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Abstract
Due to the poor rigidity of thin-walled parts, vibration (chatter) is extremely easy to occur during the cutting process, affecting the
precision, surface quality, and efficiency of part processing. The chatter in milling thin-walled workpieces becomes a more
complex, nonlinear, and unstable signal as the dynamics of thin-walled workpieces change with time and position. To realize
chatter detection, a method using ensemble empirical mode decomposition (EEMD) and nonlinear dimensionless indicators is
proposed in this paper. Firstly, the EEMD is adopted to decompose the raw signal because it is suited for nonlinear and
nonstationary signal. Subsequently, the correlation analysis is used to obtain chatter-related intrinsic mode function (IMF)
components. When chatter occurs in the milling, time series complexity is changed and energy is transferred to the chatter
bands. Therefore, the nonlinear sample entropy (SE) and energy entropy (EE) of IMFs can be extracted as two indicators. Then,
principal component analysis (PCA) is adopted to further reduce the feature vector dimension. After that, an improved support
vector machine (SVM) is developed to identify the chatter. Among them, genetic algorithm (GA) and grid explore (GE) are used
to explore the best parameters of the SVM. In addition, off-line chatter prediction is employed to determine the cutting status
under different machining parameters used in the experiments. At last, the cutting force signals are performed to verify the
proposed method. The results show the proposed method using SE and EE can effectively detect the chatter, which provides an
option for chatter detection.
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Nomenclature
SE Sample entropy
EE Energy entropy
EMD Empirical mode decomposition
EEMD Ensemble empirical mode decomposition
IMF Intrinsic mode function
PCA Principal component analysis
GA Genetic algorithm
GE Grid explore
SVM Support vector machine
IM Intelligent manufacturing
AI Artificial intelligence
ANN Artificial neural network

SLD Stability lobe diagram
KF Kernel function
RBKF Radial basis KF
Ri Energy of IMFs
Ei EE of IMFs
λ1, λ2 The SE, EE, of n IMFs
γ The threshold for selecting the related IMFs
ρi The eigenvalues of principal components
x(t) The original signal
ni(t) The ith white noise
xi(t) The new signal with noise
xi, xj The samples or vectors
σ The width of KF
c Penalty factor
g Core parameter
ri(t) The residual at the ith trial
x0, x1, x2 Sinusoidal signals, sinusoidal low frequency,

discontinuity high frequency
x, y Two directions of machine tool
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Kt, Kr Tangential cutting force coefficient, radial
cutting force coefficient

x(1), x(2), ⋯,
x(N)

A N point time series

Xm(i) A m dimension vector
d [ X m ( i ) ,
Xm(j)]

The distance between Xm(i) and Xm(j)

r Tolerance
Ai The number of d[Xm(i),Xm(j)] ≤ r
Bm
i rð Þ;Bm rð Þ The ratio of Ai to N −m + 1, the average of

Bm
i rð Þ

S a m p E n (m ,
r)

The theoretical SE of the time series

SampEn(m , r ,
N)

The estimated value of the SE

u 1 ( t ) , u 2 ( t ) ,
⋯un(t)

The frequency bands (IMFs)

Ti The percentage that energy of IMF counts for
the whole signal’s energy R

μi Correlation coefficients
vi The contribution rate of the ith principal

component
Q The contribution rate of the previous kth prin-

cipal components
m The number of ensample
cij The jth IMF at the ith trial (EMD)
cj The jth IMF by EEMD
I The number of IMFs of each trial

1 Introduction

High-precision and high-efficiency are the goals pursued by
modern manufacturing industry; however, chatter duringmill-
ing severely reduces the surface quality and processing effi-
ciency. Chatter is mainly divided into regenerative chatter and
mode coupling chatter according to the mechanism. Among
them, the regenerative chatter is widely studied by most
scholars due to the fact that it occurs before mode coupling
chatter [1]. The regenerative chatter-related articles mainly
focus on chatter prediction [2, 3], chatter identification [4,
5], and chatter control [6]. Chatter prediction can offer suitable
machining parameters to avoid chatter; however, chatter-free
machining is difficult to realize due to time dependence and
uncertainties in the dynamic characteristics of the flexible
workpiece [7]. Instead, chatter identification and control are
verified to be reliable. Therefore, chatter identification and
control receive more and more attentions in academic area to
monitor chatter as shown in Fig. 1. Chatter identification is a
technology to diagnose chatter in time or in advance by ap-
plying signal processing methods to the measured signals dur-
ing processing. The specific process majorly includes signal
acquisition, feature extraction, and pattern recognition.

The signals must be first collected, including the cutting
force signal [8], acceleration signal [9, 10], displacement sig-
nal [11, 12], and acoustic emission signal [13, 14]. Except the
abovementioned signals, some signals from built-in machine
tools like motor current are used to monitor the chatter. But
Aslan and Altintas [15] pointed out the effects of structural
dynamic modes of the spindle should be compensated via a
proposed observer. Luo et al. [16] presented an instrumented
wireless milling cutter system with embedded thin-film sen-
sors in each cutting inserts; thus, the cutting forces acting on
each cutting edge could be measured without reducing the
stiffness and dynamic characteristics of the machining system.
Axinte et al. [17] experimentally verified that the cutting force
was more sensitive to chatter than acoustic emission and vi-
bration signal. Hence, the force signal is chosen in this work.

After collecting the data, it is necessary to perform feature
extraction on the original signal to obtain the flutter index. At
present, there are time-domain methods, frequency-domain
methods, and time-frequency methods in chatter feature ex-
traction methods [18]. Among them, only time-frequency
methods can simultaneously locate time and frequency.
Time-frequencymethods include short-time Fourier transform
(STFT), wavelet (WV) analysis, and ensemble empirical
mode decomposition (EEMD). Among them, the STFT is
developed based on Fourier transform and it is not applicable
for nonstationary signals. As for WV, how to choose the
wavelet base function and decomposition level reasonably
has been an open question. The EEMD has been extensively
employed in chatter detection [19, 20] because the EEMD is a
self-adaptive analysis method for nonlinear and nonstationary
signals [21].

Apart from this, some nonlinear dimensionless indicators
can be applied to chatter detection, such as approximate en-
tropy (AE) [22], sample entropy (SE) [23], and energy entropy
(EE) [24, 25]. Among them, Canales [22] proposed a chatter
identification method using the AE index. The article stated
that the AE can estimate randomness content in chattering
signals. Yang et al. [23] presented AE and SE to detect the
onset of chatter. But compared with AE, SE is more consistent
and has less reliance on data length in measuring time series
complexity as SE performs some transformations on some
steps based on the AE calculation. Except for these time-
domain indicators, EE can serve as an important indicator
because it describes changes in the energy distribution [24,
25].

Chatter identification is essentially the problem of pattern
classification, the purpose of which is to establish a mapping
between chatter feature vectors and cutting conditions (stable,
chatter). In general, a constant or varying threshold [23, 26] is
set to judge whether chatter occurs in the milling process.
Recently, due to the continuous development of artificial in-
telligence (AI), some sophisticated algorithms have been de-
veloped, including artificial neural network (ANN) model
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[27] and support vector machine (SVM) [28–30]. Among
these algorithms, the SVM can overcome the deficiencies of
multiple local minimal and over-fitting, which is suitable for
solving high dimensional, small sample size, and nonlinear
cases [11]. But the parameters of kernel function (KF) such
as the penalty factor (c) and the core parameter (g) play an
important role in identification results, so it is very necessary
to explore the best parameters for the SVM.

Due to the requirement of lightweight design in various
fields of industrial manufacturing, the proportion of thin-
walled parts raises quickly [31]. However, vibration (chatter)
easily occurs during machining thin-walled parts owing to the
lower stiffness and deformation of thin-walled parts. Recently,
scholars have begun to pay attention to the chatter detection of
machining thin-walled parts. In order to consider both time-
varying characteristic and position-dependent characteristic of
milling the thin-walled workpiece, a varying threshold meth-
od was presented to detect the chatter by Liu et al. [26]. Wang
et al. [11] proposed Q-factor to show the change of bandwidth
caused by chatter; however, Q-factor was calculated with lin-
ear predictive analysis while chatter is a complex nonlinear
phenomenon. In order to describe the nonlinear characteristics
of chatter, Dong [9] used complexity index to detect the chat-
ter. Ye et al. [32] defined coefficient of variation (CV) and
verified that CV was robust to different machining materials
and machining parameters. The abovementioned complexity
and CV are calculated only in time domain; however, the
frequency domain information is missing. According to non-
stationary characteristics of chatter, Gao et al. [33] applied
cmor continuous wavelet transform (CMWT) to locate the
time and frequency of chatter. However, the natural frequency
of the thin-walled workpiece and the tooth-through frequency
of the milling system are needed to obtain in advance.

In summary, the chatter in milling thin-walled workpieces
becomes more complicated, nonlinear, and nonstationary due
to the lower stiffness. The EEMD and nonlinear dimension-
less indicators should be suitable for chatter detection of mill-
ing of thin-walled workpiece. Because unstable chattering is
related to the emergence of random dynamics [22], SE is best

suited for predicting chatter formation. It is very difficult to
extract the chatter indicators from the raw signals which in-
clude lots of noise brought by the deformation and low stiff-
ness of thin-walled workpiece. A single chatter indicator may
be not valid for the thin-walled workpiece. Hence, another
indicator (EE) is needed. And EE can consider the energy
redistribution brought by chatter, so it should be an alternative
indicator for chatter detection. Therefore, chatter detection
methods for peripheral milling thin-walled workpieces using
SE and EE are presented in this paper.

The rest of this article is organized as follows. Chatter
detection methods using SE and EE is proposed in
Section 2. As the EEMD is adopted to decompose the raw
signal, the EEMD is firstly introduced in Section 2.1. In
Section 2.2, the cutting states are fixed through a stability lobe
diagram (SLD). Among them, modal parameters are an im-
portant input of SLD, so modal experiments are conducted in
Section 2.2.1. Then, the SLD is drawn and verified in
Section 2.2.2. Section 2.3 introduces SE’s and EE’s mathe-
matical models to show their validity for chatter detection.
Subsequently, the chatter features are extracted based on ex-
perimental setup after the raw data are decomposed into a set
of intrinsic mode functions (IMFs) by EEMD. And Section 3
makes a correlation analysis to retain chatter-related IMFs. To
further seize the chatter information automatically, the princi-
pal component analysis (PCA) is used in Section 4. After that,
the chatter detection using an improved nonlinear SVM is
conducted and the identification results are verified by the
experiments. At last, Section 6 concludes the paper.

2 The proposed chatter detection method

Figure 2 shows the proposed chatter detection method using
SE and EE. The raw measured cutting forces are decomposed
by the EEMD. Besides, the effectiveness of the EEMD is
verified by simulation signal. Then, a set of IMFs are obtained
by the EEMD. After that, the correlation analysis is conducted
to reserve the chatter-related IMFs. The SE and EE of the

Fig. 1 Flow chart of chatter
monitoring
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retained IMFs are extracted as the initial chatter feature vector.
Among them, only IMF1 contains more chatter information
compared with other IMFs through the change analysis of SE
and EE. Therefore, correlation analysis is not sufficient to
acquire chatter information. In order to further reduce the fea-
ture vector dimension automatically, the PCA is adopted after
SE and EE are extracted from 4 IMFs in this paper. The se-
lected features are trained by the SVM. As a result, the chatter
detection using an improved nonlinear SVM is conducted and
the identification results are verified by the experiments. In
this part, the suitable KF is firstly chosen and the parameter
optimization of selected KF is investigated by GA and GE.
Besides, the surface profile is used to further verify the effec-
tiveness of the SVM.

At the same time, the cutting states of the signals can
be determined by the off-line chatter prediction (the stable
cutting and unstable cutting in this paper). Besides, the
identified cutting states are viewed as the labels for train-
ing and test set. However, the SLD needs to be first drawn
and validated. The SLD is affected by dynamic behavior,
which can be measured through modal experiments. So
modal experiments are conducted. Aiming at obtaining a
more accurate transfer function, the concept of a relative
transfer function is given through the modal analysis of
tool and workpiece. Then, the SLD is drawn and verified
by experiments. Based on the verified SLD, the different
cutting conditions can be chosen and cutting force signals
are collected from these different cutting conditions to
form the raw data set.

2.1 EEMD analysis of simulation signal

Compared with wavelet transform, the EEMD is an opti-
mal method to analyze nonlinear and nonstationary data

because its basis functions are determined by the data
itself, while wavelet transform requires selecting the best
wavelet basis [21]. Hence, in the paper, the EEMD is
chosen to decompose the raw signal into a set of IMFs
and a residue. The EEMD was proposed by N.E. Huang
[34] to solve the modal aliasing in the algorithm of em-
pirical mode decomposition (EMD). The EEMD takes full
advantage of the uniform distribution of white noise by
adding several white noises continuously to the signal.
After that, the noise-containing signals are decomposed
by the EMD. Because of the zero-mean value of white
noise, the influence of white noise is naturally eliminated.
The specific steps of the EEMD are as follows:

(1) Determine the number of ensample m and add the ith
white noise ni(t)(1 ≪ i ≪m) with a mean value of 0 and
the standard deviation of constant to the original signal
x(t), then the new signal xi(t) with the ith white noise is
given by:

xi tð Þ ¼ x tð Þ þ ni tð Þ ð1Þ

(2) xi(t) is decomposed by the EMD; then, the jth IMF is
written as cij and the residual is written by ri(t). As a
result, xi(t) is given by:

xi tð Þ ¼ ∑
I

j¼1
cij tð Þ þ ri tð Þ ð2Þ

Fig. 2 Flow chart of the chatter
detection method using SE and
EE
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where I denotes the number of IMFs of each trial.

(3) Repeat (1) and (2) untilm; then, the ensample means cj of
m trial is computed by overall average for each IMF in
decomposition, which is given by:

c j ¼ 1

m
∑
m

i¼1
cij tð Þ; j ¼ 1; 2;⋯; I ; i ¼ 1; 2;⋯m ð3Þ

Each cj (j = 1, 2,⋯, I) of the I IMFs is defined as the final
IMFs through EEMD. As white noises are added to the entire
time-domain sequence, the noise is canceled and the modal
aliasing resulting from the uneven distribution of extreme
points can be eliminated. To demonstrate the validity of the
EEMD, the simulation signal is constructed, and then, it is
decomposed by the EEMD. Figure 3 a is the constructed sig-
nals containing discontinuous cosines, in which the sinusoidal
low-frequency signal x1 = sin(30πt) is superimposed with the
discontinuity of the high-frequency signal x2 = 0.3 cos(240πt).
So the sine signal is given as: x0 = x1 + x2.

The IMF1-IMF5 and the residual of the raw signal are
individually obtained by the EMD and the EEMD, which
are shown in Fig. 3 b and c. As can be seen, IMF1 coincides
with the high-frequency component of the simulation signal
x0, and IMF2 is similar to the low-frequency component of x0.
But modal aliasing is coming along with the EMD. Besides,
fake IMFs produced by the EEMD have smaller amplitude
compared with the EMD. The Hilbert frequency spectrum

obtained from the IMFs of the EEMD is shown in Fig. 3c.
The frequencies are clearly separated by the EEMD. So the
EEMD is available for decomposing the raw signal to get
more accurate IMFs.

2.2 Cutting state identification based on SLD

2.2.1 Modal experiment setup and results

An important input of the SLD is dynamic behavior, which
can be measured by modal experiment. Modal experiment is
mainly composed of vibration excitation, vibration picking,
and data analysis. The structure is shown in Fig.4a. During
the experiment, the single-point excitation and single-point
response test method were used to measure and analyze the
frequency response function of the milling system. In order to
obtain a more accurate result, it needs to hammer three times
and get the average. As a result, the modal parameters of the
processing system and the corresponding vibration were ob-
tained. Among them, the connection of modal experiment is
shown in Fig. 4b.

Besides, modal experiment was conducted on the vertical
machining center TH5650 which was produced by Shenyang
Machine Tool Company. Firstly, the acceleration sensor was
fixed on the cutter of the machine tool spindle. Make sure that
the paste position was close to the tip of the tool and the
acceleration sensor was an effective signal perception range.
Similarly, the acceleration sensor was pasted on the work-
piece. The measured signal was transmitted to the data

(a) simulation signal and its composition (b) EMD result of simulation signal

(c) EEMD result of simulation signal (d) Hilbert time-frequency spectrum from EEMD
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Fig. 3 The analysis of the
simulation signal. a Simulation
signal and its composition. b
EMD result of simulation signal.
c EEMD result of simulation
signal. d Hilbert time-frequency
spectrum from EEMD
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acquisition device, and then, the transfer function of the sys-
tem was calculated and analyzed by the professional software
of the computer. The modal test of the tool and the workpiece
is shown in Fig. 4 c and d.

The frequency response function of the tool in x direction is
shown in Fig. 5a; the frequency response function of the tool
in y direction is shown in Fig. 5b. The modal parameters
corresponding to the tool in x and y directions are shown in
Table 1.

Similarly, the modal experiments of the workpiece were
conducted as shown in Fig. 6a. The workpiece’s modal pa-
rameters are shown in Table 2. The modal fit of the thin-
walled workpiece has a relatively large error due to complex-
ity brought by the deformation and lower stiffness. However,

the peaks are almost the same. According to the parameters of
the tool and the workpiece obtained from the modal test, the
relative transfer function of the machine tool is proven to
obtain a proper transform function of the machine tool [35].
The phase frequency of the transfer function of the tool, the
workpiece, and the machine tool is shown in Fig. 6 b and c.

According to the relative transfer function theory, the rela-
tive transfer function of the machine tool depends on the rel-
ative relationship between the tool and the workpiece. It can
be seen from the figure above: at lower frequencies, the trans-
fer function of the machine tool is dominated by the work-
piece’s modal; instead, the tool’s modal controls the transfer
function of the machine tool when the frequency is higher.
Hence, the relative transfer function of the machine tool

(a) schematic diagram      (b) connection diagram

(c) modal test for workpiece          (d) modal test for tool

Accelerometer

Workpiece

Tool

Hammer

X

Y
Y

X

Z
Z

Fig. 4 Modal experiment. a
Schematic diagram. bConnection
diagram. c Modal test for
workpiece. d Modal test for tool

(a) -direction (b) -direction

Fig. 5 The frequency response function of the cutter. a x-direction. b y-direction
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should be viewed as the initial conditions of chatter stability
simulation analysis.

2.2.2 Stability prediction and experimental verification

Another important input of the SLD is cutting force coeffi-
cients. By changing the feed rate in slot milling experiments
and related calculations, the tangential cutting force coeffi-
cient Kt is 1773.1N/mm2 and the radial cutting force coeffi-
cient Kr is 558.2N/mm

2. So the SLD is calculated and shown
in Fig. 7a. To verify the SLD’s effectiveness, two points
representing stable (B) and chatter (A) cutting parameters
were tested and surface profiles after machining were ob-
served by 3D profile and a scanning electron microscope.
The detailed processing parameters of A and B are listed in
Table 5. During the experiment (Fig. 8), carbide-coated flat
tools are used. Tool length is 70mm and overhang length is 45
mm. Tool’s diameter is 10 mm and the used tool has 4 teeth.

Thematerial of workpiece is titanium alloy. Besides, the radial
depth of cut is 0.5 mm and downmilling is used in the milling.
The observed surface profiles are shown in Fig. 7 b and c.

From Fig. 7 b and c, the surface profile of point B has no
obvious vibration (no chatter), and the surface profile of point
A has obvious vibration (chatter). It shows that the observed
results are consistent with those predicted by the SLD.
Therefore, the processing status under different processing
parameters can be determined through the SLD.

2.3 Mathematical model of SE and EE

In thermodynamics, entropy is essentially a measure of
the degree of chaos. But infinitely accurate precision
and resolution of traditional entropy concepts require an
infinite data series [22]. So in the early 1990s, the concept
of AE was proposed by Pincus [36] to quantify the regu-
larity and complexity of time series. The higher the AE,
the higher the probability of generating a new pattern
within a time series. This theory has been successfully
applied to the analysis of biological time series.
However, AE has matching problem, leading to its

(a) the frequency response function of the workpiece

(b) the amplitude of the three transfer functions (c) image of the three transfer functions

dominated by workpiece

dominated by tool

dominated by workpiece

dominated by tool

Fig. 6 Modal parameters and
relative transfer function. a The
frequency response function of
the workpiece. b The amplitude
of the three transfer functions. c
Image of the three transfer
functions

Table 1 The modal parameters of the cutter

Modal parameters x-direction y-direction

Natural frequency of the first mode (Hz) 1100 1119

First mode stiffness (N/m) 1.7995e7 2.1808e7

First mode damping ratio 4.77e-2 3.64e-2

Natural frequency of the first mode (Hz) 1880 1889

Second mode stiffness(N/m) 5.7104e7 9.253e7

Second mode damping ratio 3.99e-2 2.65e-2

Table 2 The modal
parameters of the
workpiece

The first mode Value

Natural frequency (Hz) 415

Stiffness (N/m) 2.1592e6

Damping ratio 0.0373
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(a) SLD diagram

(b) results through SEM

(c) results through the three-dimension profile

A

B

B

chatter 

scanning electron microscope

3D profile

chatter 

no chatter 

no chatter 

stability border

A B

Fig. 7 SLD and machining
surfaces under different cutting
conditions. a SLD diagram. b
Results through SEM. c Results
through the 3D profile

Machining center

Dyno Ware

Charge amplifier

Thin-walled

workpiece

Fixture

Dynamometer

Cutter

Fig. 8 Experimental platform
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calculation results more dependent on the length of the
data, and also resulting in inconsistencies in the calcula-
tion results. In order to overcome these shortcomings, SE
was proposed by Richman and Moorman [37]. In the
mathematical model of SE, the self-matching of vectors
is not included in the probability calculation. Therefore,
the computation of SE has less reliance on data length and
computation time is shorter compared with AE. Besides,
SE is a nonlinear model and is suited for the nonstationary
signal. Furthermore, the occurrence of chatter causes the
frequency of the signal to be redistributed. As a conse-
quence, the probability of generating a new subsequence
in the time series is raised. Therefore, SE’s changes can
represent the occurrence of chatter. It means SE coming
from time domain can detect the chatter.

For a N time series x(1), x(2), ⋯, x(N), the calculation
process of SE is as below:

(a) An m dimension vector is formed from the original time
series:

Xm ið Þ ¼ x ið Þ; x iþ 1ð Þ;⋯; x iþ m−1ð Þf g; 1≤ i≤N−mþ 1 ð4Þ

(b) The distance between Xm(i) and Xm(j) is given by:

d Xm ið Þ;Xm jð Þ½ �
¼ max x iþ kð Þ−x jþ kð Þj jð Þ; k∈ 1;m−1½ � ð5Þ

(c) Giving tolerance r, the number of d[Xm(i),Xm(j)] ≤ r is
calculated, recorded as Ai. The ratio of Ai to N −m + 1
is written as:

Bm
i rð Þ ¼ Ai

N−mþ 1
; 1≤ i≤N−m ð6Þ

(d) The average Bm(r) of Bm
i rð Þ is found:

Bm rð Þ ¼ 1

N−m
∑

N−m

i¼1
Bm
i rð Þ ð7Þ

(e) Similarly, the average Bm + 1(r) of Bmþ1
i rð Þ can be given.

Thus, the theoretical SE of the time series is defined as:

SampEn m; rð Þ ¼ ∑
N−∞

−ln
Bmþ1 rð Þ
Bm rð Þ ð8Þ

whenN is a finite value, the estimated value of the SE is given
by:

SampEn m; r;Nð Þ ¼ ∑−ln
Bmþ1 rð Þ
Bm rð Þ ð9Þ

From the above theoretical formula of SE, it can be
seen that the values of m and r will have some impact
on the calculation results. Therefore, the choice of these
two parameters is very important in solving the SE. In this
paper, m = 1 and r = 0.1SD are chosen (SD is the standard
deviation of the original time series). Because the result of
SE is less sensitive to data length, the number of data
points selected under the premise of stable computing
results can be as few as possible. So N = 4000 is selected
in this paper.

Due to complexity of chatter of thin-walled part ma-
chining, another indicator is needed except time-domain
feature. In the milling process, energy changes with the
cutting condition according to related references. In the
stable cutting stage, energy chiefly focuses on the
machine-dominant frequency and their harmonics. In the
unstable cutting stage, the amplitude of chatter frequen-
cies increases dramatically which means energy concen-
trates on frequency bands containing chatter frequencies.
EE is an extension of entropy in the energy domain.
Furthermore, EE is nonlinear. So it is effective and prac-
ticable to judge whether chatter occurs in the cutting pro-
cess by EE [24].

The IMFs after EEMD are given by u1(t), u2(t), ⋯un(t),
which represent the frequency bands, so the energy Ri of each
IMF is given by:

Ri ¼ ∫þ∞
−∞ ui tð Þj j2dt i ¼ 1; 2⋯n ð10Þ

Because IMFs are orthotropic, the signal’s energy could be
expressed by the sum of the energy of all IMFs. EE of IMFs is
given by:

Ei ¼ ∑
n

i¼1
TilogTi ð11Þ

where Ti=Ri/R describes the percentage that energy of IMF
counts for the whole signal’s energy R.
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3 Experimental setup and chatter feature
extraction using SE and EE

In our experiment, the milling force signals under different
cutting states were collected. Figure 8 presents the experimen-
tal platform, consisting of the machining center, dynamome-
ter, cutter, and thin-walled workpiece (100 × 100 × 5 mm).
The cutting force was collected by the dynamometer, and the
sampling frequency of the dynamometer was set to 4000 Hz.
Specific processing parameters are shown in Table 3.

After the cutting force signals are collected based on above
experimental setup, the following steps are conducted:

(1) The EEMD decomposes the experimental signal into a
set of IMFs and a residual.

(2) Because the false IMFs may be produced by EEMD, to
obtain more reasonable IMFs, the correlation analysis is
conducted. The n IMFs with a relatively high correlation
coefficient are determined as reasonable components.

(3) SE λ1 and EE λ2 of n IMFs are respectively calculated
and are constructed into a total feature matrix [λ1, λ2].

In order to show the validity of SE and EE, two signals
including stable and unstable (chatter) are chosen to analyze.
Then, the raw signals are decomposed by the EEMD and their
results are shown in Fig. 9 a and b. From Fig. 9 a and b, 9
IMFs are acquired by the EEMD. Then, the correlation coef-
ficients analysis is conducted. The correlation coefficients be-
tween each IMF and the original signal are expressed asμi, i =
1, 2,⋯, n; select the parameter γ = 0.1 are usually taken as the
threshold. If μi ≥ γ, this IMF will be retained. The correlation
analysis of each IMF is shown in Fig. 9c. Therefore, the first 4
IMFs are preserved through the above method. Subsequently,
SE and EE of the first 4 IMFs are respectively calculated, as
shown in Fig. 9d.

Figure 9 d shows there is change in SE and EE values in
stable and chatter conditions, which certify SE and EE can be
viewed as chatter indexes. It is worth noting that the change is

(a) stable signal (b) chatter signal.

(c) correlation coefficients of IMFs (d) SE and EE
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Fig. 9 EEMD result and selection
of IMFs. a Stable signal. b
Chatter signal. c Correlation
coefficients of IMFs. d SE and EE

Table 3 Machining parameters of
milling thin-walled workpiece Cutting parameters Value

Spindle speed 1900, 2100, 2200, 2400, 2500, 2600, 2700, and 2800 r/min

Depth of cut 0.6, 0.8, 1.6, and 1.8 mm

Feed rate 152, 168, 176, 192, 200, 208, 216, and 224 mm/min
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reflected by IMF1 and IMF2 in SE and EE charts. Among
them, the SE of IMF1 increases and the SE of IMF2 decreases
from the stable cutting to the unstable cutting in the SE chart.
This shows that the complexity of IMF1 becomes higher,
which means IMF1 has a higher probability of generating a
new subsequence (it should be chattering subsequence).
Instead, IMF2 is not possible to create a new subsequence
owing to the decreasing of SE. This trend can be observed
in the EE chart. The EE of IMF1 increases and the EE of
IMF2 decreases. This illustrates the energy of signal was

transferred to IMF1. Correspondingly, the energy of IMF2 is
reduced. The above energy transformation is caused by chatter
as energy is crucial for the occurrence of chatter. Therefore,
the occurrence of chatter is a process in which the entropy
value (including SE and EE) increases. In conclusion, chatter
can be revealed by the SE and EE. Besides, IMF1 contains
more chatter information compared with IMF2-4 through
above analysis, which means that it is not sufficient to acquire
the chattering signal by only correlation analysis. The further
feature selection is needed to retain chatter information, which
provides a reason for the next feature dimension reduction
using the PCA.

4 Chatter feature selection using PCA

To define the number of principal components, the cumulative
variance contribution rate method is used in the PCA. The
cumulative variance contribution rate method is based on the
descending ordered eigenvalues of the correlation coefficient
matrix. The variance and direction of the first principal com-
ponent are determined by the maximum eigenvalue and its
corresponding eigenvectors. Variance and direction of the sec-
ond principal element are determined by the secondmaximum
eigenvalue and its corresponding eigenvectors, and so on. It is
noteworthy that these eigenvalues are nonnegative. The ratio
of each eigenvalue to the sum of all eigenvalues is called the
contribution rate of the corresponding principal to the total
variance of the sample, which is given as:

vi ¼ ρi

∑
n

i¼1
ρi

ð12Þ

Among them, the contribution rate of the ith principle com-
ponent is expressed by vi. So the contribution rate of the pre-
vious kth principal components can be given as:

Q ¼ ∑
k

i¼1
vi ð13Þ

Fig. 11 The flow chart of KF selection and parameter optimization in
nonlinear SVM

(a) principal component contribution rate (b) three-dimensional principal component distribution

90%

cluster together

Fig. 10 The analysis of PCA. a
Principal component contribution
rate. b Three-dimensional
principal component distribution
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A threshold (85–90%) is often required when selecting the
number of principal components based on this method. The
minimum number of principal components is the minimum
number of cumulative variance contributions which is greater
than the threshold.

In the previous section, SE and EE were extracted from the
original signal, forming an 8D eigenvector. But its feature
dimension is higher and some components are redundant,

(a) the classification accuracy using different KFs (b) fitness optimization using GA

(c) the classification results of the test data using GA

(d) the accuracy of the training set and testing set

60%

65%

70%

75%

80%

85%

90%

95%

100%

No GE GA

Training

Testing

Fig. 12 The parameter
optimization of SVM and
prediction accuracy. a The
classification accuracy using
different KFs. b Fitness
optimization using GA. c The
classification results of the test
data using GA. d The accuracy of
the training set and testing set

Table 4 The comparison of calculation time

Method c g Consumed time(s)

SVM 1.0 0.25 0.62

GE 5.5 4.6 2.05

GA 15 1.8 4.52
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which affects the accuracy of subsequent classification. The
cumulative contribution rate is set at 90%, and the cumulative
contribution rate of each principal component is shown in Fig.
10a.

From Fig. 10a, the purpose of reducing dimension is
achieved by the PCA. As the overall contribution rate of the
first three-order principal components is greater than 90%, the
first three-order principal components are chosen as the final
eigenvectors. The discrete distribution of the first three ele-
ments is shown by Fig. 10b. It can be seen that after the PCA
processing, the dimension of the initial matrix is reduced to
three dimensions, and the features of stable cutting and chatter
cutting are clustered together. The PCA not only reduces the
dimension of the original feature vector but also extracts the
valid information.

5 Chatter detection result and analysis

After the features are extracted and selected, the nonlinear
SVM is employed to identify the cutting states. The basic idea
of the SVM can be concluded: Firstly, the input space is trans-
formed to a high-dimension space through the nonlinear trans-
formation. Then, in this high-dimension space, the optimal
nonlinear classification plane is resolved. The nonlinear trans-
formation is carried out by defining KF. In order to choose
appropriate KF, some different KFs are investigated as shown
in Fig.11.

Usual KFs mainly are as follows:
(1) Polynomial KF

K xi; x j
� � ¼ xi � x j

� �þ 1
� �d

; d ¼ 1; 2;⋯n ð14Þ

(2) Radial basis KF (RBKF)
Among them, the most commonly used RBF is Gauss KF,

which is defined as:

K xi; x j
� � ¼ exp −

xi−x j
� �2

2σ2

( )

ð15Þ

where xi and xj represent the samples or vectors and σ repre-
sents the width of KF, affecting the scope of KF.

(3) Sigmoid KF

K xi; x j
� � ¼ tanh β xi � x j

� �þ θ
� �

;β > 0; θ < 0 ð16Þ

To choose proper KF for the nonlinear SVM, the classifi-
cation results of different KFs are calculated by the extracted
features. Among them, c and g are respectively set to 1 and
0.25, and the other parameters are set as the default. From Fig.
12a, the classification accuracy with radial basis KF (RBKF)
exceeds the other two KFs whatever training set or the testing
set. Therefore, the SVMwith RBKF is selected to monitor the
cutting states.

After the best KF is determined, c and g are optimized by
the GE and GA in order to improve the accuracy in the RBKF
because c and g have an important influence on the identifi-
cation results. In this paper, GE is firstly employed to optimize
the parameters c and g in the SVM. A relatively large range is
set to roughly find the best parameters; this paper is set to the
range of c and g set to [−23, 23], the search step of c and g is:
0.8 and 0.6, respectively. After determining the approximate
range, the range is gradually reduced according to the step size
and made refined parameter selection. By gradually changing
the optimization range of the parameters, the multi-group clas-
sification accuracy rate is calculated. Then, the parameters are
explored by the GA algorithm as follows: the number of pop-
ulations is 20, the maximum number of iterations is 200, and
the search range of parameters c and g is: [0.01,100] and
[0.01,1000]; 3-fold cross-validation is used. Among them,
the fitness function is defined as the maximum of the predic-
tion accuracy of the SVM. The fitness curve of the iterative
process through the GA algorithm is shown in Fig. 12b.

Table 6 Cutting conditions
No. Output Target Result Spindle speed (r/min) Feed speed (mm/min) Cutting depth (mm)

1 − 1 − 1 Correct 1000 100 0.1

2 − 1 − 1 Correct 4000 150 0.2

3 1 1 Correct 1000 100 1

4 1 1 Correct 4000 150 1.5

Table 5 The identification results
between the proposedmethod and
surface profile

Points Output Target Result Spindle speed (r/min) Feed speed (mm/min) Cutting depth (mm)

A 1 1 Correct 2400 152 1.6

B − 1 − 1 Correct 2400 168 0.5
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As seen from the above figure, the average fitness of the
parameter optimization in the SVM using the GA is above
80%, and the optimal fitness value is obtained near the 41th
generation by continuously performing the iterative update
calculation. This moment c = 15 and g = 1.8. Then, the accu-
racies of the training set and testing set are depicted in Fig. 12
c and d. It was found that no matter what GE or GA is used,
the optimization method can improve the prediction accuracy.
And the SVM using GA optimization can achieve the highest
chatter detection accuracy: the accuracy of the training set is
98%, and the accuracy of the test set is 90.9%, which exceeds
the chatter prediction of the SVM using GE and no parameter
optimization. However, it takes more time to find the best c
and g, especially when using GA to optimize the parameters
of the SVM.As shown in Table 4, the elapsed timewas almost
close to 5 s. The reason it takes so long may be that the
parameters of SMV need to be optimized every time.

To further verify the effectiveness of the proposed method,
the surface profiles under stable and unstable cutting (previous
mentioned points including A and B) are compared with the
prediction results of the proposedmethod as observing surface
profilers is a very direct and effective method. The identifica-
tion results for these cutting conditions are listed in Table 5.

In Table 5, “1” represents chatter cutting state and “− 1”
represents stable cutting state. The results of “Output” are
given by the proposed model. The results of “Target” are
obtained by the surface profile. As seen from Table 5, the final
results are correct and the cutting states predicted by the SLD
is consistent with the SVM.

In addition, more different cutting conditions are chosen to
experimentally verify the trained model. The cutting condi-
tions are listed in Table 6. The predicted cutting states through
the trained model are compared with the SLD as well as sur-
face profiles, which are shown in Fig. 13.

Fig. 13 The surface profiles of selected cutting condition. a No. 1. b No. 2. c No. 3. d No. 4
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From Fig. 13, No. 1 and No. 2 belong to stable cutting and
No. 3 and No. 4 belong to unstable cutting. The prediction
results by the trained model are the same as the observed
results of surface profiles as well as the prediction results of
the SLD. Therefore, it is shown that the proposed method
effectively detects the chatter in milling thin-walled parts un-
der different cutting conditions.

6 Conclusion

In this paper, a chatter detection method for peripheral
milling thin-walled workpiece using SE and EE is studied.
Firstly, the EEMD is introduced to acquire the IMFs and
its validity is verified by the simulation signal. Then, the
initial eigenvectors are constructed by extracting SE and
EE from the retained IMFs based on the correlation anal-
ysis. To reduce the eigenvector dimension, the PCA is
employed in this paper. To provide the labels for the
SVM, the SLD is drawn and verified. At last, an im-
proved SVM using optimized parameters is used to detect
the chatter. The following conclusions are given:

& The presented method based on EEMD and two non-
linear dimensionless indicators can effectively detect
the chatter through not only the prediction results of
the SLD but also the observation results of the surface
profile. Based on analysis of the trend of SE and EE,
chatter is essentially a phenomenon of entropy in-
crease. It means that SE and EE will increase when
cutting process chatters.

& To accurately descript the dynamics of processing system,
the relative transfer function is used in the paper. The
dynamics of processing system is represented by the
workpiece’s modal when the frequency is low. Instead,
the modal of tool represents the dynamics of processing
system when the frequency is high.

& It is not sufficient to extract chatter-related features
through correlation analysis as only two IMFs are largely
changed. Hence, the PCA is used to reduce the feature
vector dimension in this paper.

& Based on the SVM, the chatter identification results show
that GA is more applicable for deciding the parameters
compared with GE. However, the proposed model is very
time-consuming because parameter optimization is per-
formed each time. To meet the real-time requirements of
onlinemonitoring, future work should focus on shortening
the calculation time of the algorithm.
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