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Abstract
With the rapid development of artificial intelligence and intelligent manufacturing, the traditional teaching-playback mode
and the off-line programming (OLP) mode cannot meet the flexible and fast modern manufacturing mode. Therefore,
the intelligent welding robots have been widely developed and applied into the industrial production lines to improve the
manufacturing efficiency. The sensing system of welding robots is one of the key technologies to realize the intelligent robot
welding. Due to its unique characteristics of good robustness and high precision, the structured light sensor has been widely
developed in the intelligent welding robots. To adapt to different measurement tasks of the welding robots, many researchers
have designed different structured light sensors and integrated them into the intelligent welding robots. Therefore, the latest
research and application work about the structured light sensors in the intelligent welding robots is analyzed and summarized,
such as initial weld position identification, parameter extraction, seam tracking, monitoring of welding pool, and welding
quality detection, to provide a comprehensive reference for researchers engaged in these related research work as much as
possible.

Keywords Intelligent welding robots · Structured light sensor · Initial weld position identification · Parameter extraction ·
Seam tracking · Monitoring of welding pool · Welding quality detection

1 Introduction

During the modern manufacturing industry, the welding
robot technology has been widely applied into many
scenarios, such as automobile manufacturing, ship building,
and industrial production. It is a typical representative of
current intelligent manufacturing. It could greatly improve
the automation level of manufacturing industry, guarantee
the safety of staff, keep the production quality, and improve
the technical level of industrial production.
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At present, the common path programming modes of
the welding robots in both manufacturing production and
research work could be mainly divided into three categories:
teaching-playback mode, the OLP mode [1–3], and the
intelligent path programming mode [4]. The traditional
teaching-playback mode still plays an important role in
the current production and manufacturing. However, in the
actual welding production, the pose of welding targets is
often changeable due to the effect of installation error and
processing error. Meanwhile, some disturbance information
inevitably exists in the welding process. The teaching-
playback mode cannot perceive these changes and lacks
certain flexibility to the changeable working environment.
With the development of computer-aided-design (CAD)
technology and computer graphics, the OLP mode is
gradually applied into the path programming of welding
robots. Through the construction of working environment
and tool-center-point (TCP) calibration, the OLP mode
could well accomplish the tasks simulation, anti-collision
detection, and motion instructions generation and path
planning of welding robots. However, the OLP mode is only
suitable for the structured production environment. With
the change of current manufacturing mode, the working
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environment is becoming more and more complex and
unstructured. It will bring some challenges to the high-
precision and real-time construction of virtual welding
environment and affect the three-dimensional (3D) path
programming efficiency of OLP mode. Meanwhile, like
the teaching-playback mode, the OLP mode also cannot
perceive the changes of industrial environment and lack
certain flexibility. The intelligent path programming of
welding robots is the current main development direction
of modern manufacturing. Combined with different robot
sensors, the intelligent welding robots could complete
the autonomous robot welding through environmental
perception. However, the intelligent welding robot is a
complex system and it contains many important links, such
as initial weld position identification, parameter extraction,
seam tracking, monitoring of welding pool, and welding
quality detection. Due to the technical difficulties, it is
currently under development stage by researchers and
companies. And there is not a mature fully intelligent path
programming system yet.

The sensor system is the key link of the intelligent
welding robots. During the past two decades, a number
of researchers have sought to develop and improve the
robot sensors to adapt different welding tasks. The common
sensors on the welding robots include arc sensors [5–7],
ultrasound sensors [8–11], infrared sensors [12–15], sound
sensors [16–18], magneto-optical sensors [19–22], and
vision sensors [23–27]. Compared with other sensors, vision
sensors have the characteristics of non-contact measurement
and high precision. Meanwhile, it could obtain much
information about welding environment. Therefore, vision-
based detection has been widely applied into much welding
tasks, such as seam tracking [28–31], seam extraction [32–
34], welding quality control [35–37], and defect detection
[38–40]. Based on the great advantages, it has become an
important research direction on the research work about
automatic welding robots.

According to the light source of vision sensors, vision
sensors could be divided into two major categories: active
light vision sensors and passive light vision sensors.
Compared with the passive light vision sensors, the active
light vision sensors show better robustness on complex
welding environment. The structured light sensor is a typical
representative of the active light vision sensor. Due to its
great characteristics of good robustness and high precision,
the structured light sensor has been widely applied into the
intelligent welding robots. To finish different measurement
tasks of welding robots, the researchers have designed and
improved different types of structured light vision sensors
to improve the measurement precision and efficiency.
Therefore, this paper summarizes and analyzes these latest
research and applications work of the structured light vision
sensors in the intelligent welding robots, which could

provide some reference for researchers engaged in this
research direction.

The rest of this paper is organized as follows. Section 2
introduces the common structured light vision sensors.
Section 3 analyzes and summarizes the research status of
the structured light vision sensors in the intelligent welding
robots. Section 4 is about the discussion of the structured
light sensors. The last part is the conclusion and prospect of
this paper.

2 Sensing system

The vision sensor is the core component of the intelligent
welding robots. Based on vision sensing system, the
researchers have built different experimental platforms of
welding robots according to different welding tasks. A
typical system framework of the intelligent welding robot is
shown in Fig. 1. It mainly consists of three parts: industrial
robot system, vision system, and arc welding system. The
vision system consists of vision sensor and vision computer
to which is for the perception of welding environment. The
industrial robot system consists of industrial manipulator,
robot controller, and teaching box, which is used for the
task execution of welding robots. The arc welding system
is used to finish the workpiece welding, which is comprised
by digital welding machine, welding shield gas, and wire
feeder.

Because of the strong advantages of high precision
and good robustness of structured light vision sensors, in
order to realize intelligent welding robots, much researchers
continuously improve and optimize the sensor structures,
and design different types of structured light vision
sensors. They are applied into different 3D measurement
applications of the robot welding to improve the automation
level of welding robots and meet the needs of flexible and
high-precision modern manufacturing.

At present, faced with much research work about the
intelligent welding robots, the common types of structured
light sensors are laser structured light, cross structured
light, multi-lines structured light, circle structured light,
grid structured light, lattice structured light, etc. Figure 2
shows some typical examples of the common structured
light sensors.

3 Sensor applications

Combined with the structured light sensors, the intelligent
welding robots could realize the autonomous 3D path
programming and robot welding through the perception of
the working environment. However, the fully intelligent
welding robot is a relatively complex system and it is
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Fig. 1 The system framework of
a typical welding robot system

still in the research stage due to the technical difficulties
faced with complex welding environment. As shown in
Fig. 3, to realize autonomous welding task, the intelligent
welding robot system involves many key technologies,
such as initial point guidance, seam tracking, parameter
extraction, monitoring of welding pool, and welding quality
detection.

To solve the above key problems shown in Fig. 3, a
considerable amount of literatures have been published
about the intelligent welding robot to solve one or more
problems. Due to the advantages of good robustness and
high precision, the structured light sensors have much
applications in these parts. According to the above research

objects, researches have done much work and design
different types of structured light sensors.

Here, the latest application work of the structured light
sensors in these aspects is summarized in detail to provide
a reference for the researchers engaged in this research
direction.

3.1 Initial weld position identification

The initial position alignment of weld seam is the one of the
basic but key technologies for the intelligent welding robots.
Meanwhile, it is also the basis of seam tracking. The image-
based method is the common initial point guiding method

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 The common structured light sensors of welding robots. a Laser [41]. b Cross [42]. c Multiple lines [43]. d Circle [44]. e Grid [45]. f
Lattice [46]. g Triangle [47]. h Trilines [48]
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Fig. 3 The common framework
of intelligent welding robot
system

which realizes the finding of initial seam point through
the image processing of welding images, and it has been
widely applied into the initial position alignment [49–52].
However, it has poor robustness against complex factors
of welding environment, such as rust, environment change,
surface defects, and scratch. And some researchers have
proposed some initial position alignment methods based on
the structured light sensors.

At present, there are much research work about the
initial point guiding on butt joints. However, the research
work about fillet joint is relatively less. To realize robust
initial point finding of fillet joints, as shown in Fig. 4, the
laser structured light sensor was applied into the automatic
welding production in ref. [53]. The slope difference
algorithm was adopted to realize the finding of initial point
of weld seam without any information. Meanwhile, this
method could also solve the end point finding of weld seam.
Through experiment verification, the proposed algorithm
could well meet the real industrial production.

To realize the initial point guiding of micro-gap weld, an
initial point guiding algorithm based on the laser structured
light sensor was proposed in ref. [54] and it was applied
into a mobile welding robot as shown in Fig. 5a. The

image coordinates of initial point were calculated by image
processing of welding images. Then, the 3D coordinates of
seam points were obtained according to the camera model
and the distance between feature points and initial point.
The flow chart of the initial point finding is shown in Fig. 5b.
Finally, the initial point guiding of micro-gap weld is
realized by the proportion-integration-differentiation (PID)
controller in Fig. 5c.

In ref. [55], an initial point finding method based on
point cloud processing was proposed. The laser structured
light sensor was used to scan the whole workpiece to get
the 3D point cloud of welding workpiece. To get the entire
workpiece form the point cloud, the KD-Tree was proposed
to remove the complex background for the following
seam path extraction. During the real welding production,
the workpiece models always could be approximately
constructed by different plane models. The point cloud
segmentation was done by the Random Sample Consensus
(RANSAC) algorithm to get these planes. Based on the
geometric model of weld seam, the initial point finding
could be realized through point cloud processing. Figure 6
shows the main procedures and results of initial point
finding on fillet joints.

Fig. 4 a The two-arm welding
robots. b The weld beads after
initial point finding

(a) (b)
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Fig. 5 a Mobile welding robot.
b The controller for initial point
guiding [54]

(a)

(b)

Fig. 6 The initial point finding
based on point cloud. a Original
point cloud. b Filtered by
background model. c Plane
Estimation. d Weld seam and
start position

(a)

(c) (d)

(b)
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3.2 Seam extraction

Combined with the vision sensors to realize automatic
3D path extraction, it could avoid tedious manual path
teaching and has better programming flexibility and faster
programming speed [56–58]. Meanwhile, the real-time and
high-precision 3D seam extraction is also the basis of seam
tracking and controlling for welding robots.

The laser structured light sensor always belongs to
local sensor and it is only applied into local searching

applications, such as seam type recognition or seam
tracking. Compared with the laser structured light sensor,
the grating projection sensor could acquire the whole 3D
information about the welding work piece and it is suitable
for the global seam extraction. To avoid cumbersome
manual 3D path teaching, in our previous work, a grating
projection system based on a digital light processing (DLP)
projector was designed as the vision sensor of welding
robot to realize the off-line 3D path teaching [59]. Figure 7
a shows the flow chart of 3D reconstruction based on

Fig. 7 a The grating projection
system. b, c 3D reconstruction
and feature extraction. d, e Path
fitting. f, g Pose estimation [59]

(f) (g)

(d) (e)

(a)

(b) (c)

1032 Int J Adv Manuf Technol (2020) 110:1027–1046



grating projection system. According to the spatial structure
information of welding work pieces, a seam extraction
algorithm based on point cloud processing was proposed.
Firstly, to overcome the effect of weak texture and weak
contrast, the grating projection system based on grid code
patterns was used to realize the 3D reconstruction of work
pieces. Secondly, the 3D seam points were extracted based
on the spatial shape information of V-type butt joints.
Thirdly, the back-propagation (BP) neural network fusion
with genetic algorithm (GA) was used to do path fitting
to guarantee the smoothing of seam path. Finally, the pose
estimation of weld seam was done to solve the pose of
welding gun. Faced with the complex work pieces, the
welding robots could adjust its pose in real time according
to the seam pose which could well keep the welding quality.

Figure 7b–g show the special results of seam extraction and
pose estimation.

To detect the whole welding work piece, in ref. [59], there
is a shortcoming of limited measurement precision faced
with broader working view for the grating projection sensor.
To realize high-precision seam extraction, on the basis of
seam extraction in Fig. 7, based on the idea from coarse to
fine, a “global-local” seam extraction method was proposed,
as shown in Fig. 8a [60]. Through the coarse extraction
and local fine scanning, the proposed algorithm could well
realize high-precision seam path teaching of different weld
seams. Here, combined with the stereo vision, the DLP
projector was programmed to project the triple stripes to
construct the line structured light sensor as a local sensor
to realize high-precision 3D measurement. Meanwhile, the

Fig. 8 a The flow chart of 3D
seam path teaching. b, c Feature
extraction [60]

(a)

(b) (c)
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kernelized correlation filters (KCF) algorithm was proposed
to realize the real-time feature extraction of welding images
which could solve different seam types, such as lap joints,
butt joints, and fillet joints. Figure 8b and c separately show
the feature extraction results of lap joint and fillet joint.

Zeng et al. proposed a 3D off-line path teaching method
of narrow butt joint based on laser structured light sensor
[61]. Due to the narrow gap formed by the two butting
steel plates, part of the structured light stripe could pass
through the narrow gap of butt joint as shown in Fig. 9a.
The reflection brightness of the structured light stripe on
the narrow gap and the surface of the steel sheet would
be different. According to these brightness characteristics,
the seam extraction could be done by image processing of
laser stripe. Through the close-range scanning of butt joint,
the normal vectors of seam points could also be acquired
through the point cloud processing. Figure 9b shows the 3D
position and pose of narrow butt joint.

To get the parameters of multi-layer and multi-pass
welding, a grid structured light sensor was designed
to get the position of weld seam which could acquire
more information than the laser structured light sensor
[45], as shown in Fig. 10. Through average smoothing,
threshold, image thinning, and feature extraction, the image
coordinates of seam points could be obtained. Experiments
showed that the measurement error of the grid structured
light sensor was less than 0.5mm.

3.3 Seam tracking

Until now, seam tracking is still a research focus in intel-
ligent welding robots. The conventional seam extraction
methods are mainly based on morphological image process-
ing. Researchers have done much work and proposed many
different algorithms to realize real-time and high-precision
seam tracking. As shown in Fig. 11, the core links mainly

Fig. 9 a The stripe reflection
situation of narrow seam. b 3D
seam path and normal vectors of
seam points [61]

(a)

(b)
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Fig. 10 a Grid images. b The
procedures of image processing
[45]

(a)

(b)

Fig. 11 The main procedures of traditional seam extraction algorithms
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(a)

(b)

Fig. 12 a Templates of seam features. b 3D profile of V-type butt
joint [67]

include different morphological processing operators, such
as image pre-processing, region-of-interest(ROI) extraction,
stripe thinning, linear fitting, and feature extraction [62–66].
Meanwhile, the image difference is also necessary faced
with the situation of the strong arc light.

Fig. 13 The schematic diagram
of experiment system [68]

However, there are many types of weld seam in real
industrial production. The seam extraction method based
on morphological image processing is always designed
for a particular weld seam. To realize seam extraction of
different seam types, the operator of feature extraction
should be considered according to the shape feature of
different weld seams. Therefore, the algorithm flexibility
is relatively poor. Meanwhile, faced with much image
morphological processing steps, the real-time performance
of seam tracking will be affected.

In ref. [67], a seam tracking system based on the cross
mask structured light sensor was proposed. The cross mask
structured light sensor could well facilitate the calculation
process of ROI extraction. Based on the ROI area, a
modified template matching was proposed to realize feature
extraction. Aimed at the shape of V-type butt joint, three
templates were designed to get the key features of V-type
butt joints, as shown in Fig. 12a. And the proportional-
derivative (PD) controller was adopted to realize seam
tracking. Figure 12b shows the 3D profile of the V-type butt
joint. Experiments showed that the processing speed of each
welding image could up to 100.76 ms. Compared with seam
extraction based on morphology operations, the processing
speed of the proposed algorithm was greatly improved.

Aimed at seam tracking of different weld grooves, Lü
et al. investigated the relationship between the feature
points and the shapes of different weld seams, and a
feature extraction algorithm based on slope change was
proposed [68], as shown in Fig. 13. The central line of
the laser stripe could be obtained through image processing
of welding images, such as image pre-processing, ROI
extraction, direction template, and ridge line tracking. On
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Fig. 14 a KCF tracker [74]. b
CCOT tracker [73]. c STC
tracker [75]

(a)

(b)

(c)
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(a)

(b)

Fig. 15 a The framework of welding robot system. b Image processing and 3D reconstruction [46]
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the basis, the seam point could be extracted by slope
analysis. Experiment tests showed that the calculation time
of the proposed algorithm could up to 22ms and it could well
meet the requirement of real-time seam tracking. However,
the proposed algorithm is based on the shape features of
weld seams, and it realizes the feature extraction based on
the stripe shapes on the workpieces, so it has relatively poor
robustness against strong arc light.

With the fast development of machine learning and
computer vision, the tracking precision and speed of object
tracking have been greatly improved [69–72]. Based on the
good detection performance of object trackers, Zou et al.
investigated the characteristics of object trackers on welding
images and proposed a seam tracking system based on
object tracking. The object trackers were proposed to realize
feature extraction of welding images, such as continuous
convolution operator tracker (CCOT) [73], KCF tracker
[74], and spatiotemporal context tracker (STC) [75]. They
could well overcome the influence of strong arc light and
estimate the positions of seam points, as shown in Fig. 14.
Meanwhile, they showed faster processing speed than the

morphological image processing. Based on the adaptive
fuzzy controller, seam tracking of different welding grooves
could be done. Experiments showed that the tracking error
on different weld seams was less than 0.4mm. Therefore, the
object tracker has good adaptability on different work piece,
but it relies on the manual object marking of initial frame.
In general, the object tracker provides a good solution for
real-time seam tracking.

3.4 Monitoring of welding pool

The monitoring of welding pool is also a key link in the
intelligent welding robot system to keep welding quality.
Through the monitoring of welding pool, the parameters
of welding pool could be obtained, such as weld pool
width, length, area, interception area, and convexity [76–
79]. And these parameters could be used as feedback signal
of the welding controller for realize weld joint penetration
control.

To realize the intelligent welding robots, according to
the behavior of welder, a lattice structured light sensor was

Fig. 16 a The experimental
system. b Experiments of novice
welder [43]

(a)

(b)
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designed [46], as shown in Fig. 15a. The vision sensor
projected the lattice patterns to the surface of welding
pool. To acquire the distorted patterns, an image plane was
installed in front of the welding torch and a camera was
installed behind the image plane to obtain the reflected
dot matrix. Through image processing of the distorted
dot matrix, 3D reconstruction and parameter extraction of
welding pool could be done as shown in Fig. 15b. And
the Adaptive Neural Fuzzy Inference System (ANFIS) was

adopted to simulate the behavior of welders to realize the
penetration control.

In ref. [43], a multi-lines structured light sensor was
designed to investigate the behavior of the welders, as
shown in Fig. 16a. Like ref. [46], the multi-line stripes
were projected to the surface. And the camera was used to
capture the distorted stripes on the image plane. And the
parameters of welding pool could be obtained by image
processing of the distorted stripes. Meanwhile, the wire

Fig. 17 a The welding
experimental system. b
Algorithm robustness test results
of welding current change

(a)

(b)
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inertial measuring unit (IMU) sensor was installed in the
welder to record the pose of welding torch. On the basis, an
improved Unscented Kalman Filter (UKF) algorithm was
proposed to remove the noise of IMU sensor. Figure 16
b shows the welding experiment data of novice welder,
such as IMU data, the parameters of welding pool, and
the top and backside appearance of weld beads. Through
the statistics and analysis of the behavior of welders with
different welding levels, the welding experience of welder
could be obtained and it could be well used to serve the
research work of the intelligent welding robot and guide the
training of new welders.

During the real welding, to keep welding quality, the
welders have better robustness on some changes of welding
process than machine algorithms. However, the machine
algorithms have better response speed than welders. To
improve the intelligence of welding robots, the machine
algorithms and human intelligence were fused [80]. A
lattice structured light sensor was designed and installed

in the end of Universal Robot UR-5. Meanwhile, a virtual
welding torch was designed to realize augmented reality
(AR) welding, as shown in Fig. 17a. The auto regression
moving average model, ANFIS model, and iterative local
ANFIS model were separately used to model the super
welder, AR welder, and NoAR welder. Faced with different
welding situations, the super welder, AR welder, and
NoAR welder separately showed different performance
on welding. To obtain the better weld beads, the fuzzy
weighting–based fusing algorithm was proposed to fuse
these three models. Figure 17b shows the robustness test
results of welding current change. Experiments showed that
the proposed algorithm could acquire better robustness on
welding current change and input noise.

In ref. [81, 82], a frequency-based method was proposed
to monitor of welding pool. Unlike other research work, the
frequency characteristics of welding pool were investigated.
To perceive the whole welding pool, a welding robot
system based on laser structured light sensor was designed

Fig. 18 a The experimental
system. b, c The relationship
between frequency and different
penetration status [81]

(a)

(b)

(c)

X

Z

O
Y
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(a) (b)

(c) (d)

Fig. 19 The 3D profile of weld bead with different welding quality. a, c Defect-free multi-layer welds. b, d Multi-layer welds with defects

as shown in Fig. 18a. The frequency value could be
obtained through the combination of image processing
and fast Fourier transformation (FFT). Through much

experiment verification, the relationship between frequency
and penetration status of welding pool could be set up,
such as full penetration, partial penetration, and critical

(a)

(c)

(b)

Fig. 20 a Point cloud of weld bead. b Typical parameters of weld bead. c Measurement results of weld bead [86]
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penetration. Figure 18b and c separately show the frequency
ranges of partial penetration and full penetration. According
to the frequency value, the penetration status could be
obtained and it also could be used for penetration control.
To get the frequency characteristics of welding pool, the
proposed algorithm relies on the image processing of
sequence welding images, so it is not suitable for the
real-time monitoring of welding pool.

3.5Welding quality detection

Welding quality not only affects the appearance of different
products but also affects the strength of the weld beads. Bad
welding quality even will bring some potential dangers to

safe production [83, 84]. Therefore, it is necessary to realize
welding quality detection for the safe production.

During the real welding process, some parameters are
necessary for welding quality controlling and detection,
such as bead width, filling depth, and groove width.
In ref. [85], a measurement and detection method of
welding defect was proposed based on the laser structured
light sensor. Combined with the vision sensor and vision
model, the 3D profile of weld beads could be acquired.
Figure 19 shows the 3D reconstruction results of weld beads
with different welding quality. Based on the geometric
models of weld beads, some key parameters could be
extracted, such as bead width, filling depth, and groove
width.

Fig. 21 a The special procedure
of the proposed algorithm. b
The segmentation of weld bead.
c Depth map of weld bead [87]

(a)

(b)

(c)
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Chu et al. proposed a post-welding quality detection
method based on laser structured light sensor [86]. The laser
structured light sensor was used to scan the weld bead to
get the point cloud of weld bead, as shown in Fig. 20a.
A mathematical model of weld bead was established as
shown in Fig. 20b. It was compose by some key parameters,
such as weld width, reinforcement, undercut, and plate
displacement. Figure 20c shows the curves of different
parameters of weld bead. It could well serve the on-line
welding defect detection, such as plate displacement and
undercut.

In ref. [87], a low-cost inspection method for weld beads
based on the structured light sensor was proposed, as shown
in Fig. 21a. The structured light sensor was used to scan the
whole welding work piece to get the 3D point cloud. On the
basis, the point cloud segmentation of welding work piece
was proposed to realize the bead separation from the point
cloud, as shown in Fig. 21b. It could well remove other parts
and focus on the processing of weld beads. According to the
results of point cloud segmentation, the depth map could be
obtained which could be used for fast qualitative evaluation
of weld beads.

4 Discussion

This paper reviews the advanced structured light sensors
in the intelligent welding robots. Faced with the complex
welding environment, there is no mature fully intelligent
welding robot system according to our present knowledge.
In the current research work, researchers are always aimed
at the special one or more problems of in intelligent welding
system to carry out their research work. Therefore, the
major contribution of this paper reviews the latest research
work of the structured light sensors in these key issues of
intelligent welding robots, such as initial point guidance,
seam tracking, parameter extraction, monitoring of welding
pool, and welding quality detection.

Faced with the much experiment platforms by different
researchers, due to the differences of the robot platforms,
experiment conditions, vision sensors, camera products,
calibration precision, etc, there is not any effective tool
to fairly evaluate and compare the performance of these
systems or methods. Therefore, this paper only reviews
the proposed algorithms or the designed structured light
sensors.

5 Conclusion

In this paper, a detailed review about the advances
techniques of the structured light sensing in the intelligent
welding robots has been presented. This paper has tried

to provide a comprehensive study about the structured
light sensing in the intelligent welding robots to present
a valuable reference for researchers engaged in related
research work.

During much research work, except for the structured
light sensors, researchers have also proposed and designed
other different sensors to adapt to complex welding
environment and overcome the influence of strong arc light,
metallurgy, heat transfer, chemical reaction, arc physics, and
deformation, such as passive vision sensors, time of flight
(TOF) sensors, arc sensors, sound sensors, and magneto-
optical sensors. This paper only reviews the structured
light vision techniques in welding robots. In the future, a
more comprehensive study about the sensing techniques in
intelligent welding robots will be done.
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