and paraxial mon-
itoring [25] in terms of the installation position of the cameras.
The schematic is shown in Fig. 4. The coaxial monitoring
method is applicable to the automation because of its ability
to trace the small dynamic molten pool. However, this method
can be only used in L-DED and mainly obtains 2D images of
the molten pool with a small visual spectrum range. Thus, it is
not suitable for E-DED and A-DED [187].

Illumination devices Auxiliary illumination devices, such as
light-emitting diode, laser diode, UV array, and vertical-cavity
surface-emitting laser [188, 189], are beneficial for extracting
accurate visual information. Laser light sources are preferred
when gathering the visible lighting signatures of a molten
pool. Illuminants can also be installed coaxially or paraxially.
Comparedwith paraxial installation, passive lighting, which is
based on the lighting of process areas, and coaxial illuminants
are more attractive from the perspective of practical applica-
tion. Meanwhile, although the illuminant can improve accu-
racy and clarity, it may disturb some spectrum signals.

Optical filters Optical filters are universally used in the acqui-
sition of image signals to filter the optical spectrum of a high-
energy beam, powder scattering, and arc scattering. In addi-
tion, they are also part of a 3D camera, which can obtain the
profile of DED products.

Structured lightA structured light with a wavelength that is in
the range of 405–520 nm is suitable for eliminating the error in
the line position estimation caused by an identical wavelength
of glowing surface and laser [190]. Meanwhile, a rough sur-
face that can enhance a diffuse reflection and absorb noises
can be considered to improve measurement accuracy [190].

Currently, image signals with a visible spectrum have been
used to monitor the geometric characteristics of molten pools,
molten pool temperature, feedstocks, plumes, geometric char-
acteristics of deposited layers, etc. as shown in Table 2.

Fig. 3 Relationships of the
different parts in IMAC
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3.2 Image signals with an infrared spectrum and
sensing equipment

Temperature process signatures are significantly relevant to prod-
uct quality because DED uses high-energy heat sources to fuse
metal powder or wire. In contrast to the optical signals with a
visible spectrum, the optical signals with an infrared spectrum are
more reliable in calculating temperature data. The main reason is
that the visible spectrum will be disturbed by other process phe-
nomena or experiments, such as different colors of deposited

layers or substrates. Therefore, image signals with an infrared
spectrum are important in determining the temperature distribu-
tion of molten pools and deposited layers.

CMOS/CCD camera, which can gather the infrared signals
of short wavelength, and thermal imagers with different infra-
red wavelength ranges are the main sensing equipment used to
obtain image signals with an infrared spectrum. Both types of
sensing equipment can obtain temperature data after a black-
body furnace calibration. The relevant references are listed in
Table 2. In addition, images with an infrared spectrum can

Fig. 4 Schematic of a coaxial monitoring and b paraxial monitoring [27] in L-DED
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also eliminate noises and disturbances, as shown in Fig. 5.
Compared with Fig. 5(b). the image of Fig. 5(a) can be used
to extracted the binary image(as shown in Fig. 5(c)) more
easily. Because of atmospheric absorption, three infrared
wavelength ranges, three infrared wavelength ranges, 0.9–
1.7 μm (short wavelength), 3–5 μm (medium wavelength),
and 8–14 μm (long wavelength) are usually used in infrared
cameras.

Some problems need to be addressed when the infrared
cameras are applied in DED. First, an optical filter that elim-
inates the wavelength range of a laser beam should be used
because the wavelength ranges of some laser sources and in-
frared cameras with short wavelength are partially coincident.
Second, infrared cameras with short and mediumwavelengths
have better monitoring abilities on high-temperature monitor-
ing than those with long wavelengths. The reason is based on
the Wien displacement law [191], which suggests that the
wavelength of radiation spectrum decreases with the increase
in temperature. Third, emissivity of metals with different
states need to be ensured, and measured thermal radiation
quantities need to be calibrated by a blackbody furnace be-
cause of sharp variations of emissivity with temperature and
surface thermochemistry for improving accuracy [73]. Lastly,
Table 3 shows the advantages and disadvantages of different
devices to serve as a relevant selection basis for researchers
and engineers.

Currently, image signals with infrared spectrum have been
used in the temperature monitoring of molten pools, feed-
stocks, and deposited layers, as shown in Table 2.

In addition to the visible and infrared spectrum, ultraviolet
spectrum is also tested to obtain the molten pool images for
avoiding the interference of strong visible light and infrared
radiation [189].

3.3 Special spectrum signals and sensing equipment

Spectrum signal acquisition methods can be classified as co-
axial and paraxial monitoring in terms of the installation po-
sition of sensors. Coaxial monitoring is applied in L-DED.
However, the measured spectrum range is limited because of
the complex optical system in a laser head. Paraxial

monitoring is adaptive to every type of DED. Two types of
data exist based on the acquired spectrum data. One type is a
larger range of spectrumwavelength obtained by photodiodes,
spectrometers, and hyperspectral cameras. A significant prob-
lem about this type is plasma plume over the molten pool.
Although a lot of useful information can be obtained from
the spectrum of the plasma plume, the existence of plasma
plume needs to be evaluated because the energy density of
DED cannot always produce plasma plume [138]. The other
type is a confirmed single, double, and multispectrum wave-
lengths obtained by a single-color, dual-color, or multicolor
pyrometers. The key point of this type is the emissivity set for
an accurate temperature. The emissivity problem is the same
as the image signals with an infrared camera above.
Furthermore, the colorimetric temperature measurement
based on double and multispectrum wavelengths is an effec-
tive method to avoid unknown emissivity and particle
interference.

Currently, the sensing equipment involves pyrometers,
photodiodes, spectrometers, and hyperspectral cameras. The
process signatures that can be obtained by special spectrum
signals mainly include the molten pool characteristics, feed-
stock characteristics, plasma plume over the molten pool, etc.
These process signatures are shown in Table 2.

3.4 Acoustic emission signals and sensing equipment

Compared with the three aforementioned signals, acous-
tic emission signals generated by stress waves can pro-
vide abundant information about powder transmission,
pores, or cracks [165–167]. These signals are also stud-
ied in PBF and fused deposition modeling, which can
be a reference in DED [192–195]. Some problems, such
as the analysis of high-frequency acoustic signals,
overheating substrates, and the noise from the powder
that strikes the substrate, impede the application of
acoustic emission signals. In addition, when the stress
wave source is positioned differently relative to the
propagation path to the detector, the same acoustic
emission mechanism may lead to different detected sig-
nals [196].

Fig. 5 Images of a molten pool: a original infrared image, b ordinary image, and c binary image showing the boundary of melt pool [51]
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3.5 X-ray signals and sensing equipment

In recent years, X-ray signals are gradually applied in high-
energy heat source processes, including DED. The sensing
equipment mainly consists of an X-ray radiation source, an
undulator, a slit, a scintillator, and a high-speed camera, as
shown in Fig. 6. The evolution mechanisms of molten pools
and feedstocks during the DED process are the primary sub-
jects investigated. By contrast, X-ray signals are more widely
used in welding, melting, and PBD [172, 197–206].

3.6 Other signals and sensing equipment

Except for the aforementioned signals, those that involve the
electromotive force signals of thermocouples, visible lighting
signals of displacement sensors, and current signals of the Hall
effect current sensor are also used in DED. The relevant ref-
erences are shown in Table 2.

Electromotive force signals of thermocouples Thermocouples
are usually applied to measure the temperature of substrates.
However, as contact measurement devices, when thermocou-
ples are applied in the DED monitoring, some problems need
to be paid more attention, including the high temperature
above the melting point of metals, temperature rising of the
sensors resulted from irradiation [174], and low response
speed. Currently, thermocouples are mainly applied to verify
the accuracy of simulation models. The use of thermocouples
is more accurate than infrared temperature measurement,
which is greatly affected by emissivity.

Visible lighting signals of displacement sensors The principle
of displacement sensors used in DED is triangular surveying.
The visible lighting signal usually comes from the light spot
generated by a laser diode, which is a part of a displacement
sensor. The wavelength of the laser diode in most displace-
ment sensors is about 650 nm. Thus, the high-temperature
metal can possibly interfere with the measurement accuracy
of the displacement sensors.

Current signals of the Hall effect current sensor Current sig-
nals are mainly used in wire DED. Resistances of wire and a
molten pool can be calculated by current and voltage signals.

4 Process signatures obtained from sensing
signals

Process signatures are obtained or calculated by sensing sig-
nals. Some sensing signals may contribute to the same process
signatures. For example, temperature process signatures can
be obtained by an infrared camera, pyrometer, hyperspectral
camera, thermocouple, and visible light camera. This section
will review the process signatures that have been acquired by
using the sensing signals of L-DED and A-DED. These DED
types will be described aiming at some common process sig-
natures. However, many methods can be applied in all the
three DED processes.

4.1 Molten pool, deposited layer, and substrate
geometric characteristics

Molten pool and deposited layer geometric characteristics are
usually obtained through image signals with a visible or an
infrared spectrum. Since the image signals can indicate geo-
metric characteristics directly and are widely applied with the
development of image processing technology, a vast majority
of works has been performed to determine the geometric char-
acteristics. Width, length, height, outline, and area of a molten
pool; width and height of deposited layers; and deformations
of the substrate and deposited layers are some interesting geo-
metric characteristics in previous studies.

4.1.1 Two-dimensional geometric characteristics of a molten
pool

Geometric characteristics can be mainly acquired by image
signals. Moreover, these characteristics can be acquired when

Table 3 Comparison of different equipments applied in image signals with infrared spectrum

Sensing equipment Spectral range
(μm)

Advantages Disadvantages

CDD/CMOS camera 0.3–1.0 Low cost; high resolution; high frame rate Needs an optical filter to eliminate visible spectrum;
poor ability on temperature motoring

Infrared cameras with short
wavelength

0.9–1.7 Strong ability on high-temperature motoring;
medium cost

Needs an optical filter to avoid interference
from some laser sources

Infrared cameras with medium
wavelength

3–5 Strong ability on high- and medium-
temperature motoring

High cost

Infrared cameras with long
wavelength

8–14 Medium cost Low frame rate; poor ability on high-temperature
monitoring
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the relationships between the other signals and the geometric
characteristics of a molten pool are determined.

Image signals with a visible spectrum Coaxial monitoring is
an important advantage of L-DED, especially on the monitor-
ing of 2Dmolten pool geometric characteristics because it can
determine the 2D geometric characteristics of a molten pool
directly without performing a coordinate conversion.
Currently, many companies that produce laser heads can pro-
vide coaxial visual monitoring modules. The width, length,
outline, and area of molten pools have been exacted through
the coaxial monitoring method and image processing [24,
28–33, 36, 49, 50, 111, 114]. The main difference of molten
pool images between coaxial monitoring and paraxial moni-
toring is the optical filter system. The optical filter system of
coaxial monitoring is integrated into the laser head with lim-
ited wavelength. For example, the wavelength that can pass
PRECITEC YC52 is only 520–720 nm [37]. However, the
image signals of coaxial and paraxial monitoring can be proc-
essed by using similar image processing methods. The images
are shown in Fig. 7.

In L-DED, the molten pool characteristics are com-
monly exacted by using a threshold segmentation meth-
od with a user-defined or calculational threshold value
[33]. Song et al. presented a phase congruency melt
pool edge extraction approach, except for the traditional
threshold segmentation method. This method has a bet-
ter robustness but a similar execution time compared
with fix and Otsu threshold methods [27]. Deng et al.
[110] used a grayscale gradient algorithm to obtain the
boundary of a molten pool and calculate the molten
pool area in real time. The Otsu threshold method was
also applied in A-DED [52]. In addition, Xiong et al.
[53–55] obtained the edge points of the deposited layer
width through the Laplacian operator, and then a Hough
transform was used to determine the width.

Image signals with an infrared spectrumWhen image signals
with an infrared spectrum are used to eliminate noises and
disturbances, the data process methods are similar to image
signals with a visible spectrum [36, 51, 110, 111]. In addition,
the geometric characteristics of a molten pool can also be
obtained on the basis of the melting point [70, 112, 115,
116, 121, 122], as seen in Fig. 8.

Special spectrum signals Except for image signals with a vis-
ible or an infrared spectrum, special spectrum signals can also
indicate the geometric characteristics of a molten pool. Miyagi
et al. [30] investigated the correction between molten pool
widths and spectrum signal acquired by photodiodes. This
study indicated that the molten pool widths could be obtained
by spectrum signals. Moreover, the temperature distribution
of a molten pool was determined by the spectrum signals
using a spectrometer or hyperspectral cameras; the molten
pool boundary could be ensured by the melting point [112,
138, 150, 152, 153].

4.1.2 Height of a molten pool or deposited layers

The 2D horizontal geometric characteristics of the aforemen-
tioned molten pool are usually attained and calibrated by one
camera. On the same principle, the third-dimension height of
deposited layers or a molten pool can be calculated by one
camera that is perpendicular to the laser beam and the depo-
sition direction [40–45, 48, 53, 58, 66, 67, 207, 208].
Furthermore, a binocular vision system or a laser-based 3D
optical scanning system is applied in height monitoring [49,
50, 96–108].

Except for optical filters, the height measurements of dif-
ferent DEDs are similar. In L-DED, Mazumder et al., Song
et al., and Asselin et al. measured the geometric characteristics
that involved the layer heights online by using a trinocular
CCD-based binocular vision system. In the trinocular CCD-

Fig. 6 Schematic of X-ray
sensing equipment [171]
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based binocular vision system, two cameras can calculate the
height data, and the remaining one is used to improve moni-
toring accuracy [10, 39, 46, 47, 209]. Heralić et al. [49, 50,
101] measured the geometric characteristics of deposited
layers layer-to-layer by using a noncontact laser-based 3D
optical scanning system that consisted of paraxial CCD/
CMOS camera and a green structured light laser diode at
512 nm wavelength and 5 mW power. In addition, some co-
axial monitoring methods of molten pool or deposited layer
height have been presented. Donadello et al. [60, 61] obtained
a coaxial scattered probe light with a coaxial probe laser beam.
Subsequently, they calculated the height based on the
scattered light, but when a molten pool existed on process
multilayers, the scattered light might be disturbed. In A-
DED, similar researches have also been conducted in
[102–108]. The use of displacement sensor is another way to
acquire deposited layer heights [163].

4.1.3 Deformation of the substrate and deposited layers

A displacement sensor and a digital image correlation system
have been applied to reach the deformation state in DED. The
substrate was usually clamped by a fixture when studying

substrate deformation, as seen in Fig. 9 [126]. The displace-
ment sensor could obtain the deformation values in real time.
The method was also used in [179, 184]. With regard to de-
posited layers, digital image correlation systems could obtain
the deformation layer to layer or online [59, 62, 63]. A digital
image correlation system with two cameras could gather 3D
data [59, 62], and the systemwith one camera could obtain 2D
data [63, 64]. In the same way, the digital image correlation
system with one camera has also been applied in the monitor-
ing of substrate deformation [68].

4.2 Feedstock process signatures

DED is a coupling interaction among substrates, heat sources,
and feedstocks. The process signatures about feedstocks are
beneficial for improving the understanding and stability of
DED process. The feedstocks of DED have two types, pow-
ders and wires. The focused points of these two types are
different. With regard to powders, three procedures should
be conducted before powders enter a molten pool, leave pow-
der pots, transfer in the powder delivering pipe, and transmit
between nozzles and the molten pool. The two latter are the
main focused points in powder DED. In wire DED, the trans-
fer state has elicited the researchers’ attention.

4.2.1 Powder DED

On the one hand, the delivering state and mass flow rate are
concerned targets when powders are being transferred in the
powder delivering pipe. Now, acoustic emission and spectrum
signals were both used to inspect the delivering state and flow
rate. Ding et al. [36] used an optoelectronic sensor that
consisted of a diode laser, a photodiode, a small rectangular
glass chamber, and asset of lenses, to inspect the changes in
powder density based on the diffusion, absorption, and reflec-
tion of the powder stream that passed through the glass cham-
ber. Whiting et al. [167] also performed the powder mass flow
rate monitoring and realized the function by an acoustic emis-
sion sensor.

On the other hand, when powders are transmitted
between the nozzles and the molten pool, the powder
flow is the research object. The powder flow between

Fig. 7 Images of a molten pool: a infrared image, b video image, and c the contour of the molten pool on infrared image [36]

Fig. 8 Two-dimensional geometric characteristics of a molten pool
obtained by image signals with an infrared spectrum [121]
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nozzles and a molten pool or a substrate is commonly
observed through image signals with a visible or infra-
red spectrum. The image signals can obtain the concen-
tration distribution of the powder stream (as shown in
Fig. 10) [70, 74–76], the flow velocity of powders
[70–75], and the temperature distribution [69, 70].
First, Liu et al. [70, 74] obtained the side powder con-
centration at different distances from the nozzle by a
green laser and a CCD camera when powder feeding
was paraxial by focusing on concentration distributions.
Balu et al. [75] determined the powder concentrations of
NT-20, WC, and premixed powders with different
carrier–gas flow rates. Balu et al. also acquired the co-
axial powder concentrations at different stand-off dis-
tances by using a 45° mirror. Second, with regard to
the flow velocity of powders, Liu et al. [70, 74] cap-
tured the particle tracks to calculate the flow velocities
of powders by using a CCD camera with 5000 fps. The
averaged photodiode velocities were obtained when the
carrier–gas rate or powder feeding rate was changed.
Similar works that include the effects of various process
parameters on flow velocities of powders are shown in

[71–73, 75]. Lastly, the temperature distributions of the
powder flow could be monitored by a color CCD based
on the colorimetric temperature measurement or the im-
age signals with an infrared spectrum based on thermal
radiations [69, 70].

4.2.2 Wire DED

The transfer state of a wire during the DED process is a main
concern that needs to be addressed. Abe et al. [77] confirmed the
heat input range based on the observed dripping of the molten
metal. Zhan et al. [78] presented a vision-based measuring meth-
od to detect the deviations of the wire-feeding position to avoid
deposition defects and dimensional errors. Furthermore, the re-
sistances of amolten pool andwire weremeasured to identify the
transfer state, as shown in Fig. 11 [185, 186].

4.3 Temperature process signatures of the molten
pool, deposited layer, and substrate

Considering that DED uses the high-energy heat source as the
focused thermal energy source to fuse metal powder or wire,
the temperature process signatures, which can be gathered
online by temperature sensors, is significantly relevant with
product qualities. The methods used for gathering the temper-
ature signal are divided into contact measurements, such as
thermocouples, and noncontact measurements, such as py-
rometers and thermal cameras. In the last section, the temper-
ature process signatures of feedstocks are shown. This section
will focus on the temperature process signatures of the molten
pool, deposited layer, and substrate. In terms of temperature
process signatures, the monitoring methods in L-DED, EB-
DED, and AP-DED are similar.

4.3.1 L-DED

The temperature process signatures are classified into a
single-point temperature of molten pool, the temperature
distribution of molten pool, temperature distribution

Fig. 9 Experimental setup for distortion measurements by a displacement
sensor (LDS) [126]

Fig. 10 Images of different concentration distributions of powder stream [75]
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around the molten pool, and temperature distribution of
the substrate. The single-point temperature of molten
pool was monitored by single-color [70, 72, 122,
135–137, 159, 160, 210–212], dual-color [7, 24, 117,
130, 154–158, 161–163], or a multicolor pyrometer
[71, 73, 117, 119, 120]. CCD camera [25, 80, 81],
hyperspectral (or spectrometers) [112, 138, 150–153],
and infrared cameras [70–72, 79, 112, 113, 117–119,
121, 122, 125, 127–130, 132, 133] were used for the
measurement of the temperature distribution of a molten
pool based on spectral and blackbody calibration. The
temperature of a solid–liquid interface can also be used
as a calibration [121]. The effective monitoring devices
for the temperature distribution of the substrate or de-
posited layers were thermocouples [34, 48, 59, 68, 70,
122, 173–179] and infrared cameras [117, 120, 131,
213]. In addition, temperature measurement by the im-
ages with two distinct wavelengths has also been
attempted to obtain the molten pool temperature charac-
teristics coaxially [32]. Fabbro et al. [88, 214] used an
infrared CMOS camera, which was calibrated by a spec-
trometer real time, to acquire the temperature distribu-
tion of a molten pool. After gathering the temperature
distribution, the date of cooling rate, temperature gradi-
ent, and other parameters related to temperature can be
calculated. These data can be monitored to indicate the
product qualities or verify the simulation models.

Except for the ways to measure the temperature data quan-
tificationally, Akbari et al. [53] indicated that the temperature
state of molten pools with their contour profile and the lengths
of molten pools with varied cooling velocities were obviously
diverse.

4.3.2 A-DED

The temperature distribution of the substrate or deposited
layers was mainly monitored by thermocouples [85, 124,
180–183] and infrared cameras [77, 123, 124, 134]. In addi-
tion, Wu et al. [85, 164] used a pyrometer to record the tem-
perature change in every deposited layer. The temperature
distribution measurement of the molten pool mainly relied
on infrared camera [77, 104, 105].

4.3.3 E-DED

The temperature process signature monitoring of E-DED was
mainly completed by NASA. They used a CCD/CMOS camera,
which filters the visible spectrum, to acquire the temperature
distribution of a molten pool and a deposited layer. The camera
was calibrated by a blackbody radiation source [115, 116].

4.4 Spectrum process signatures of molten pool and
deposited layer

Spectrum process signatures of molten pools and plasma
plume over the molten pool have great potential to be used
in the temperature process signatures and feedstock process
signatures. Photodiodes [24, 26, 30], spectrometers [52, 83,
138–149], and hyperspectral cameras [112, 150–153] are the
common devices used for gathering the spectrum signatures
from molten pools or deposited layers. The spectrum process
signatures from a spectrometer are shown in Fig. 12. In the
spectrum process signatures, the spectral characteristic analy-
sis is the main work. Now, an electron or plasma temperature
[144, 146, 149], a spectral line intensity ratio [83, 139–142,
144–146, 148], and a spectral intensity [52, 138, 139, 143,
147] have been obtained.

4.5 Acoustic emission process signatures

Acoustic emission process signatures are mainly acquired by
acoustic emission sensors. Deposited layer and powder mass
flow were the monitored objects. Gaja and Liou [166] ana-
lyzed acoustic emission signals through an unsupervised pat-
tern recognition analysis (K-means clustering) in conjunction
with a principal component analysis. Whiting et al. [167] ob-
tained the acoustic emission of powder transmission and ac-
quired the real-time powder mass flow rate by a calibration.

4.6 Other process signatures

Interaction mechanisms of a laser beam, feedstock, and substrate
are also important points that can be investigated on the basis of
the sensing signals of a high-speed camera. Haley et al. [86]
monitored the L-DED process paraxially by using a high-speed

Fig. 11 Wire transfer modes [185, 186]
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camera with up to 200,000 frames per second and 3.6 μm pixel
resolution. The velocity distributions, impact, and floating phe-
nomenon of powder particles were revealed when a powder
particle touched a molten pool [86]. Abe et al. [87] observed
themelting process ofmetal powders and substrate and presented
four stages, namely, powder gathering, solidifying in a globular
shape, hump forming, and hump remelting, during powder L-
DED. Gharbi et al. [88] analyzed melt pool fluctuations with
different duty cycles when the laser was set as a pulsed laser
regime. Gharbi et al. [38] also found two situations when Ti–
6Al–4V alloy powders impact the molten pool.

Focusing on A-DED, Guo et al. [94] used a high-
speed camera to observe the physical generating process
of arc and droplets during a compulsively constricted A-
DED process. Xiong et al. [58] obtained visual images
of inclusion disturbance in the molten pool, at the mol-
ten pool boundary, and on the deposited layer, as
shown in Fig. 13(a), (b), and (c), respectively. Xu
et al. [91] also observed the molten pool behavior, such
as wetting and spreading, on a smooth and rough sur-
face condition, respectively.

5 Development of the IM of product quality
in DED

The relationships among process parameter, process sig-
natures, and product qualities are the key to the studies
of IMAC technology. This section will show the prod-
uct qualities or monitored objects that have been mon-
itored by these process signatures in Section 4. The
mapping of the literature on monitored objects with re-
spect to process signatures is shown in Table 4.

5.1 Geometric accuracy

5.1.1 Forming appearance

Forming appearance is a product quality that can be observed
directly without further inspection. It is usually considered a
primary monitored object and provides a global assessment of
the DED process. Any process signature that exists during an
entire DED process can indicate surface quality. When the
process signature changes unexpectedly, the surface quality

Fig. 12 Emission lines from the
DED experiment [139]

Fig. 13 Disturbance of inclusions in the image during the A-DED process. a Inclusion in the molten pool. b Inclusions at the molten pool boundary. c
Inclusions at room temperature [58]

3450 Int J Adv Manuf Technol (2020) 108:3437–3463



may decrease. The characteristics of molten pools, such as
geometric characteristics, temperature, and spectrum, are the
common process signatures that indicate surface quality.

Molten pool, deposited layer, and substrate geometric char-
acteristics In powder DED, numerous studies proved that the
molten pool area was correlated with forming appearance. Hu
et al., Ding et al., and Stockton et al. [36, 111, 113, 115] found
that the stable molten pool areas could acquire a uniform wall
thickness when processing multilayer products. Deng et al.
[110] proved the relationship between the areas of molten pool
and cross-section areas of deposited layers. Except for area
characteristics, the correlations between other geometric char-
acteristics and forming appearances are also significant. Tang
et al. [37] investigated the evolution behavior of forming ap-
pearances based onmolten pool geometric characteristics. The
results showed that the molten pool geometric characteristics
could indicate all the respective key forming appearances in
the four typical DED processes (e.g., single-track single-layer
cladding, single-track multilayer accumulation, multitrack
single-layer overlap, and multitrack single-layer overlap).
For example, in multitrack single-layer overlap, the unsmooth
surface was observed by the molten pool characteristics

resulted by different overlap rates, as shown in Fig. 14; in
the single-track multilayer overhang accumulation, the pro-
cess fails because of inadequate and unstable flow velocities
of a molten pool, as shown in Fig. 15. In wire DED, Motta
et al. [90] used a high-speed camera to monitor the DED
process of a metal wire and observed the appearance of drip-
ping and stubbing defects. Radel et al. [65] presented a depos-
ited radius to indicate the forming appearance. Xiong et al.
[93] cleared the phenomenon of instability and overflow of a
molten pool, and when this phenomenon occurred, the depos-
ited layer might collapse.

Temperature process signatures of molten pool and deposit-
ed layer In L-DED, Bi et al. [26, 135–137] emphasized that
the temperature signals gathered by a Ge photodiode
significantly affected the forming appearance. This phe-
nomenon was proven by the forming failure and edge
defects of a thin-wall accumulation and surface qualities
of cylinder cladding. In A-DED, Abe et al. [77]
researched the influence of the interlayer temperature
on the forming appearance, and the result showed that
the lower interlayer temperature could indicate a stable
process state.

Table 4 Mapping of the literature on monitored objects with respect to process signatures

Process signatures Product quality or
monitored objects

Literature

L-DED L-DED E-DED AP-DED
Powder Wire Wire Wire

Molten pool, deposited layer, and
substrate geometric characteristics

Forming appearance [36, 37, 110, 111, 113] [90] [115] [65, 93]
Dimensional accuracy (width and

height)
[10, 24, 27, 30, 31, 33, 39–47,

60, 61, 96–100]
[49, 50,

101]
[53–55, 58, 66, 67,

102–105, 107, 108]
Dimensional accuracy

(deformation)
[59, 62–64, 68, 126, 184]

Microstructure and property
(metallurgical bonding)

[28, 87]

Metallurgical defect [89]
Feedstock process signatures Feedstock status [36] [185,

186]
[215]

Temperature process signatures of
the molten pool, deposited layer,
and substrate

Forming appearance [26, 135–137] [77]
Dimensional accuracy (height) [131, 156]
Dimensional accuracy

(deformation)
[126, 179]

Microstructure and property
(microstructure)

[127–129, 132, 159, 160,
210–212, 216]

[51,
133]

[164]

Microstructure and property
(metallurgical bonding)

[24, 127, 129, 136]

Metallurgical defect [80, 117, 130]
Spectrum process signatures of

molten pool and deposited layer
Geometric accuracy [150] [149]
Microstructure and property [139–148]
Metallurgical defect [83]
Temperature [138, 144] [149]

Acoustic emission process signatures Metallurgical defect [165, 166]
Powder flow rate [167]

Other process
signatures

Plume Forming appearance and defect [83, 84]
Molten pool flow

velocity
Flow velocity [82] [172]

Resistance Distance between tool and substrate [185]
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Spectrum and plume process signatures Focusing on spec-
trum process signatures, Liu et al. [149] obtained spectral
signals from plasma plume during the A-DED process and
calculated the electron temperature. The electron temperature,
including the mean values and standard deviations, could be
considered indicators of the instability of the forming appear-
ance [149]. Aiming at plume process signatures, Nassar et al.
[84] studied the relationships of process parameters, plume
process signatures, and formation appearance. The plume
process signatures contained plume geometry and inten-
sity. The result showed plume process signatures could
reflect the DED state [84].

Other process signatures In wire DED, the resistance of the
molten pool and the wire was affected by the transfer state
[185, 186]. Therefore, Hagqvist et al. [185, 186] attempted
to use resistance to indicate the process stability and found
that an ideal resistance could maintain a remarkable forming
quality. In addition to single process signature, multisensor
information fusion was also performed in the monitoring of
geometric accuracy. Zhao et al. [52] applied a cooperative
awareness method of spectrum, vision, and electrical param-
eter, which had a higher recognition rate than single-source
monitoring, to identify the changes in process parameters and
formation appearances.

Fig. 15 a–c Failure in single-
track multilayer overhang
accumulation because of
inadequate and unstable flow
velocities of a molten pool [37]

Fig. 14 a–c Molten pool
characteristics of different overlap
rates [37]
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5.1.2 Dimensional accuracy

The width and height of deposited layers and the defor-
mation of a substrate are important objects in the mon-
itoring of dimensional accuracy. Geometric characteris-
tics acquired by some cameras with different wave-
lengths are effective ways to monitor dimensional accu-
racy. In current studies, the width and height of molten
pool are considered the width and height of deposited
layers. Therefore, the monitoring methods focused on
the molten pool geometric characteristics are the same
as the geometric characteristics of deposited layers.

Width The widths of molten pools refer to the distance be-
tween the left and right solid–liquid interfaces of a molten
pool along the scanning direction. Solid–liquid interfaces
can be monitored on the basis of the grayscale changes in
the visual images or the position with a fusion temperature
of metal material. Cameras with different wavelengths can
all observe the grayscale changes. The positions with a fusion
temperature need to be acquired by infrared cameras or cali-
brated spectral sensing equipment. The relevant contents and
references are shown in Section 4.1.1 and Table 2, respective-
ly. In addition to measuring the widths of deposited layers
based on the molten pool widths, the widths of deposited
layers can also be monitored by one camera perpendicular to
the upper surface of a deposited layer, binocular vision sys-
tem, or 3D camera system directly. These methods have been
reviewed in Section 4.1.1 and Table 2.

Height The height monitoring of deposited layers is similar to
width monitoring. The molten pool heights have been deter-
mined by a camera perpendicular to the scanning direction
and laser beam and binocular vision system. The 3D camera
system is not suitable for monitoring a molten pool because
the linear structured light of a 3D camera is obstructed by the
molten pool with high brightness. By contrast, deposited layer
heights can be monitored by the three devices mentioned
above, as seen in Table 4. Except for visual methods, displace-
ment sensors are also used in DED to record the changes in
every layer. The contents have been reviewed in Section 4.1.1.
In addition, Tan et al. and Bennett et al. [131, 156] studied the
relationship between the temperature characteristics and the
deposited layer height and realized the height monitoring
based on temperature process signatures.

Deformation The substrate or deposited layer deformations
can also be considered the height or width variations.
Therefore, if necessary, the deformations can be described in
detail. In addition, displacement sensors and a camera that
captured 2D data have been used in monitoring substrate de-
formations [68, 126, 179, 184]. The 2D data from one camera
and the 3D data from two cameras could be applied in

monitoring the deposited layer deformation [59, 62–64].
After determining the relationship among process parameters,
temperature process signatures, and deformation data, Yan
et al. [126] predicted the deformation angle by heating areas
during DED.

5.2 Microstructure and property

5.2.1 Microstructure, phase transformation, and mechanical
property

Temperature process signatures greatly affect the microstruc-
tures of deposited layers. Therefore, in the current studies, the
main process signatures used in monitoring microstructures
include the temperature process signatures of the molten pool,
deposited layer, and substrate. Farshidianfar et al. [127, 128]
proved that real-time cooling rates could define the size of the
solidification structure and mode of solidification of 316L
stainless steel. Huang et al. [216] combined the temperature
monitoring data of Farshidianfar et al. [127] with temperature
simulation, and used thermal gradient (G) and solidification
rate (R) to correlate product qualities. The results indicated
that the dendrite arm spacing was more sensitive to scanning
speed, and the cooling rate (G × R) and G/R value had suffi-
cient abilities to predict the microstructure when depositing
316L stainless steel and Inconel 625 [216]. Bennett et al.
[132] presented a longer cooling and solidification time result
in coarse microstructures in processing Inconel 718, and the
ultimate tensile strengths would decrease. In their work, the
temperature data were characterized as the weighted cooling
and solidification time, which was the weighted normalized
solidification rate times plus the normalized cooling rate
[132]. Wu et al. [164] examined the effect of heat accumula-
tion on oxidation, microstructure, and mechanical properties.
Muvvala et al. [159] used a pyrometer to record the molten
pool lifetime and cooling rates when depositing Inconel 718
with 30 wt% WC as a ceramic phase. They found that an
optimum molten pool lifetime could provide the highest wear
resistance of the coating. Applying similar methods, Muvvala
et al. [160, 210–212] also finished many excellent works that
focus on different materials in references. Compared with the
evident influences of temperature process signatures, Wolff
et al. [129] researched the variation of microhardness by rely-
ing on simulation and temperature monitoring. They found
that the composition mixture between the powder and the
substrate decided the microhardness rather than the cooling
behavior of a molten pool in DED Inconel 718 on AISI
1045 carbon steel.

In addition to temperature process signatures, molten pool
geometric characteristics and spectrum process signatures are
also applied in DED to monitor the microstructure, phase
transformation, and mechanical properties. Concerning mol-
ten pool geometric characteristics, Akbari and Kovacevic [51]
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built an empirical relationship between the cooling rate and
the molten pool area. They found that a short interlayer time in
thin-wall accumulation would decrease the cooling rate and
result in coarse grain size and low ultimate tensile strength
[51]. Based on spectrum process signatures, Song et al.
[140] presented a method to predict phase transformation.
They found the odd points of the line intensity ratios that exist
when a phase transformation change happened, and they had
potential to monitor the phase transformation [140].

5.2.2 Elemental composition

Elemental composition is mainly monitored by spectrum pro-
cess signatures. Bartkowiak [143] proved the feasibility to
monitor the elemental composition by spectrum process sig-
natures. Song et al. [139] utilized laser-induced plasma to
monitor the composition of Ti–Al binary powders during
DED with a support vector regression method. Song et al.
[141] also realized the Cr composition monitoring using spec-
trum process signatures by the spectral line intensity ratio
when depositing pure chromium on H13 tool steel, as seen
in Fig. 16. Meanwhile, Shin et al. [146] also used the laser-
induced plasma method to monitor the Ni composition during
depositing Inconel 718. They found that the regression line of
the Ni-I (352.45 nm)/Cr-I (399.11 nm) line ratio had the most
accurate monitoring [146]. Lednev et al. [142, 145, 148] ap-
plied laser-induced breakdown spectroscopy to analyze the
key components (e.g., carbon and tungsten) quantificationally
after nickel alloy reinforced with tungsten carbide grains were
deposited, as shown in Fig. 17.

5.2.3 Metallurgical bonding

In addition to microstructural and elemental composition, the
metallurgical bonding state is also an important performance
index. Metallurgical bonding state can be considered the dilu-
tion depth. In fact, dilution depths can hardly be monitored

directly. Therefore, some process signatures related to dilution
depths are used to predict or monitor dilution depths. Abe
et al. [87] used a high-speed camera to observe the metallur-
gical bonding state and cleared the phenomenon when the
poor or overfusion state appeared. Bi et al. [24, 136] applied
the temperature process signatures to acquire the correction
between dilution state and IR-temperature signals gathered
by a 1400–1600-nm Ge photodiode. Farshidianfar et al. and
Wolff et al. [127, 129] also used temperature process signa-
tures to study the relationship between cooling rate and dilu-
tion depth and found their direct and obvious relation. With
regard to spectrum signals, Ya et al. [144] utilized the IR
signal and electron temperature as the spectrum process sig-
natures to monitor the metallic bonding state. The result
showed that the IR signal could indicate the onset of metallic
bonding, and the electron temperature could indicate the ex-
tent of dilution [144].

5.3 Metallurgical defect

Internal metallurgical defects are a critical point for DED to
impact its quality and repeatability. Realizing the IM of de-
fects provides a probability to stop this process to avoid waste
of time and materials or eliminate these defects in situ.
Stutzman et al. [83] utilized plume images and spectral signals
to monitor the internal metallurgical defects compared with
the post-build CT scans. The results showed that the two sig-
nals were consistent with each other, that is, they face the same
experimental phenomenon, and both had the potential to indi-
cate internal metallurgical defects [83].

Pores and cracks are two main objects in the monitoring of
metallurgical defects. Barua et al. [80] observed the image
changes in red-hot deposited layers and obtained the images
when cracks and pores occurred. Hammell et al. [117] used an
infrared camera to determine the temperature distribution
when cracks appeared. Gaja and Liou [166] utilized an acous-
tic emission sensor and released the monitoring of pores and

Fig. 16 Schematic of the
detection of laser-induced plasma
[139]
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cracks by combining an unsupervised pattern recognition
analysis and a principal component analysis. The acoustic
emission process signatures were also used by Wang
et al. to monitor crack generation and expansion. They
found that the number of cracks would increase with
deposited areas, layer thickness, and cooling rate [165].

Furthermore, the porosity, which is similar to pores, is also
monitored in DED. Zhang et al. [89] used a coaxial visual
monitoring camera to realize the porosity monitoring based
on a deep learning-based method with a classification accura-
cy of 91.2%. Khanzadeh et al. [130] obtained the temperature
characteristics of a molten pool and built the relationship be-
tween temperature characteristics and porosities based on the
self-organizing map method.

6 Existing problems and future research

With the expedite development of IMAC technology in DED,
there are still some existing problems and deficiencies in afore-
mentioned parts, including sensing signals, process signatures,
product qualities, and commercial equipment/software, which

have been reviewed in Sections 2, 3, 4, and 5. Many works
can be performed to meet the requirements of IMAC.

First, more advanced sensing devices, such as in situ X-ray
diffraction devices, an electromagnetic acoustic transducer,
and some radiation sensors, should be applied to acquire sens-
ing signals. Especially for E-DED, the photons, electrons, X-
rays, neutral particles, ions, and backscattered electrons can
provide rich signals to understand and quantify the DED pro-
cess [116]. In addition, some sensing signals, such as eddy
currents, coherence scanning interferometry [217], and back-
scatter electron detection, which have been used in PBF, can
also be utilized in DED [218]. Meanwhile, a deposition head,
especially the laser head with a coaxial monitoring ability,
needs to integrate as many sensing signals as possible to adapt
to the requirements of high flexibility and adaptability.

Second, process signatures are a bridge between process
parameters and product qualities. Therefore, characterization
and quantization methods need to be stable, reliable, and
speedy, especially for real-time monitoring. Moreover, a larg-
er number of process signatures from sensing signals are nec-
essary. However, when expanding the scope of monitorable
objects or improving inspecting accuracy, the data size will be
larger simultaneously. Thus, maintaining the processing speed
is a considerable problem. Meanwhile, because of the com-
plex DED mechanisms, the applied situations of process sig-
natures must be restricted based on DED equipment, range of
process parameters, materials, process environment, and other
possible factors. Even a calibration that aims at different situ-
ations is important. Furthermore, compared with PBF, signal
processing, identification, and dimensionality reduction
methods based on artificial intelligence can be paid more
attention.

Third, in product qualities of DED, geometric accuracies
are the main researched objects now. However, because of the
near-net shaping of DED, the processed parts usually need to
be subtractive machined again. Therefore, a very accurate di-
mension is not obligatory in DED. When ensuring the suc-
cessful forming about the geometric accuracy, more methods
need to focus on the monitoring of microstructures and met-
allurgical defects, especially for the hardly direct monitored
objects, such as dilution depth, thermal stress, phase transfor-
mation, metallurgical bonding, etc. Moreover, multisensor in-
formation fusion methods and artificial intelligence algo-
rithms, which have been used in the monitoring of welding
defects [219], applied in DED are minor.

Lastly, the commercial equipment and software are restrict-
ed strongly because of the limitations of the DED equipment,
the range of process parameters, materials, process environ-
ment, etc. Therefore, the IMAC equipment and software com-
panies currently provide the sensing modules that gather sens-
ing signals and can supply process signatures that have been
processed. Fewer companies present an IMAC system that
includes product qualities.

Fig. 17 a Schematic and b photograph of the laser-induced breakdown
spectroscopy probe for in situ elemental composition analysis [145]
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In summary, the authors believe that these points can be paid
more attention. First, more sensing signals and equipment can be
tried in DED, especially for monitoring methods that have been
used in welding or PBF. Second, some methods need to be
presented to obtain accurate emissivity during DED. Third, the
characteristics of a molten pool, which can reveal the process of
melting, flowing, and solidification, need to be analyzed system-
atically based on the visual features. Lastly, we think that
multisensor information fusion and intelligent learning algo-
rithms can play an important role in the analysis and identifica-
tion of the process signatures and product qualities obtained.

7 Conclusion

Recently, a consensus that AM plays an important role in the
industrial field has been reported. DED technology, as an
important type of AM, has the advantages of 3D deposition
forming, surface cladding, and parts repairing. However, the
reliability and repeatability of DED still cannot meet the strin-
gent requirement of high-end and high-value equipment.
These problems represent major challenges toward fully
exploiting the potentiality offered by DED.

In this review, we proved an overview of research efforts
conducted in the area of IMAC, which is considered an effec-
tive method to overcome the aforementioned challenges. The
research on IMAC is reorganized as sensing signals, sensing
equipment, process signatures obtained from sensing signals,
and product qualities that can be monitored. So far, image
signals with different wavelengths are the main signals in
DED used for monitoring the geometric accuracy and temper-
ature distribution. More advance signals can be used in the
IMAC of DED. Some objects that are difficult to be moni-
tored, such as dilution depths, pores, and phase transforma-
tion, have been observed in terms of temperature, spectrum,
and acoustic emission process signatures successfully.
However, in terms of geometric accuracy, the methods or
abilities for monitoring the other product qualities of DED still
need to be improved. Multisensor information fusion and ar-
tificial intelligence that focuses on processing or identifying
process signatures and product qualities are the research
emphases.
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