
ORIGINAL ARTICLE

Theoretical study on the effects of the axial and radial runout
and tool corner radius on surface roughness in slot
micromilling process

Tao Wang1,2
& Xiaoyu Wu1

& Guoqing Zhang1
& Bin Xu1

& Yinghua Chen1
& Shuangchen Ruan2

Received: 2 February 2020 /Accepted: 15 May 2020
# Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
This paper presented a theoretical study on the effects of the axial and radial runout and tool corner radius on surface roughness in
the slot micromilling process. Firstly, the actual feed rate was calculated based on the optimized model for the uncut chip
thickness. Then, the milled morphologies in five typical cases are analyzed, and the details of the flowchart for the modeling
process are drawn, and the corresponding surface morphology and surface roughness are presented. Next, the effects of radial
runout offset and angle, axial offset, and tool corner radius on surface roughness were studied. Furthermore, three typical surface
morphologies, i.e., a single cutting phenomenon, unbalanced cutting phenomena due to the radial runout and axial runout, were
obtained from the slot micromilling experiment, which could verify the validity of the model indirectly. In the end, the
approaches for improving the predicting accuracy were discussed. The findings could provide a better understanding of the
surface formation process during slot micromilling process.

Keywords Micromilling . Runout . Surfacemorphology . Surface roughness . Uncut chip thickness

Abbreviation
R1 The rotational radius of tooth 1 (μm)
R2 The rotational radius of tooth 2 (μm)
R The nominal radius of the milling tool (μm)
r0 The radial runout offset (μm)
λ The radial runout angle
K The number of the flutes
k The flute number
n The spindle velocity (rev/min)
ft The feed rate (μm/z)
t Time (s)
h1 Uncut chip thickness of the Nie’s model (μm)
h2 Uncut chip thickness of the Bao’s model (μm)

h3 Uncut chip thickness of the Wan’s model (μm)
φi Cutter rotation angle (rad)
m The current tooth i is removing the material

left by the mth previous tooth
Ri,j(z) Actual cutting radii of the jth axial disk element

of the ith flute at z (μm)
ha Actual feed rate (μm/z)

1 Introduction

Due to its wide material choices, low cost, 3D microgeometry
machining capability, and high accuracy, the slot
micromilling is recognized as one of the most versatile ma-
chining techniques to fabricate microcomponents and
microfeatures [1–3]. Predicting surface morphology of a
milled surface could help engineers to choose appropriate in-
puts, e.g., milling parameters, and tool geometry, before the
actual experiment, which draws great attention in both the
academic and industrial fields in recent decades [4]. Ideally,
the surface profile of the milled workpiece is generated by the
repetition of the milling tool-tip geometry at the spatial inter-
val of the feed. However, the ideal pattern could be compro-
mised by many factors in the actual milling process, among
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which the radial and axial runout and tool corner radius are
significant items. In order to achieve the required surface
roughness, a comprehensive understanding of the factors that
influence surface roughness is essential.

Some empirical approaches are utilized to predict the sur-
face roughness, which could achieve a satisfactory accuracy.
Based on the experimental results, Singh et al. [5] studied the
influence of cutting conditions and tool geometries on the
finished surface roughness during hard turning of the bearing
steel and established a model for predicting surface roughness
by response surface methodology (RSM). Palanikumar et al.
[6] used Taguchi method and RSM to model the surface
roughness in machining the glass fiber-enforced plastics.
Wang et al. [7] used the RSM to predict the surface roughness
in high-speed milling of Al/SiC/65p. However, one disadvan-
tage in using empirical approaches is that the predicted surface
roughness depends heavily on the process parameters, which
can be easily affected by the random errors. Besides, it is hard
to provide explicit analysis based on the empirical model [8].

To avoid the weakness of empirical method, it is important
to understand the surface generation mechanism in
micromachining. Rahman et al. [9] proposed a mathematical
model for the material removal mechanism with relation to
edge radius effect. The model was able to capture the trend
of the change of surface generation mechanism from shearing
to extrusion to plowing and rubbing. The corresponding or-
thogonal cutting experiments were conducted for the valida-
tion of the results. Then, many theoretical approaches have
been explored in predicting surface roughness in turning pro-
cess. Based on analyzing the effect of both the relative vibra-
tion and the swelling, Chen and Zhao [10] proposed a model
to predict surface roughness Ra in single-point diamond turn-
ing (SPDT) based on analyzing both the relative vibration and
the swelling effect. Lee and Cheung [11] established a dynam-
ic surface topography model to predict the material-induced
vibration and its effect on the surface generation in SPDT.
Wang et al. [12] proposed a geometric model with the effect
of tool-tip vibration to identify the dominant factors in the
calculation of nanometric surface roughness. The tool-tip vi-
bration and the process damping effect are regarded as the
prime influences on surface roughness. Liu et al. [13] built a
model for predicting the surface roughness in microturning of
Al5083-H116 alloy, which consider the effects of tool geom-
etry, plastic side flow, and process parameters. They found
that the discrepancy between the measured and theoretical
surface roughness in microturning could be mainly attributed
to the surface roughening caused by plastic side flow. Zong
et al. [14] established a comprehensive model to predict the
surface roughness achieved by single-point diamond turning;
the model considered the effects of the plastic side flow, the
minimum uncut chip thickness, and the material elastic recov-
ery and swelling. From the theoretical models above, the main
influential factors of the turned surface roughness include the

material crystallographic orientation, the material elastic re-
covery and swelling, machining parameters, tool geometry,
and the minimum uncut chip thickness.

Although the theoretical methods for predicting surface
roughness have been explored comprehensively, the majority
of the above reporters focused on the study of the surface
roughness in turning process. In the micromilling process,
Wojciechowski et al. [15] found that the chip thickness accu-
mulation, the kinematics, radial runout, elastic and plastic de-
formations of workpiece correlated with the minimum uncut
chip thickness, and flexibility of the slender microend mill
could all influence the milling process. As for size effect,
Oliveira et al. [16] studied it in different milling scales by
analyzing the behavior of the specific cutting force when vary-
ing feed per tooth and depth of cut. The results indicated that
any MCT varied between 1/4 and 1/3 of the tool edge radius,
regardless of the workpiece material. The majority of the pub-
lished papers about the influence of the runout in the
micromilling process focused on the runout measuring meth-
od [17–19] and the influence of the runout on themicromilling
force [20, 21]. Recently, some researchers studied the influ-
ence of runout on surface morphology and roughness in the
micromilling process. Sun et al. [22] established a 2D model
of surface generation in micromilling process based on the
minimum cutting thickness and cutter geometry, but the influ-
ence of runout is omitted. Li et al. [23] established a surface
roughness model based on tool wear, minimum chip thick-
ness, and microtool geometry in micromilling process, which
is verified with experimental results. The influence of runout
was neglected either. Kim et al. [24] built a surface prediction
numerical model for microend milling which included the
non-dynamic errors of microend milling such as tool geomet-
ric and set-up errors (tool eccentricity, tilted edge part, and
tool runout). Although the predicted results had a very similar
variation trend with the experimental results, the huge gap was
observed between the predicted and experimental results.
Chen et al. [25] proposed a surface generation model for
microend milling process, in which the effect of the minimum
chip thickness (MCT) and tool runout is considered. The re-
sults indicated that the model with MCT and tool runout has a
high prediction accuracy over a wide range of feed rates, but
the radial runout is simplified as r·(− 1)i + 1. Chen et al. [26]
presented a surface generation simulation in microend milling
considering both axial and radial tool runout. They found that
the axial runout has a significant influence on the surface
topography generation. The model was used to predict the
single tooth cutting phenomenon successfully. However, the
influence of axial and radial runout on surface roughness is
not investigated in the paper. Besides, the influence of the
radial runout angle is neglected. As for the influence of the
tilt angle of the spindle on the generated surface roughness
and morphology, Aurich et al. [27] studied them based on
kinematic simulations and experiments in micromilling

Int J Adv Manuf Technol (2020) 108:1931–19441932



process.When a tilted spindle was set, C- or D-tracks could be
generated, thereby increasing surface roughness. Besides, burr
formation could be minimized by choosing appropriate tilt
angles of the main spindle.

As been mentioned above, the majority of the reported
surface models mainly consider the influence of the radial
runout, the minimum chip thickness, tool geometry, and feed
rate on the surface profile. However, to the best of the authors’
knowledge, incorporating the effect of both axial and radial
runout (offset and angle) and the tool radius on the milled
surface morphology and roughness in the slot micromilling
process has rarely been explored in the literature before. The
purpose of the paper is to demonstrate the relationship be-
tween the radial and axial runout and tool corner radius on
surface morphology and surface roughness. It could provide
guidance for choosing the appropriate parameters in the slot
micromilling process. The simulation in the paper is based on
purely kinematic modeling which does not consider any ma-
terial properties.

2 Modeling process

2.1 The runout model

Runout of the cutting tool is a common phenomenon in the
slot micromilling process. The radial runout is generated when
the microtool center deviates from the spindle axis due to the

eccentricity of the tool-holder-spindle assembly. It can lead to
the difference in the rotational radiuses of each tool flute. The
radial runout can be defined by a runout offset r0 and a runout
angle λ [17], as shown in Fig. 1a. O is the rotational center of
the holder-spindle axis, and O′ is the microtool center.

Based on the geometric relationship, the rotational radiuses
of tooth 1 and tooth 2 can be calculated by the formula as
below:

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r20−2Rr0cos π−λð Þ

q

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r20−2Rr0cos λð Þ

q
8<
: ð1Þ

The calculated R1 and R2 under different radial runout off-
sets and angles are shown in Fig. 1 b and c, respectively.R is set
as 497.56 μmThe R1 is larger than R2 as the radial runout angle
is below 90°, while the scenario reverses when the radial runout
angle increases over 90°. The gap between the two radiuses is
shown in Fig. 1d. The absolute maximum value occurs at
runout offset 5 μm and runout angle 0 or 180°. Besides, when
the runout angle is 90°, the difference reduces to 0.

When axial runout occurs, one tooth touches the workpiece
more than the other during the slot micromilling process,
thereby wearing more quickly. It is usually generated when
the tool tilts to the spindle axis due to the error in the tool-
holder-spindle assembly. Besides, the different tool wear con-
ditions can lead to the axial runout as well. It has a significant
influence on the formation process of surface morphology
[26]. The axial runout offset is defined as ra in the paper.
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Fig. 1 The analysis of the radial
runout phenomenon for a two-
tooth milling tool. a The
schematic diagram of the radial
runout. b The influence of runout
offset and angle on the high tooth
radius R1. c The influence of
runout offset and angle on the low
tooth radius R2. d The influence
of runout offset and angle on the
difference between R1 and R2
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2.2 The calculation of the actual feed rate

Obtaining the actual feed rate is the foundation for modeling
surface morphology. The trajectory of the kth tool tip in the
slot micromilling can be given as

x ¼ nKf t=60þ Rsin 2πnt=60−2πk=Kð Þ þ r0sin 2πnt=60þ λð Þ
y ¼ Rcos 2πnt=60−2πk=Kð Þ þ r0cos 2πnt=60þ λð Þ

�

ð2Þ
where ft is the feed rate (μm/z), n is the spindle velocity (rev/
min), t is time (s), k is the flute number,K is the number of flutes,
r0 is the runout length (mm), and λ is the runout angle (rad).

Correspondingly, the trajectory of the two tool tips in slot
micromilling process can be drawn in Fig. 2. The feed rate is
set large to demonstrate the trajectory clearly.

According to the literature, three general models for calcu-
lating the uncut chip thickness in the cylindrical end milling
process are listed as below:

1. Nie’s model [28]

h1 ¼ f t 1−
δ
π

� �
sinφi þ 2r0 cosλ−r0δ sinλþ R

δ2

2
ð3Þ

where

δ ¼ f tcosφi þ 2r0sinλ
R

ð4Þ

2. Bao’s model [29]

h2 ¼ f t 1þ −1ð Þk 2r0
πR

sin λ

� �
sin θ−

1

πR
f 2t sin θ cos θ

þ 1

2r
f 2t cos

2 θ− −1ð Þz2r0 cos λ ð5Þ

3. Wan’s model [30]

h3 ¼ min
N

m¼1
mf sinθi;1 φkð Þ þ Rr

i;1 zð Þ−Rr
i−m;1 zð Þ

n o
ð6Þ

where

Ri; j zð Þ ¼ R zð Þ þ r0 cos λ−2 i−1ð Þπ=N½ � ð7Þ

In themeantime, a numerical calculationmethod is proposed
in [3] based on the Newton–Raphson (N-R) iterative method.
The depths of cut calculated by the four models at different
rotation angle is shown in Fig. 3. Generally, the predicted
depths by the four models are consistent. Assuming the depth
hN-R predicted by the numerical calculation method is more
accurate, it is set as the benchmark. The enlarged image of
Zone A and Zone B, as shown in Fig. 3a and c, demonstrates
that the depth predicted by Bao’s model located on the line of
the N-R method, while the other two results deviate from the
curve of the N-R method. Besides, the relative errors of the top
three models from the benchmark are shown in Fig. 4. The
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results indicate that the relative errors of the top three models
are negligible at the majority of rotation angle range except for

the area around (n − 1)180° (n = 1, 2, 3 ….). Among the three
models, the error of Bao’s model is the minimum.
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Therefore, the Bao’s model is utilized to predict the uncut
chip thickness in the paper. Since all the channel in the study is
generated by the full-immersion slot micromilling process, the
actual feed rate at the centerline of the bottom channel can be
calculated at rotation angle θ = pi/2 + (n − 1)*pi (n = 1, 2,
3….). According to Eq. (4), the actual feed rate is formulated
as below:

ha ¼ f t þ −1ð Þz2r0 sinλ
πR

f t−cosλ
� �

ð8Þ

2.3 The modeling process of the micromilled surface
morphology

Under different runout conditions, the surface morphologies
generated by the tool cutting edge in one rotation circle are
shown in Fig. 5. Generally, the morphology can be classified
based on the intersection point location. If cutting edge T1
does not intersect with T2 after one feed distance, single-
tooth cutting phenomenon occurs, as shown in Fig. 5a and
b. Afterward, if the intersection point between T1 and T1′
locates on the arc AB, it is defined as case 1; otherwise, it is
defined as case 2. If cutting edge T1 intersects with T2, based
on the location of the intersection point, it can be classified
into other three cases as shown in Fig. 5c, d, and e, respec-
tively. The details of the surface morphology modeling pro-
cess are shown in Figs. 6 and 7.

Figure 8 demonstrates the predicted surface morphologies
of the five cases. The left image is macrochannel morphology
generated in the milling process. To provide a clear image of a
local region, an area in the channel center is enlarged as shown
in middle. The corresponding profiles can be extracted from
the 3D model, and the surface roughness can be calculated
based on the data of the profiles. According to Fig. 8, the
established model has a good capability to predict surface
morphology and surface roughness.

3 The results from the established model

3.1 Influence of radial runout offset and angle

Based on the measurement results from [3, 20, 22] in the slot
micromilling process, the runout value r0 is usually from 1 to
3 μm, and it is set as the range of the radial runout length in
this section. The radial runout offset is set as r0 = 0:0.2:3, and
the radial runout angle is set as λ = 0:5°:180°. The established
model is utilized to calculate the surface roughness under 528
runout conditions. The results are fitted linearly, and the cor-
responding contour is shown in Fig. 9. The maximum rough-
ness occurs at the top right and bottom right corner, and the
image is symmetric along the horizontal line at runout angle

90°. The surface roughness increases with the radial runout
offset. The surface roughness decreases with the increase of
runout angle when the runout angle is below 90°, while the
scenario reverses when the runout angle is above 90°.

3.2 Influence of axial runout

The influence of axial runout on surface roughness is shown in
Fig. 10. In Fig. 10a, the surface roughness is predicted under
different combinations of ra = [0:0.1:0.7] μm and
r0 = [0:0.2:3] μm, and then the results are fitted linearly to
form the contour. It is interesting to find that surface rough-
ness increases with the radial runout offset and axial offset.
However, in the upper right corner filled with yellow, the

Fig. 6 The flowchart 1–1 of the surface morphology modeling process
for the single-tooth cutting phenomenon (The whole process is consisted
of three parts: setting initial conditions, calculating the coordinates of
intersection points, and calculating the surface roughness)
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influence of the radial runout offset and axial offset on surface
roughness vanishes. To explore the reason, the corresponding
surface profiles under the five colorful points are drawn in
Fig. 11a. When the radial runout offset is below 2 μm, the
two-tooth cutting phenomenon occurs in one rotation cycle,
while as it increases to 2 μm and 2.5 μm, the single-tooth
cutting phenomenon happens in one rotation cycle.
Therefore, under the single-tooth cutting scenario, the influ-
ence of the radial runout offset and axial offset can be
neglected.

In Fig. 10b, the surface roughness is predicted under dif-
f e ren t combina t ions of r a = [0 :0 .1 :0 .7] μm and
λ = [0:20°:180°], and then the results are fitted linearly to form
the contour. The minimum surface roughness is around the
zone with a low axial runout offset and a 90° radial runout
angle. The surface roughness increases with the axial runout
offset as well. At the upper left corner filled with yellow, the

influence of the radial runout angle and axial offset on surface
roughness vanishes. It can also be attributed to the occurrence
of a single-tooth cutting phenomenon. The corresponding sur-
face profiles under the colorful point conditions are shown in
Fig. 11b.

3.3 Influence of tool corner radius

The influence of the corner radius on surface roughness is
shown in Fig. 12. In Fig. 12a, the surface roughness is pre-
dicted under different combinations of rc = [1.35, 5, 10, 15,
20] μm and r0 = [0:0.5:3] μm, and then the results are fitted
linearly to form the contour. The maximum surface roughness
zone is at the bottom right corner, which means that the small-
er corner radius and larger radial runout offset can get higher
surface roughness. The surface profiles under the five colorful
points are shown in Fig. 13a. It can be observed that the larger

Fig. 7 The flowchart 1–2 of the
surface morphology modeling
process for the two-teeth cutting
phenomenon
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corner radius can reduce the height of the peak to valley,
thereby reducing the surface roughness.

In Fig. 12b, the surface roughness is predicted under
different combinations of ra = [0:0.1:0.7] μm and r-
c = [1.35,5,10,15,20] μm, and then the results are fitted
linearly to form the contour. When the axial runout offset
is below 0.2 μm, the trend is similar to that in Fig. 12a,
and the maximum surface roughness is at the bottom right
corner. The surface roughness increase with the increase
of the axial runout offset and the decrease of the corner
radius. When the axial runout offset is above 0.2 μm, the
influence of the axial runout offset vanishes. The corre-
sponding surface profiles under the five colorful points
are drawn as shown in Fig. 13b. It indicates that when
the axial runout offset is above 0.2 μm, the single cutting
phenomenon occurs, and the influence of the axial runout
offset can be neglected, and the surface roughness only
decreases with the increase of the corner radius.
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4 Experimental morphology verification

Due to that the lack of the measuring instruments for the radial
and axial runout are in the lab currently, the actual compari-
sons of surface roughness between the experimental and pre-
dicted results are not presented in the paper. However, the slot
micromilling surface morphology generated in the experiment
clearly demonstrated that the variation in the surface profile
cannot only be attributed to the feed marks. Three typical
phenomena are found, which could be explained by the
established model, thereby verifying the model indirectly.

4.1 Experimental setup

The slot micromilling tests are conducted on the DMU CNC
machining center, and the setup is shown in Fig. 14a. In order
to avoid the occurrence of the chatter, the axial depth of cut is
set to be below 50 μm [31]; therefore, the influence of chatter
is neglected. To minimize the deflection effect, the distance to
the tool tip from the tool-holder (overhang length) was fixed at
20 mm during the experiments [32]. The workpiece is Zr-
based bulk metallic glass (Zr41.2Ti13.8Cu12.5Ni10Be22.5), pro-
vided by Tongji University. The cemented carbide milling
tools coated with TiAlN and CrN provided by NT Tool. The

tool diameter is 995.12 μm, and rake angle and helix angle are
12° and 30°, respectively. The cutting edge radius re and nose
radius rc is 2.56 μm and 1.35 μm, respectively. The morphol-
ogy of the tool is shown in Fig. 14b–d. The 3D pseudo photo
and profiles of the milled surfaces were detected by a profiler
(Contour GT-X white light interferometer, Bruker).

4.2 Surface morphology from the milled surface in
slot micromilling experiment

Different slot micromilling tests were conducted, and three
typical milled surface morphologies were picked, as shown
in Fig. 15, 16, and 17. Figure 15 demonstrates a single cutting
phenomenon. The feed rate is 1.5 μm/z, while the pitch of the
profile is close to 3 μm. Neglecting the influence of axial
runout, Li et al. [20] proposed a criterion for the single tooth
cutting phenomenon as below:

ε ¼ f t− 2r0 cos λj j ð9Þ
when ε < 0, the single-tooth cutting phenomenon occurs.

From the results in Fig. 10, even the radial runout param-
eters can guarantee ε > 0, if the axial runout varies, the single-
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tooth cutting phenomenon can occur as well. Therefore, con-
sidering the influence of axial and radial runout simultaneous-
ly, based on the geometry relationship (Fig. 5) and the flow-
chart (Fig. 6), a more comprehensive criterion is proposed as
below:

εN ¼ yD−yG ¼ ra−tan α⋅ f t þ 2r0⋅
sin λ⋅ f t
πR

−cosλ
� �� �

ð10Þ

when εN > 0, single-tooth cutting phenomenon occurs. To
make sure if the single-tooth cutting phenomenon is merely
generated by radial runout or by both axial and radial runout,
the corresponding runout parameters should be obtained in
advance.

The unbalanced cutting phenomena due to the radial runout
and axial runout are demonstrated in Figs. 16 and 17, respec-
tively. The formationmechanism can both be explained by the
established model in the paper, which indirectly verifies the
validity of the model successfully.

5 Discussion

It is worth pointing out that the surface roughness calculated in
the paper is the ideal value, and it is assuming that the work-
piece experiences pure plastic deformation in the slot
micromilling process. In reality, there are many factors
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influencing the fidelity of the tool profile transferring to the
micromilled surface.

According to the literature, the main influential factors are
demonstrated in Fig. 18. Set initial conditions: fz = 8 μm, rc =
5 μm, α = 5°, the predicted surface profile is shown in
Fig. 18a. It is formed by duplicating the cutting edge on a
fixed feed rate. When the radial runout (assuming r0 = 2 μm,
λ = 30°) occurs, a high feed rate and a low feed rate cut the
surface alternatively, and the formed profile is shown in
Fig. 18b. If the axial runout (assuming ra = 0.2 μm) exists at
the same time, the cutting depth varies for the two teeth, and
the formed profile is shown in Fig. 18c. Furthermore, if the
corner radius increases to 15 μm, the formed profile is shown
in Fig. 18d. The predicted roughnesses by the established
model indicate that the occurrences of the radial and axial

runout increase the surface roughness, while the increase of
the corner radius reduces the surface roughness. The influence
of the large tool nose radius on surface roughness is verified
by Chou et al. [33], who conducted a series of finish turning
experiments on the hardened steel.

Except for the influence of radial and axial runout, and
the corner radius, as discussed in previous sections, the
effects of elastic recovery and swelling, MCT, the wavi-
ness of tool cutting edge, and the vibration all play signif-
icant roles in the formation process of the surface profile.
In terms of the elastic recovery and swelling, as shown in
Fig. 18e, the actual surface profile is formed after the ma-
terial swelling and elastic recovery. To et al. [34], Liu et al.
[13], and Sata et al. [35] all demonstrated that the swelling
effect could increase the surface roughness since the
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swelling increases the height of the peaks. After the elastic
recovery, the variance of the surface roughness depends on
the amount of recovery, which is decided by the material
properties and forces on the flank face [36]. If the swelling
effect is overwhelmed by the effect of material recovery,
the surface roughness could decrease [37].

In terms ofMCT, since a critical uncut chip thickness exists
in the cutting process, under which the material cannot be cut
down, thereby leaving on the milled surface and increasing the
surface roughness [25]. The typical surfaces formed with and
without the effect of MCT are shown in Fig. 18f. As for the
waviness of the tool cutting edge, it is usually neglected in the
modeling process; however, due to the limitation of the cut-
ting tool fabrication technologies and material properties, the
occurrence of tool edge waviness is inevitable [8], as shown in
Fig. 18g. Especially, when there is tool wear on the cutting
edge, the waviness is supposed to increase dramatically,
which will duplicate on the machined surface in the milling
process, and influence the surface morphology. As for the
vibration during the slot micromilling process, the phenome-
non could be caused by cutting across grains [38] or cutting
the hard trapped phase and soft basal body alternatively [33],
as shown in Fig. 18h. Besides, based on the results from single
point diamond turning tests, Tauhiduzzaman et al. [39] found
that the grain boundary density also influences the surface
roughness. To sum up, in order to obtain a more accurate

surface morphology, the more influential factors should be
considered in the model.

6 Conclusions

This work aims to reveal the influence of the radial and axial
runout and tool corner radius on the slot micromilling process.
The main conclusions can be drawn as follows:

1. In terms of the model for predicting uncut chip thickness,
the results of Nie’s, Bao’s, and Wan’s model were com-
pared with the result of a numerical calculation method
based on the Newton–Raphson (N-R) iterative method.
The results indicated that Bao’s model had the best accu-
racy among the three models, which was used to calculate
the actual feed rate in the surface morphology modeling.

2. For the influence of r0 and λ, the surface roughness in-
creased with the radial runout offset. The surface rough-
ness decreased with the increase of runout angle when the
runout angle was below 90°, while the scenario reversed
when the runout angle is above 90°.

3. For the influence of ra and r0, the surface roughness in-
creased with the radial runout offset and axial offset. For
the influence of ra and λ, the minimum surface roughness
was around the zone with a low axial runout offset and a
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90° radial runout angle. Yellow areas on both contours
were not influenced by the runout parameters. The results
of the 2D profile analysis indicated that a single tooth
cutting phenomenon occurred at those zones.

4. For the influence of r0 and rc, the smaller corner radius
and larger radial runout offset could obtain higher surface
roughness. For the influence of ra and rc, the surface
roughness increased with the increase of the axial runout
offset and the decrease of the corner radius. When the
axial runout offset was above 0.2 μm, the influence of
axial runout offset vanished, which could also be attribut-
ed to the occurrence of a single-tooth cutting
phenomenon.

5. From the micromilled surface in the experiment, three
typical surface morphologies, i.e., a single cutting phe-
nomenon, unbalanced cutting phenomena due to the radi-
al runout and axial runout, are obtained, which could be
successfully explained by the established model. Besides,
a new single-tooth cutting criterion was proposed, which
could consider the influence of radial and axial runout
simultaneously.
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