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Abstract
Warpage and volume shrinkage are important indicators of the quality of thin-walled parts during injectionmolding. In this study,
the optimization goals are warpage and volume shrinkage. Design parameters include mold temperature, melt temperature,
injection time, holding time, cooling time, and holding pressure. Based on the orthogonal experimental design and response
surface experimental design, the MoldFlow software is applied to the simulation of the thin-walled part injection molding
process. The importance of various parameters on warpage and volume shrinkage was analyzed by using analysis of variance.
Based on the simulation results, a two-layer hidden-layer back propagation (BP) neural network model is established and the
genetic algorithm (GA) is used to optimize the weights and thresholds of the back propagation neural network (BPNN) model to
reduce warpage and volume shrinkage by optimizing the design parameters significantly. A support vector machine (SVM)
combined with GA-BP was used to build a prediction model for predicting warpage and volume shrinkage. Taking the auto-
mobile wire harness protection frame as an example, and verified by numerical simulation, the GA-optimized two-layer hidden-
layer BP neural network combination method is an effective method for injection molding to reduce warpage and volume
shrinkage of thin-walled parts. SVM-BP-GA can accurately provide predictions for optimization goals; the amount of warpage
and the volume shrinkage were 0.93% and 1.9%, respectively.

Keywords Injection molding simulation . BP neural network . Genetic algorithm . Support vector machines . Multi-objective
optimization . Response surface method
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BPNN Back propagation neural network
GA Genetic algorithm
BP Back propagation

SOM Self-organizing competitive neural
network

SOM-BPNN Self-organizing competitive-back
propagation neural network

PP Polypropylene
PS Polystyrene
VCM Variable complexity method
PIM Plastic injection molding
SVM Support vector machine
SVM-GA-BP Support vector machine-genetic

algorithm-back propagation
IEGO Efficient global optimization
RBF Radial basis function
SAO Sequential approximation optimization
SAO-RBF Sequential approximation

optimization-radial basis function
ANOVA Analysis of variance
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NSGA-II Non-dominant use of genetic algorithm
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1 Introduction

Optimization of the injection molding process is a multi-ob-
jective, non-linear process. In recent years, many researchers
use the combination of back propagation (BP) and genetic
algorithm (GA) to optimize the injection molding process pa-
rameters and reduce the warpage or other defects of plastic
parts [1–4]. Since then, many algorithms in the field of ma-
chine learning have been applied in the process of injection
molding process optimization. Chen proposed a self-
organizing competitive-back propagation neural network
(SOM-BPNN) mathematical model to create a dynamic qual-
ity prediction model, and Taguchi’s experimental parameter
design method was used to enhance the performance of the
network. The experimental results show that BPNN enhanced
by the SOM can accurately predict the weight of plastic prod-
ucts [5]. Yildiz et al. used the Taguchi experiment and analysis
of variance to determine the combination of parameters that
meet the small shrinkage of polypropylene (PP) and polysty-
rene (PS) materials and further established an artificial neural
network model to predict the shrinkage. The errors of the
prediction results of PP and PS are 8.6% and 0.48% [6]. In
2008, Shi et al. proposed an adaptive optimization method
based on an artificial neural network model. The artificial
neural network and the experimental design (DOE) method
established an approximate functional relationship to optimize
warpage and process parameters. After production experi-
ments, it is verified that this method can effectively reduce
the warpage of the mobile phone case [7]. In 2013, Shi et al.
introduced an artificial neural network (ANN) replacement
model based on sequential optimization design methods and
proposed a parameter sampling evaluation (PSE) strategy.
The ANN model can establish an approximate function to
represent the non-linear relationship between design variables
and quality indicators; PSE completes the process of optimi-
zation evaluation, and the results show that the sequential
optimization method standard based on PSE sampling can
converge faster and more effectively approach the global op-
timization scheme [8]. Xu et al. introduced the grey correla-
tion analysis and particle swarm optimization into the optimi-
zation model and established a multi-objective mathematical
model particle swarm optimization (PSO)-GCANN. Practice
results show that the model can help engineers determine the
best process parameters [9, 10]. Gao established a Kriging
model for the problem of excessive warpage of injection-
molded parts. The Kriging model can establish an approxi-
mate functional relationship between warpages, replacing
the finite element software in the process of optimizing the
analysis of warpage, saving a lot of calculating costs [11].
Wang et al. used BP neural network to construct a plastic
injection cost estimation model to reduce the complexity of
traditional cost estimation procedures, and used the PSO al-
gorithm BP structural parameters to optimize and relatively

improve the prediction accuracy of BPNN [12]. Zhao et al.
take into account that most injection-molded parts have a
sheet-like geometry, can use strip analysis models to approx-
imate computer simulation software for predictive injection
molding, and use the PSO algorithm to find process parame-
ters in feasible spaces. Practice results show that the model
provides engineers with process parameters that meet quality
requirements without relying on experience [13]. In 2015,
Zhao et al. developed a framework to solve the multi-
objective optimization part of the Pareto optimal plastic qual-
ity for injection molding process parameters and proposed a
two-stage optimization system. In the first stage, the efficient
global optimization (IEGO) algorithm was used to approxi-
mate the non-linear relationship between the machining pa-
rameters and measures of part quality. In the second stage, the
non-dominant use of genetic algorithm based on ordering II
(NSGA-II) to find a better design solution, with better conver-
gence near the Pareto optimal front [14]. Jin et al. integrated a
variable complexity method (VCM), constrained non-control
ordering genetic algorithm (CNS-GA), back propagation neu-
ral network (BPNN), and MoldFlow analysis to propose a
method for locating the Pareto optimal solutions. Among
them, the variable accuracy prediction model is used in differ-
ent optimization stages in the formability evaluation stage.
The two BPNNs serve as approximate models for effective
formability evaluation with low accuracy and are connected to
the CNS-GA to intelligently constrain the Pareto optimal so-
lution to constrain multiple targets. Case studies show that the
proposed method has obvious advantages to obtain the best
parameters over existing parameters and is suitable for the
scheme of injection molding practice [15]. Chen and others
used the Taguchi orthogonal arrays to perform experimental
work. According to the results of the Taguchi experiment, the
best combination setting of product quality is calculated by
analyzing the signal-to-noise ratio, then using the analysis of
variance (ANOVA) to determine the important factors of con-
trol, and using a genetic algorithm (PSO-GA) to find the op-
timal parameter combination [16]. In 2014, Kitayama et al.
used short-shot defects as constraints for simulation analysis
and used a radial basis function (RBF) neural network and a
sequential approximation optimization (SAO) method to op-
timize the amount of warpage of plastic parts. The results of
numerical stimulation show that variable pressure curves are
one of the effective methods of warpage. In 2015, Kitayama
still used the SAO-RBF algorithm to identify the boundary
between cycle time and warping, and to optimize the structural
parameters of the conformal cooling channel. Numerical sim-
ulation results show that the optimized cooling water channel
has better cooling performance than before [17, 18]. Xu et al.
proposed an algorithm combining artificial neural network
and PSO to optimize the injection molding process. A back
propagation neural network model was established to map the
complex non-linear relationship between process parameters
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and product mechanical properties (Fig. 1). The PSO algo-
rithm interfaces with this predictionmodel to optimize process
parameters, taking polycarbonate (PC) windows as an exam-
ple; the mechanical response value of thin-shell polymer prod-
ucts manufactured by optimizing the injection molding pro-
cess becomes larger [19].

The above research shows that the experimental design
DOE combined with the intelligent algorithm ANN can con-
tribute to improving the quality of plastic products. This paper
presents a prediction model based on support vector machine
(SVM)-BP-GA to reduce warpage and volume shrinkage dur-
ing plastic injection molding (PIM). The data used is for two
parts; the training data comes from the response surface meth-
od, and the prediction data comes from the orthogonal exper-
iment. This paper uses the response surface method to design
the experiment. The mold temperature, melt temperature,
holding time, holding pressure, cooling time, and injection

time were taken as input variables, and warpage and volume
shrinkage were taken as optimization targets. All optimization
algorithms in this paper are implemented using Matlab tool-
box combined with code. The optimization process is divided
into three stages. In the first stage, the same design variable
range is used. The orthogonal method and the response sur-
face method are used to generate 25 and 69 sets of experimen-
tal data. The response surface method is used to find parame-
ter values that meet the minimum volume shrinkage and warp-
age. In the second stage, based on the data generated by the
response surface test, a double hidden-layer BP neural net-
work is designed on the software Matlab, and the GA glob-
al optimization algorithm is used to optimize the weight
and threshold of the BP neural network to further optimize
the warpage and volume shrinkage. In the third stage, in
order to improve the prediction accuracy of the model, an
SVM-GA-BP prediction model was established, and a
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SVM was used to optimize the GA-BP prediction error to
minimize the error.

2 Response surface experiments
and MoldFlow simulations

2.1 Model information

The length, width, and height of the harness protection
frame are 346, 87, 142 mm. In this paper, the Moldflow

Table 1 Parameter level table

Variables Up limit Lower limit

Mold temperature (A)/°C 45 25

Melt temperature (B)/°C 240 200

Holding time (C)/s 6 1

Holding pressure (D)/MPa 160 80

Injection time (E)/s 5 1

Cooling time (F)/s 40 20

Table 2 Test plan and numerical simulation results

Program Mold
temperature (°C)

Melt
temperature (°C)

Holding
time (s)

Holding
pressure (s)

Injection
time (s)

Cooling
time (s)

Warpage amount
(mm)

Volume shrinkage
rate (%)

1 35 222.5 4 120 3 32.5 2.208 18.27

2 45 200 2 160 1 20 2.346 17.02

3 35 257.714 4 120 3 32.5 1.796 20.04

4 25 245 2 80 1 20 2.634 19.77

5 25 245 6 160 1 45 2.091 19.77

6 45 200 2 160 1 45 2.345 17.09

7 45 245 2 160 1 20 2.777 19.76

8 25 245 6 80 1 45 2.060 19.77

9 45 245 2 80 5 20 2.437 18.69

10 35 222.5 1.5 120 3 32.5 2.390 18.24

11 35 222.5 4 120 3 32.5 2.208 18.27

12 45 200 6 160 1 45 2.211 17.10

13 25 200 2 160 5 45 2.555 16.81

14 25 200 2 160 5 20 2.394 16.83

15 25 200 6 80 1 20 2.319 17.11

16 35 222.5 4 120 3 32.5 2.208 18.27

17 45 245 6 160 1 45 2.438 17.10

18 45 200 2 80 1 45 1.974 19.76

19 35 222.5 4 120 3 32.5 2.208 18.27

20 19.3492 222.5 4 120 3 32.5 2.341 18.23

21 45 200 6 160 1 20 2.275 17.11

22 45 245 2 160 5 45 1.881 19.12

23 25 200 6 80 1 45 2.158 17.10

24 45 200 6 80 1 20 2.210 17.11

25 45 200 2 80 5 20 2.225 16.43

26 35 222.5 4 120 3 32.5 2.208 18.27

27 25 200 2 160 1 45 2.256 17.09

28 35 222.5 4 120 3 32.5 2.208 18.27

29 35 222.5 4 120 3 32.5 2.208 18.27

30 25 245 2 160 1 20 2.636 19.76

31 25 245 6 160 5 20 2.091 19.77

32 25 200 6 160 1 45 2.290 17.10

33 25 200 2 80 1 20 2.664 17.11

34 35 222.5 4 120 3 32.5 2.208 18.27

35 45 245 6 160 5 20 2.115 18.86

36 45 245 6 80 1 45 2.055 19.77
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software was used to generate a double-layer surface mesh
(Fig. 2). The mesh division is to make the model into a
finite element. After meshing, the displacement increment
of the element node is a basically unknown quantity in the
finite element iteration process. Finite element meshing is
a crucial step in the numerical simulation analysis of finite
elements, which directly affects the accuracy of subsequent
numerical calculation and analysis result.

The number of triangular elements is 160436, the maxi-
mum aspect ratio is 9.54, and the cell mesh matching rate is
92.7%. The material is PP, the grade is BJ530, and the man-
ufacturer of the material is Tonen Chemicals.

2.2 Design of response surface experiments

Because the response surface method can process variables in
continuous space, it can accurately express the non-linear re-
lationship between design variables and optimization goals.
The selected design variables are mold temperature (A), melt
temperature (B), holding time (C), holding pressure (D), in-
jection time (E), and cooling time (F). The upper and lower
limits of design variables are selected based on past produc-
tion experience. The central composite design method is used
to establish a 6-factor and 3-level test plan for the injection
molding optimization process. The corresponding response

Table 2 (continued)

Program Mold
temperature (°C)

Melt
temperature (°C)

Holding
time (s)

Holding
pressure (s)

Injection
time (s)

Cooling
time (s)

Warpage amount
(mm)

Volume shrinkage
rate (%)

37 45 245 6 160 1 20 2.238 19.76

38 35 222.5 7.13017 120 3 32.5 1.959 18.25

39 25 245 2 160 5 20 2.099 19.10

40 45 200 6 80 5 20 2.062 16.44

41 25 245 2 160 5 45 2.033 19.09

42 25 245 2 80 1 45 2.345 19.77

43 45 245 2 80 1 45 2.367 19.76

44 45 200 2 160 5 45 2.397 16.85

45 45 245 6 80 1 20 2.395 19.77

46 35 187.286 4 120 3 32.5 2.478 16.28

47 45 200 2 160 5 20 2.277 16.86

48 45 200 2 80 1 20 2.717 17.11

49 45 245 2 160 5 20 2.405 19.14

50 25 200 2 160 1 20 2.616 17.10

51 25 245 2 160 1 45 2.296 19.76

52 25 200 2 80 1 45 2.397 17.10

53 45 245 2 80 1 20 2.716 19.76

54 25 200 2 80 5 45 2.523 16.07

55 35 222.5 4 120 3 52.0636 2.321 18.24

56 25 245 6 80 1 20 1.957 19.77

57 45 200 2 80 5 45 2.388 16.61

58 25 245 2 80 5 20 2.458 18.69

59 45 200 6 80 1 45 2.314 17.10

60 35 222.5 4 182.603 3 32.5 2.186 18.24

61 25 245 6 160 1 20 1.833 19.77

62 35 222.5 4 120 3 32.5 2.223 18.25

63 25 245 6 160 5 45 1.880 18.82

64 35 222.5 4 120 6.13017 32.5 2.161 17.53

65 25 200 6 160 1 20 2.221 17.11

66 35 222.5 4 57.3966 3 32.5 2.223 18.25

67 25 200 2 80 5 20 2.394 16.37

68 45 245 2 160 1 45 2.330 19.78

69 35 222.5 4 120 3 32.5 2.208 18.27
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Table 3 ANOVA of warpage

Factor Sum of squared deviations Degrees of freedom Variance F value P value

Model 9.73 53 0.18 7.94 0.0001 Significantly
Mold temperature (A) 0.035 1 0.035 1.53 0.2258
Melt temperature (B) 0.23 1 0.23 10.06 0.0033
Holding time (C) 0.1 1 0.1 4.44 0.0431
Holding pressure (D) 6.85E-04 1 6.85E-04 0.03 0.8644
Injection time (E) 5.34E-03 1 5.34E-03 0.23 0.6342
Cooling time (F) 0.68 1 0.68 29.62 0.0001
AB 0.013 1 0.013 0.56 0.4601
AC 0.24 1 0.24 10.44 0.0029
AD 0.017 1 0.017 0.72 0.4038
AE 2.77E-03 1 2.77E-03 0.12 0.7316
AF 0.036 1 0.036 1.57 0.2189
BC 0.37 1 0.37 15.86 0.0004
BD 2.15E-04 1 2.15E-04 9.29E-03 0.9238
BE 0.12 1 0.12 5.31 0.0278
BF 8.47E-04 1 8.47E-04 0.037 0.8494
CD 3.53E-03 1 3.53E-03 0.15 0.6986
CE 0.26 1 0.26 11.35 0.002
CF 0.013 1 0.013 0.55 0.4621
DE 1.69E-03 1 1.69E-03 0.073 0.7886
DF 0.019 1 0.019 0.83 0.3685
EF 0.034 1 0.034 1.48 0.2329
A2 9.30E-03 1 9.30E-03 0.4 0.5304
B2 7.83E-06 1 7.83E-06 3.39E-04 0.9854
C2 0.011 1 0.011 0.47 0.4978
D2 9.56E-03 1 9.56E-03 0.41 0.5247
E2 0.013 1 0.013 0.55 0.4631
F2 0.32 1 0.32 13.67 0.0008
ABC 0.061 1 0.061 2.63 0.1146
ABD 8.63E-03 1 8.63E-03 0.37 0.5454
ABE 0.15 1 0.15 6.4 0.0165
ABF 5.91E-03 1 5.91E-03 0.26 0.6166
ACD 1.60E-04 1 1.60E-04 6.93E-03 0.9342
ACE 0.015 1 0.015 0.64 0.4306
ACF 2.76E-04 1 2.76E-04 0.012 0.9137
ADE 3.42E-06 1 3.42E-06 1.48E-04 0.9904
ADF 6.82E-03 1 6.82E-03 0.3 0.5906
AEF 7.51E-04 1 7.51E-04 0.032 0.8581
BCD 3.43E-03 1 3.43E-03 0.15 0.7024
BCE 1.07 1 1.07 46.32 < 0.0001
BCF 0.34 1 0.34 14.8 0.0005
BDE 8.17E-03 1 8.17E-03 0.35 0.5562
BDF 3.64E-03 1 3.64E-03 0.16 0.694
BEF 6.58E-04 1 6.58E-04 0.028 0.8671
CDE 6.68E-04 1 6.68E-04 0.029 0.866
CDF 7.67E-03 1 7.67E-03 0.33 0.5685
CEF 0.39 1 0.39 17.07 0.0002
DEF 0.031 1 0.031 1.33 0.2566
A2B 0.3 1 0.3 13.02 0.001
A2C 3.46E-03 1 3.46E-03 0.15 0.7014
A2D 7.61E-05 1 7.61E-05 3.29E-03 0.9546
A2E 6.79E-03 1 6.79E-03 0.29 0.5916
A2F 1.04 1 1.04 45.17 0.0001
AB2 0.066 1 0.066 2.88 0.0996
Residual 0.74 32 0.023
Pure error 2.03E-04 9 2.25E-05

Correlation coefficient R2 = 0.9294

Correction coefficient R2 = 0.8123

Signal-to-noise ratio r = 16.01836
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targets are warpage and volume shrinkage. Table 1 shows the
design variables and corresponding selections. The value
range will be tested and analyzed based on the numerical
simulation software Moldflow, and a response surface model
will be established based on the simulation results, which will
provide a reference for subsequent neural network models
(Table 2).

2.3 ANOVA of warpage

ANOVA can determine the impact of various design variables
on the response target during the experiment.

The statistical significance of the P value is shown in
Table 3, and Table 3 shows the analysis result of the variance
of the warpage. According to the significant evaluation
criteria, it can be known that the P value of the mathematical
model is far less than 0.0001, which indicates that the regres-
sion model response to the effect of (warpage) is very signif-
icant. In addition, according to the table, the correction

coefficient R2 of the model is 0.8123, which indicates that
81.23% of the response value (warpage) for different param-
eters can be explained by the regression model. The correla-
tion coefficient R2 of the model is 0.9294, which shows that
the true value of the response surface model fits well with the
predicted value, and the error is small; the signal-to-noise ratio
r = 16.02 of the model is much larger than 4, which indicates
that the model has sufficient discrimination ability.

2.3.1 ANOVA volume shrinkage

Table 4 shows the results of the ANOVA of warpage.
According to the significance criterion, the P value of the
mathematical model is far less than 0.0001, which indi-
cates that the influence of the regression model on the
response (warpage) is extremely significant. In addition,
according to the table, the model’s correction coefficient
R2 is 0.8923, which indicates that the response value (vol-
ume shrinkage) of 89.23% for different parameters can be

Table 4 Volume shrinkage

Factor Sum of squared deviations Degrees of freedom Variance F value P value

Model 111.9 21 5.33 34.55 < 0.0001 Significantly

Mold temperature (A) 0.048 1 0.048 0.31 0.5801

Melt temperature (B) 94.56 1 94.56 613.11 0.0001

Holding time (C) 0.97 1 0.97 6.3 0.0146

Holding pressure (D) 6.22E-03 1 6.22E-03 0.04 0.8415

Injection time (E) 10.02 1 10.02 64.96 0.0001

Cooling time (F) 0.016 1 0.016 0.1 0.7475

AB 0.81 1 0.81 5.24 0.0254

AC 0.42 1 0.42 2.75 0.1021

AD 0.87 1 0.87 5.65 0.0204

AE 0.057 1 0.057 0.37 0.5454

AF 0.12 1 0.12 0.77 0.3847

BC 6.20E-03 1 6.20E-03 0.04 0.8417

BD 0.097 1 0.097 0.63 0.431

BE 7.66E-05 1 7.66E-05 4.96E-04 0.9823

BF 0.47 1 0.47 3.05 0.0854

CD 0.014 1 0.014 0.088 0.7682

CE 0.074 1 0.074 0.48 0.4922

CF 0.57 1 0.57 3.68 0.0594

DE 2.1 1 2.1 13.61 0.0005

DF 0.66 1 0.66 4.27 0.0429

EF 0.017 1 0.017 0.11 0.7441

Residual 9.87 64 0.15

Pure error 3.60E-04 9 4.00E-05

Correlation coefficient R2 = 0.9294

Correction coefficient R2 = 0.8123

Signal-to-noise ratio r = 16.01836
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explained by the regression model. The correlation coeffi-
cient R2 of the model is 0.9189, which indicates that the
true value of the response surface model fits well with the
predicted value, and the error is small; the signal-to-noise
ratio r = 21.448 of the model is much larger than 4, which
indicates that the model has sufficient discrimination abil-
ity. According to the size of the P value provided by the
model, various design variables are evaluated and sorted,
that is, B melt temperature > E injection time > C holding
time > A mold temperature > F cooling time > D holding
pressure. Among them, the P values of B, C, and E are all
far less than 0.05, indicating that the effects of melt tem-
perature, dwell time, and cooling time on volume shrink-
age are extremely significant, to provide a reference for the
training and prediction of neural networks in the second
and third stages (Fig. 3).

The first stage of the work is to obtain design variables that
have a significant effect on warpage and volume shrinkage
through the response surface test design. Melt temperature,

holding time, and cooling time have a greater effect on volume
shrinkage; melt temperature, holding time, and cooling time
have significant effects on warpage.

3 Neural network design

ANN is a parallel computing model similar to biological neu-
ral mechanisms, that is, computer computing is used to simu-
late the human neural network. It uses computer computing to
simulate the neural network of the human brain. BPNN is one
of the most representative networks, which can be combined
with other algorithms to solve specific engineering problems.
It uses a non-linear relationship-supervised learningmethod to
handle the non-linear relationship between input variables and
optimization goals. In this study, a three-layer BPNNwith two
hidden layers is used to construct a prediction model that
simultaneously reduces warpage and volume shrinkage.
Based on all connected nodes in the previous layer plus an

Fig. 3 Schematic diagram of
neural network structures

Fig. 4 Chromosome crossover
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offset value; this value is input into the activation function to
obtain forecast result.

3.1 Design of neural networks

3.1.1 Design of input layer and output layer

The content of the first stage shows that the effects of melt
temperature, dwell time, and cooling time on the amount of
warpage are significant; the effects of melt temperature, dwell
time, and injection time on the amount of warpage are signif-
icant. Therefore, the input layer nodes of the BP neural net-
work are four, which are the melt temperature, the holding
time, the cooling time, and the injection time. The number
of output nodes is 2, which represents the amount of warpage
and the volume shrinkage.

3.1.2 Hidden layer design

This paper uses a double hidden-layer BP neural network. The
generalization ability of the double hidden-layer network is
stronger than the single hidden-layer networks. The number
of nodes is determined according to the following formula:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ f

p
þ b ð1Þ

The number of hidden nodes in the first layer is 4, and the
number of nodes in the second layer is 6. Among them, w and
f represent the values of the input layer and output layer nodes,
respectively. b is a value between 0 and 10, and h is the
number of nodes in the hidden layer.

3.1.3 Selection of functions

“Tansig” function connects input layer with hidden layer,
“Purelin” function connects output layer with hidden layer,
and the training function is the adaptive learning rate (lr) mo-
mentum gradient descent function “Traingdx.”

Fig. 5 The process of GA optimizing BP. a Genetic algorithm iterative
curve. b Relative error of GA-BP neural network prediction (warpage). c
Relative error of GA-BP neural network prediction (volume shrinkage)

Table 5 Comparison of optimization results

Parameter Mold
temperature (°C)

Melt
temperature (°C)

Cooling
time (s)

Injection
time (s)

Holding
time (s)

Holding pressure
(MPa)

Volume
shrinkage (%)

Warpage
(mm)

RSM
optimization

34.795 244.974 24.226 4.535 3.710 139.949 19.17 2.17

RSM-FEM 34.795 244.974 24.226 4.535 3.710 139.949 19.15 1.92

GA-BP
optimization

21.427 201.355 23.603 1.801 6.184 190.001 16.35 1.02

GA-BP-FEM 21.427 201.355 23.603 1.801 6.184 190.001 16.07 1.16
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3.2 Genetic algorithm

Although the traditional BP neural network has good approx-
imation performance, when training the network, it uses the
gradient descent algorithm, which is very easy to fall into a
local optimum, resulting in poor prediction results. Therefore,
consider using genetic algorithm to optimize the weight and
threshold of BP neural network, which can suppress the emer-
gence of local optimum, and then get a better BP neural net-
work that can approximate the true law of the data. This algo-
rithm is called GA-BP neural network.

3.2.1 Encoding process

The encoding process mainly encodes the BP neural network
weights and thresholds, and the encoding length is n:

n ¼ hidden number1� input number þ hidden number1

� hidden number 2þ output number

� hidden number 2þ hidden number 1� 1

þ hidden number 2� 1þ output number � 1 ð2Þ

3.2.2 Determine moderation function

The fitness value is used to evaluate the individual’s pros and
cons. The smaller the fitness value, the better the individual,
and the larger the fitness value, the worse the individual; this
paper uses the relative error (MAPE) between the true value
and the predicted value as a moderate function, as follows:

MAPE ¼ sum abs y1−yð Þ � 100=yð Þ=n ð3Þ

Among them, y1 is the predicted value, y is the actual
value, and n is the actual number of individuals.

3.2.3 Select operation

Individuals are selected according to the size of the fitness to
ensure that individuals with good adaptive performance have
more opportunities to reproduce offspring, so that good char-
acteristics can be inherited. The probability of selecting indi-
viduals is calculated according to the following formula:

pi ¼ f xið Þ
∑
n

j¼1
f xjð Þ

ð4Þ

Fig. 6 Comparison of optimization results. aWarping deformation distribution. bVolume shrinkage distribution. cWarping deformation distribution. d
Volume shrinkage distribution
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Fig. 7 Comparison between the
true value and the predicted value
of BP. a Prediction of BP
(warping). b Prediction of BP
(volume shrinkage). c Relative
error of warping. d Relative error
of volume shrinkage

Table 6 Experiments of orthogonal matrix and simulation results

Mold temperature
(°C)

Melt temperature
(°C)

Holding time
(s)

Holding pressure
(MPa)

Injection time
(s)

Cooling time
(s)

Warping
(mm)

Volume shrinkage
(%)

1 25 230 5 140 2 40 2.941 18.85
2 25 210 3 100 3 35 3.171 17.56
3 35 240 2 140 5 35 2.951 18.7
4 35 220 5 100 1 30 2.789 18.31
5 25 200 2 80 1 20 3.578 17.11
6 45 210 5 160 5 20 4.323 17.21
7 35 200 3 160 2 25 2.9 17.14
8 40 220 3 140 4 20 2.942 17.93
9 45 220 6 80 2 35 3.315 18.32
10 40 230 4 160 1 35 2.747 18.89
11 30 220 2 160 3 40 2.924 18.1
12 35 230 6 120 3 20 3.268 18.69
13 30 240 4 100 2 20 3.591 19.44
14 25 240 6 160 4 30 4.497 18.9
15 35 210 4 80 4 40 3.781 17.31
16 45 240 3 120 1 40 2.983 19.47
17 30 200 5 120 4 35 4.011 16.77
18 45 230 2 100 4 25 2.968 18.4
19 30 210 6 140 1 25 3.301 17.7
20 30 230 3 80 5 30 3.08 17.75
21 40 240 5 80 3 25 2.816 19.23
22 25 220 4 120 5 25 3.752 17.37
23 40 200 6 100 5 40 2.273 16.53
24 40 210 2 120 2 30 3.019 17.72
25 45 200 4 140 3 30 3.154 17.62
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3.2.4 Cross operation

The crossover operation refers to the exchange of chromo-
some fragments to generate two new offspring. This article
uses a single-point crossover method: randomly select two
individuals to crossover and generate new offspring according
to Fig. 4.

3.2.5 Mutation operation

The purpose of the mutation operation is to change the gene
value on the chromosome. This article mutates the j gene of
the i individual. The operation method is as follows:

aij ¼ aij þ upperbound−aij
� ��MutShrink� f gð Þ r > 0:5

aij− aij−lowerbound
� ��MutShrink� f gð Þ r≤0:5

�
ð5Þ

f gð Þ ¼ r
0
1−

g
Gmax

� �2

ð6Þ

where upperbound is the upper bound of the gene;
lowerbound is the lower bound of the gene; g is the
number of previous iterations; Gmax is the maximum
number of evolutions; r , r’ is the random number in
between 0 and 1.

4 Optimization process

This paper uses the BP-GA algorithm to optimize the warpage
and volume shrinkage of the injection process.

Fig. 8 GA-BP prediction result. a Prediction of GA-BP (warping). b Prediction of GA-BP (volume shrinkage). c Relative error of GA-BP (warping). d
Relative error of GA-BP (volume shrinkage)
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4.1 The optional process of BP-GA

The study use the same input variables as shown in the figure,
uses the GA algorithm to optimize the weight and threshold of
BP, and returns the design parameters corresponding to the
optimal target. As can be seen from Fig. 5, after 120 iterations
of optimization, the warpage and volume shrinkage were
1.017 mm and 16.353%, respectively. The parameters of the
optimized input variables are shown in Table 5.

4.2 Finite element simulation verification

After the analysis of variance, the response surface method
recommended a set of variable parameters. The BP-GA algo-
rithm also recommends a set of variable parameters, as shown
in Table 5. By comparing the two methods, the results

predicted by the BP-GA algorithm are closer to the results of
finite element simulation. As shown in Fig. 6 a and b, after the
optimization of the response surface method, the warpage and
volume shrinkage were 1.92 mm and 19.95%, respectively.
As shown in Fig. 6 c and d, optimized by the GA-BP algo-
rithm, warpage value and volume shrinkage are 1.05 mm and
16.07%, respectively.

5 Prediction process

5.1 Support vector machine introduction

SVM is a machine learning method based on statistics. It
improves the ability of learning machine by seeking the
minimum structural risk and achieves the minimization of

Fig. 9 SVM-BP-GA prediction results. a Prediction of GA-BP-SVM (warping). b prediction of GA-BP-SVM (volume shrinkage). c Prediction of GA-
BP-SVM (warping). d Prediction of GA-BP-SVM (volume shrinkage)
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confidence range. In the case of a small statistical sample
size, it can find its internal statistical law. As shown in
Table 6, we designed an orthogonal experiment with 6
factors and 5 levels using the same design variable range
of the response surface; the purpose is to provide more
training data for the algorithm in order to improve the pre-
diction accuracy of the algorithm.

5.2 Prediction steps

This paper uses orthogonal experiments to generate data for
prediction and uses the difference between the predicted result
and the true value as the output results. The first step is to use a
simple BP neural network for prediction and obtain the pre-
liminary error (Fig. 7).

The second step uses the BP algorithm enhanced by the
GA algorithm to make predictions, and the error is reduced
compared with the previous one (Fig. 8).

In the third step, the error between the predicted value of
the GA-BP and the actual value is used as the output of the
SVM, and the original data is used as the input of the SVM
(Fig. 9).

5.3 Comparison results

By using the Matlab software, the prediction results of the
three algorithms for errors are integrated into the same win-
dow, and the error optimization results of the three algorithms
are compared, as shown in Fig. 10. As can be seen from the
figure, the BP prediction error < BP-GA prediction error <
SVM-BP-GA prediction error, and after SVM corrects the
error, the predicted value is closer to the data provided by
the orthogonal experiment and tends to be stable. The results
show that the SVM-BP-GA algorithm is more accurate in
predicting the warpage and volume shrinkage of automobile
wire harness protection frames and can provide a reference for
similar injection products.

Fig. 10 Comparison of prediction results of the three algorithms. a Comparison of predicted results (warping). b Comparison of predicted results
(volume shrinkage). c Comparison of relative (warping). d Comparison of relative (volume shrinkage)
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6 Conclusion

In this study, the design parameters in the multi-objective
optimization injection process are divided into three stages.
The relationship between the output target and the input target
is obtained by using the response surface method and the BP-
GA algorithm. This article can draw the following results:

(1) Based on the response surface method andMoldFlow sim-
ulation, using the analysis of variance method, the design
variables that significantly affect the amount of warpage
and volume shrinkage are melt temperature, holding time,
injection time, and cooling time. The response surface
method gives the values corresponding to the recommend-
ed parameters, which are the mold temperature of 37.503
°C, the melt temperature of 234.639 °C, the holding time
of 4.982 s, the holding pressure of 96.972 Mpa, the injec-
tion time of 1.965 s, and the cooling time of 20.632 s.

(2) By using the GA-BP algorithm, the same input variables
are taken. The warpage and volume shrinkage are opti-
mized to obtain the design parameters corresponding to
the smallest and smaller warpage and volume shrinkage.
The mold temperature was 21.427 °C, the melt tempera-
ture was 201.355 °C, the holding time was 6.184 s, the
holding pressure was 190.001Mpa, the injection time was
1.965 s, and the cooling time was 23.603 s. By using the
GA-BP algorithm, the same input variables are taken. The
warpage and volume shrinkage are optimized to obtain the
design parameters corresponding to the smallest and
smaller warpage and volume shrinkage. The mold tem-
perature was 21.427 °C, the melt temperature was
201.355 °C, the dwell timewas 6.184 s, the dwell pressure
was 190.001 Mpa, the injection time was 1.965 s, and the
cooling time was 23.603 s. After the MoldFlow analysis,
the GA-BP algorithm is better than the response surface
method in optimizing warpage and volume shrinkage.

(3) In order to make a more accurate prediction of the injec-
tion molding process, the SVM-BP-GA prediction mod-
el was established, that is, SVMwas used to improve the
BP-GA algorithm to further reduce the error between the
true value and the predicted value. The calculation results
show that the maximum prediction errors of the SVM-
BP-GA algorithm for warpage and volume shrinkage are
0.93% and 1.9%, respectively.
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