
ORIGINAL ARTICLE

Effects of cold rolling and annealing on the ridging behaviour
of ferritic stainless steel

Xiaoguang Ma1 & Jingwei Zhao1
& Wei Du2

& Zhengyi Jiang1

Received: 24 January 2020 /Accepted: 24 April 2020 /Published online: 7 May 2020
# Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
A systematic study was carried out to evaluate the effects of cold rolling and annealing processes on the ridging severity of ferritic
stainless steel (FSS). Both microstructural refinement and texture optimisation were achieved with an optimised processing
schedule to improve the ridging resistance of FSS. Coarse grain bands comprising of primarily {112} <110> oriented grains were
found to form inside cold-rolled and annealed FSS sheets. The effects of annealing schedules and the resultant microstructure and
texture on the ridging behaviour of FSS are discussed. The results indicate that the reduction in the fraction of {001} <110>
orientation by optimisation of the rolling processes contributes to reduce the ridging height of the FSS during the subsequent
forming process. Through extending soaking time and under 880 °C during final annealing step, a maximum of 30% reduction in
ridging height can be achieved with a refined microstructure and texture of FSS, improving the surface quality of FSS during
subsequent forming processes.
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1 Introduction

With a growing demand of new materials with low cost and
good mechanical properties, development of steel grades with
good mechanical and functional performance is becoming in-
creasingly important in manufacturing engineering. Such con-
siderations promote the development and application of ferrit-
ic stainless steels in a variety of fields, such as automobiles
engineering, medical science and electronic engineering [1,
2]. With its good corrosion resistance, high thermal conduc-
tivity and low cost during manufacturing processes, FSS 430
is widely used for various applications such as kitchenware,
automotive exhaust systems and elevator panels [3, 4].

However, the occurrence of ridging during the forming
process can significantly hamper the surface quality of the
FSS. Ridging is an undesirable surface corrugation with a
depth varying from 10 to 50 μm that arises during stretching
or deep drawing. Severe surface ridging may deteriorate the
surface appearance of the formed products of FSS, which
requires further polishing operations and increases the opera-
tion cost during manufacturing process. Suppression of the
ridging phenomenon, therefore, has been investigated by re-
searchers in order to improve the surface quality of the resul-
tant products and reduce the operation cost during subsequent
forming processes. Although segregation of the alloying ele-
ments (C, Cr and Mo) affects the formation of ridging, it is
commonly acknowledged that ridging is generated due to the
different anisotropic plastic deformation of neighbouring
grains with different crystallographic textures [5, 6].

The role of crystallographic texture on the ridging severity
of FSS has been widely reported by researchers. Defilippi and
Chao [1] stated that ridging is generated due to the different
plastic strain ratios between the ND // <111> and ND // <100>
components. A crystal plasticity (CP) model was proposed by
Takechi et al. [2] to investigate the correlation between texture
and ridging, and the results indicate that ridging can be attrib-
uted to the different shear strains between RD // <110> fibres.
The correlation of microstructure and ridging was also
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investigated by Engler et al. [3] using both numerical simula-
tion and experimental methods. The authors stated that the
occurrence of ridging is caused by the collective deformation
of band-like clusters of grains with similar crystallographic
orientations. Kuntsen and Wittridge [4] studied parallel sur-
face ridging in FSS during uniaxial tensile straining, and
found that the corrugation profile was related to the superim-
position of a number of differential transverse strains. Huh
et al. [5] analysed the effect of through-thickness macro- and
micro-texture gradients on ridging of 17% Cr FSS sheet and
found that the elongated orientation colonies that formed close
to the sheet centre were responsible for ridging in the cold-
rolled and recrystallised FSS sheet. To further investigate the
texture-induced surface ridging, EBSD tests were conducted
by Bennett et al. [6] to characterise the microstructure of spec-
imens before and after tensile stretching. The results indicate
that the cube bands promote ridging generation on the surface
of automotive aluminium sheet during the forming process.
The development of the ridging phenomenon in automotive
aluminium sheets was also studied by Baczynski et al. [7]
using X-ray diffraction (XRD) tests. The authors stated that
the spatial distribution of the Goss component is responsible
for directional roughening and ridging generation after tensile
stretching.

Given that texture is commonly considered to be responsi-
ble for ridging generation, the optimisation of rolling param-
eters has been investigated by a number of researchers to
obtain optimal texture components and improve the surface
quality of polycrystalline materials during the subsequent
forming processes. The influence of hot band annealing and
cold rolling on the texture and ridging of FSS 430 was
analysed by Patra and Singhal [8]; it was found that hot-
rolled coils annealed by slow cooling under insulated cover
exhibit better ridging resistance than bell annealing treatment.
In addition, the direct effect of coarse grain streaking on the
formation of ridging in FSS was demonstrated by Patra et al.
[9] using EBSD tests. A sufficiently high temperature during
hot band annealing was recommended by the authors in order
to refine the coarse, cube-oriented grains by recrystallisation.
The effects of hot-rolled shear bands on the surface ridging of
FSS were analysed by Zhang et al. [10], and the results indi-
cate that the existence of shear bands can enhance the nucle-
ation for recrystallisation during hot rolling and annealing for
microstructural refinement. The effects of cold rolling pro-
cesses on microstructure and texture were discussed by Gao
et al. [11]; it was found that ridging could be significantly
alleviated with a proposed two-step cold rolling process. The
development of γ-fibre recrystallisation texture was found to
be responsible for ridging generation of FSS during forming
processes. The correlation between heat treatment and ridging
phenomenon of FSSs was analysed by Park and Park [12].
The results indicate that the ridging phenomena are dramati-
cally improved with annealing temperatures higher than

920 °C due to the recrystallisation of the band structure. The
effects of processing optimisation on ridging development of
FSS were demonstrated by Han et al. [13] by means of optical
microscopy, XRD and EBSD tests. The authors stated that the
addition of a warm-rolling procedure leads to refinement of
grain size and modification of texture, inducing a remarkable
improvement in the anti-ridging performance of FSS during
the subsequent forming processes. Mola et al. [14] evaluated
the effects of thermomechanical processing on the ridging
resistance of FSS 430 and found that the presence of the γ-
phase benefits the ridging resistance of this alloy. Dorner et al.
[15] analysed the retention of the Goss component between
microbands during cold rolling and found that the Goss-
oriented bands aligned in shear bands formed during straining,
giving a rise to ridging generation of FSS. The formation
mechanisms of the cube recrystallisation texture in cold-
rolled steel were studied by Zaefferer et al. [16] by means of
X-ray texture measurement and transmission electron micros-
copy. It was stated that the misorientation across the orienta-
tion gradient in the cube bands increases with increasing de-
formation. Given that the texture is affected by the formation
process, it is significant to investigate the correlation between
texture and processing routes.

Although the effects of thermomechanical processing on
the ridging resistance of FSS have been discussed by re-
searchers, few published works have focused on the correla-
tion between annealing time, temperature and ridging severity
of FSS 430 during the subsequent forming processes. In this
study, a series of experiments were conducted in order to
analyse themicrostructure and texture evolution during rolling
and annealing with different routes. The relationship between
the annealing temperature and soaking time on texture-
induced ridging is investigated to obtain optimal parameters
to alleviate the ridging phenomenon of FSS 430. This work
aims to develop effective strategies in rolling routes for im-
proving the ridging resistance of FSS 430 through investiga-
tion into the relationship between the annealing temperatures,
soaking time, microstructure, texture and ridging resistance of
FSS 430.

1.1 Materials and experimental procedures

An industrial FSS 430 was utilised for the present study. The
chemical composition of the FSS 430 is given in Table 1.
Detailed schematic diagrams are illustrated in Table 2. Cast
slabs of 5-mm thickness were hot-rolled to 1 mm using

Table 1 Chemical composition (wt%) of FSS 430

Material C Si Mn S P Cr N

FSS 430 0.049 0.35 0.23 0.002 0.031 16.24 0.0348

4824 Int J Adv Manuf Technol (2020) 107:4823–4836



tandem rolling in 4 passes with the temperature decreasing
from 1150 to 850 °C, and then air cooled down to room tem-
perature. After annealing at 840 °C for 2 h, the specimens
were cold-rolled with multiple passes using a four-high rolling
mill followed by subsequent annealing. With different sched-
ules of annealing processes, the effects of the cold rolling and
annealing processes on the microstructure, texture and ridging
resistance of FSS 430 can be analysed. The rolling experi-
ments in the present study were conducted on a Hille-100
experimental rolling mill. The rolls are made of high-speed
steels with a length of 254 mm and a diameter of 225 mm. The
rolling speed of rolls is set to 0.6 m/s in the present study. The
rolling mill is driven by a 56-kW hydraulic system with a
maximum rotating speed of 60 rpm, whilst the maximum load
and torque can reach up to 1000 kN and 12.7 kN·m, respec-
tively. The details of the final annealing followed in each
schedule are summarised below.

The cross-sections of the cold-rolled and annealed speci-
mens were electro-polished for microstructure characterisa-
tion and texture study. A solution of 90% methanol and 10%
perchloric acid was utilised for electro-polishing in the present
study. The EBSD tests were performed with a step size of
2 μm using an Oxford HKL Channel 5 system. To ensure a
high accuracy of EBSD mapping, noise reduction was per-
formed by giving the most common neighbouring orientation
to each zero solution point. The distribution of crystallograph-
ic orientations was represented in the form of orientation dis-
tribution functions (ODFs) of the φ2 = 45° section of the
Euler space. The grain size distributions of cold-rolled and
annealed specimens were evaluated by measuring the grain
area and equivalent circle diameter grain size of grains, fol-
lowing the techniques proposed by Patra et al. [9].

A series of tensile tests were conducted to investigate the
ridging phenomenon of FSS 430. The specimens were pre-
pared following the ASTM E8-E8M Standard [17] (as shown
in Fig. 1) and were tested using an Instron 5566 test system at
room temperature. All tests were carried out with 20% exten-
sion with the speed of 1 mm/min. The tests were conducted
three times under each condition and the average value of
ridging height was utilised to evaluate the ridging resistance

of FSS 430. The obtained stress-strain curve of FSS 430 is
displayed in Fig. 2 and the diagram of the whole process is
illustrated in Fig. 3.

2 Results and discussion

2.1 Microstructure characterisation

The microstructures of cold-rolled and annealed specimens
under different annealing schedules are shown in Fig. 4. The
measured region is the cross-section of the FSS sheet after
tensile deformation, as shown in Fig. 5. Undulations are also
a function of texture and microstructure but on a larger scale.
In this case, it is the anisotropic plastic behaviour of larger
volumes involving several {111} <uvw> and {001} <uvw>
colonies that should be looked at.

The IPFmaps of the cold-rolled and annealed FSS sheet are
shown in Fig. 4. It can be seen that refined grains are formed at
surface layers after rolling processes. It is known that the
surface layers are subjected to profound driving force during
rolling, and significant shear deformation on the grains in the
surface layers was caused [18]. The grains on the surface
layers, therefore, are refined during recrystallisation. The
grains in the central layers, on the other hand, are mainly
subjected to plane-strain compression which cannot refine
the grains’ effectively unlike the grains in the surface layers.
The grain colonies, therefore, remain at central layers of the
FSS sheet during rolling processes. The formation of grain
colonies promotes the inhomogeneity of grain sizes and sig-
nificantly affects the anisotropy of FSS 430. As shown in Fig.
4, the microstructure of specimens after final annealing was
characterised by equiaxed grains and pancake-shaped grains
originating from static recovery during annealing.With higher
annealing temperature and soaking time, a remarkable reduc-
t ion in elongated grains can be observed during
recrystallisation.

For specimens annealed under schedule D, the cold-rolled
sheet was fully recrystallised and the microstructure com-
prised by equiaxed grains, as shown in Fig. 4(d). The average

Table 2 Diagrams of the
processing schedule Rolling schedule A B C D

Hot rolling pass 1 (35% reduction) 1150 °C 1150 °C 1150 °C 1150 °C

Hot rolling pass 2 (35% reduction) 1050 °C 1050 °C 1050 °C 1050 °C

Hot rolling pass 3 (35% reduction) 950 °C 950 °C 950 °C 950 °C

Hot rolling pass 4 (30% reduction) 850 °C 850 °C 850 °C 850 °C

Intermediate annealing 840 °C, 2 h 840 °C, 2 h 840 °C, 2 h 840 °C, 2 h

Cold rolling (70% reduction in 4 passes) 25 °C 25 °C 25 °C 25 °C

Final annealing 850 °C,
1 min

850 °C,
3 min

880 °C,
1 min

880 °C,
3 min
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grain sizes in the final sheets are given in Fig. 5. With the
increase of annealing temperature and soaking time, the resid-
ual non-recrystallised region continued to recrystallise and
more refined grains formed in specimen, giving a rise to the
growth of the average grain size of the annealed FSS sheet.
Meanwhile, the residual deformed grains were replaced by
recrystallised, equiaxed grains during the annealing process.

2.2 Texture evolution

The ODF sections of FSS sheets processed under different
rolling schedules are given in Fig. 6. For a quantitative anal-
ysis of the textures, ODFs f(g) were calculated from the EBSD
data by associating each orientation g = {φ1, Φ, φ2} with a
narrow Gauss-shaped peak with a (half) scatter width ψ0 = 2°
in Euler space [19]. The resulting ODFs presented in Fig. 6 are
in the form of iso-intensity lines in three characteristic sections
through the Euler angle space. With this representation,
orthotropic sample symmetry is implicitly assumed, as given
by the orthogonal sample axes RD and ND.

As shown in Fig. 6, the annealed specimens show the typ-
ical hot band texture of FSS which is characterised by prom-
inent texture consisting of the α-fibre with a maximum close
to the {001} <110> and {115} <110> orientations. The spec-
imens annealed at 850 °C for 1 min show the dominance of the
{001} <110> orientation, which is considered to be one of the
major components leading to ridging generation of FSS [20].
The intensity of the {115} <110> component was a minimum
in the specimen processed under schedule D, Fig. 6. FSS 430
undergoes rapid dynamic recovery preceding recrystallisation
during hot rolling, which restricts texture randomisation
through dynamic recrystallisation and phase transformation
[21]. The strong {115} <110> component, therefore, can be
developed from columnar grains with the {001} <110> com-
ponent. The {001} <110> component can transform into the
{111} <112> orientation after recrystallisation, although the
transformation rate is slow due to the low stored energy of the
{001} <110> component.

For specimens annealed under schedules A, B and C, weak
orientations scattering along the γ-fibre were observed due to
incomplete recrystallisation. With the increase of annealing
temperature and holding time, the texture components along
the γ-fibre gradually formed as shown in Fig. 6. During the
annealing process after cold rolling, a typical γ-fibre
recrystallisation texture was formed under schedule D with
strong intensity at the {334} <483> and {111} <112>
components.

2.3 Evolution of the grain boundary

After rolling and subsequent annealing processes, the initial
grain boundaries have been broken into mixed grain boundary
structures composed of low-angle boundaries (LABs), elon-
gated high-angle boundaries (HABs) and equiaxed new
HABs formed during recrystallisation. Figure 7 shows the
distribution of the misorientation angle and coincidence site
lattice (CSL) boundary of FSS 430 annealed under different
schedules. The misorientation angle distributions indicate that

0.3mm

Metallography samples
Fig. 1 Tensile tests based on
ASTM E8-E8M a dimensions of
the specimen used for tensile
tests, b sample before test, and c
sample after 20% extension
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Fig. 2 Stress-strain curves of FSS 430 under different rolling routes
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more LABs were formed during recrystallisation with increas-
ing annealing temperature and soaking time. This means that
the LABs gradual ly deve lop in to HABs dur ing
recrystallisation, which can be attributed to grain fragmenta-
tion caused by increasing strain [9]. The distributions of the
CSL boundaries are depicted in Fig. 7(b) and the∑3 boundary

is found to be dominant in the CSL boundaries. In general, the
∑3 boundaries show lower mobility whilst the∑5,∑7 and∑9
boundaries are known to have high mobility [22]. The total
fraction of the CSL boundaries shows a remarkable increase
as the specimens are annealed under increasing temperature
and soaking time. In addition, a noticeable increase in the

Fig. 3 IPF maps of the cold rolled and annealed FSS 430 processed under (a) schedule A, (b) 

(b)

(c)

(d)

(a)
RD

ND

Fig. 4 The inverse pole figure
(IPF) maps of the cold-rolled and
annealed FSS sheet processed
under (a) schedule A, (b) schedule
B, (c) schedule C and (d) schedule
D
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fraction of ∑3 boundaries is observed with higher annealing
temperature and soaking time, whilst the variation of the frac-
tion of high-mobility boundaries is small.

3 Discussion

3.1 The effect of annealing and the resultant
microstructure and texture on ridging behaviour

The effects of annealing and the resultant microstructure and
texture on the ridging severity of FSS during the forming
processes are discussed in this section. It is commonly ac-
knowledged that ridging is attributed mainly to the different
plastic deformation of neighbouring grains with different crys-
tal orientations after tensile deformation [23–27]. During the
rolling processes, the grains at the surface layer suffer from
shear strain whilst the grains at the central layers are deformed

due to plane strain. Pronounced texture gradients, such as the
{001} <110> and {115} <110> components, are formed at
central layers along with the formation of coarse bands whilst
refined bands are formed at surface layers. After rolling pro-
cesses, pancake-shaped grains survive and promote the for-
mation of coarse grain bands in FSS 430. Given that the coarse
bands with pronounced {115} <110> components are consid-
ered to be responsible for the ridging generation of FSS 430
after tensile deformation, a typical recrystallised texture with
less pronounced gradients is recommended to enhance the
ridging resistance of FSS 430.

To further investigate the correlation between annealing
schedules, recrystallised grains and ridging severity, the
recrystallisation fraction is calculated from the grain orienta-
tion spread (GOS) maps of FSS annealed under different
schedules. The GOS maps show average misorientation angle
between an average orientation of the grain and each orienta-
tion of scanned point. The microstructure of specimens can be
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Fig. 5 Grain size distribution of the cold-rolled and annealed FSS 430 sheet processed under different schedules a schedule A, b schedule B, c schedule
C and d schedule D
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distinguished to deformed and recrystallised region by GOS
value, which is defined to be 1° in the present study [12]. As
shown in Fig. 8. Drastic changes in the recrystallised fractions
can be observed with the increase of annealing temperature
and holding time. For specimens annealed under schedule D,
the recrystallised fraction exceeds 95% which indicates that
the grains were almost fully recrystallised. As a consequence,
a refined microstructure with a smaller average grain size was
formed with few coarse bands and better homogeneity inside
FSS.

To evaluate the effect of recrystallised grains on the ridging
generation of FSS, the impact of coarse grain bands is
analysed. After cold rolling, the specimens were dominated
by pancake-shaped grains with prominent bands of the cube
and α-fibre components. The coarse grain bands were present

inside the microstructure of specimens annealed under sched-
ules A, B and C (as shown in Fig. 4), whilst such coarse bands
were absent in the specimen processed under schedule D.
Along with the elimination of coarse bands in specimens dur-
ing recrystallisation, a remarkable reduction in ridging height
can be observed on specimens stretched along the RD with
20% extension.

It is known that the clustering of grains with different sizes
leads to varying yielding during forming due to the Hall-Petch
effect [28], and the plastic deformation of grains with different
sizes and Taylor factors can be different. The growth of grain
sizes, therefore, promotes the irregularity generated by rota-
tion and slip of grains during forming processes. To further
investigate the effect of the coarse band on the surface ridging
of FSS 430, the correlation between the coarse bands, average

(110)[001]

(111)[112]

(111)[110]

RD//<110>

ND// {111}

(e)

MAX=11.2

(b)

MAX=11.8

(a)

(d)

MAX=9.2

(c)

MAX=5.9

1
Fig. 6 ODFs (φ2 = 45°) of the
cold-rolled and annealed FSS 430
processed under (a) schedule A,
(b) schedule B, (c) schedule C and
(d) schedule D, and (e) location of
ideal orientations and fibres.
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grain size and texture are analysed in the present study.
Figure 9 shows the measured ridging height of FSS 430 with
different average grain sizes. It can be seen from the curve that
the ridging height is almost linearly dependent on the average
grain size. It is known that the recrystallised grain size is
dependent on the initial grain size before deformation and
the strain incorporated within a grain during deformation
[29, 30]. The coarse bands with cube orientation suffered less

rolling deformation and developed coarser ferrite grains after
recrystallisation, inducing inhomogeneity of grain sizes at dif-
ferent layers of FSS 430. The remaining coarse bands, there-
fore, govern the average grain size and ridging height of FSS
430 during the forming processes.

Another impact of coarse bands on ridging generation of
FSS is the texture. A comparison of the texture structure of
refined grains and coarse grains was made in order to further
investigate the correlation between grain bands and textures.
The ODF sections were constructed by considering both re-
fined grain bands and coarse grain bands of the cold-rolled
and annealed specimens (as shown in Fig. 10 a). The coarse
grain bands and refined grain bands are distinguished by the
GOS values. It was found that the texture in both coarse grain
bands and whole grain set were dominated by the {115}
<110> component as indicated in Figs. 10 b and d, whilst
the same in the refined grain set was dominated by a typical
γ-fibre texture, Fig. 10 c. The results indicate that the impact
of coarse grain bands on the texture of FSS can be dominant.
The formation of coarse grain bands promotes the incomplete
breakdown of crystals at different layers and the enhancement
of the strength of the {115} <110> component, which pro-
motes ridging generation on the surface of FSS 430 during the
subsequent forming process [9].

Figure 11 shows the orientation maps in specimens
annealed under different schedules. Combined with Table 3
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which shows the fractions of different texture components, a
slight decline of the {112} <110> component is observed with
increasing annealing temperature and soaking time. This can
be attributed to the refinement of the microstructure. It is
known that the {112} <110> component is formed along with
the generation of coarse bands at central layers [9]; the coarse
grain bands were eliminated during recrystallisation and the
{112} <110> components were, therefore, transformed into

other components during annealing processes. For specimens
annealed under schedule A, the fractions of the {111} <112>
and {334} <483> components are found to be the lowest.
With increasing annealing temperature and soaking time, re-
markable increases in the {111} <112> and {334} <483>
components are observed due to recrytallisation during an-
nealing. In contrast, the fraction of the Goss orientation de-
creased when annealed under schedules C and D. In addition,

Coarse grainsRefined grains(a)

(d)

MAX=11.2MAX=6.4

(c)

MAX=21.6

(b)

Fig. 10 ϕ2 = 45° ODF sections of cold-rolled and annealed samples: a microstructure of the FSS 430 specimen annealed under schedule C, b coarse
grains, c refined grains and d complete grain set
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(a)

(b)

Deviation angle=15º Goss

{334} <483> {111} <112>

{112} <110> {001} <110>

(d)

(c)

Fig. 11 Orientation maps of grains with 15° deviation from the ideal crystal orientation in specimens annealed under different schedules: (a) schedule A,
(b) schedule B, (c) schedule C and (d) schedule D

Table 3 Fractions of major
texture components in FSS 430
annealed under different
schedules

Samples Texture type

{001} <110> {112} <110> {111} <112> {334} <483> Goss

A 10.4 8.01 4.77 7.09 12.8

B 7.75 8.71 15.8 12.9 4.59

C 6.57 7.99 6.98 22.3 4.50

D 2.40 7.72 14.31 34.8 0.46
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the rotation of Goss components into the {111} <112> com-
ponent is presented during rolling processes [15], causing the
formation of a typical BCC structure.

During the rolling processes, many coarse bands were
formed with the {001} <001> component due to plane strain
compression. During recrystallisation, the {001} <110> com-
ponents transform into the {111} <112> component. The rate,
however, is quite low due to the low stored energy. Many
bands with the {001} <110> component, therefore, even sur-
vived after annealing processes and induced differential of
plastic deformation with neighbouring grains, giving rise to
the ridging height during the subsequent forming process. The
{001} <110> component, therefore, is commonly considered
to be the major component leading to ridging generation of
FSSs [31]. The reduction in the {001} <110> components,
therefore, is effective to improve the ridging severity of FSS
during forming processes. A comparison of Figs. 10 and 11
reveals that the fraction of the {001} <110> component de-
creases along with the increase in the recrystallised fraction.
During rolling processes, the {001} <110> component is
formed along with the formation of coarse grain bands. This
means that the reduction in the {001} <110> component in-
dicates refinement in both the microstructure and the texture
structure.

The recrystallisation during annealing promotes the micro-
structural refinement of FSS 430 and the formation of a typical

BCC texture structure with less pronounced gradients, giving
rise to the ridging resistance of FSS 430 during subsequent
forming processes.

3.2 The effect of annealing and the resultant
microstructure and texture on ridging behaviour

A quantitative assessment of the surface quality of the rolled
sheets was utilised to reveal the ridging severity of specimens
from sheets stretched by 20% parallel to the RD. Figure 12
shows the 3D surface topography of FSS 430 after tensile
deformation on the specimens processed under different an-
nealing schedules. It can be seen that the specimen annealed
under schedule A shows a rough surface with significant un-
dulations and ridges. The ridges are up to several centimetres
in length and the maximum distance between peaks and gaps
(ridging height) on the surface beyond 15 μm. In contrast, a
smooth surface is observed on specimens annealed under
schedule D. With increasing annealing temperature and hold-
ing time, the surface quality is found to be improved with
lower ridging height and fewer undulations on the surface of
FSS 430. For specimens with extended soaking time and in-
creased annealing temperature, remarkable improvement can
be observed on the ridging severity of FSS after tensile defor-
mation and a maximum of 50% reduction in the ridging height
can be achieved using optimised parameters during the

Fig. 12 3D surface topology of
FSS 430 after 20% extension: a
FSS annealed under schedule A,
b FSS annealed under schedule B,
c FSS annealed under schedule C
and d FSS annealed under
schedule D

Int J Adv Manuf Technol (2020) 107:4823–4836 4833



annealing process. This conclusion can be also supported by
research from Park et al. [12]. It was found that the ridging
height of FSS reduced by 50% with the soaking time in-
creased from 30 s to 5 h.

Figure 13 shows the waviness profiles of specimens
annealed under different schedules. The raw data reveal
pronounced undulations on the surface of FSS 430 with
shortwave noise and roughness. To eliminate noise and
enhance the accuracy of the results, the raw data were trans-
formed with a discrete Fourier transform so that the low-
frequency parts were removed. A roughness profile, there-
fore, is created by removing the long-wavelength compo-
nent from the primary profile and a waviness profile is

created by removing the short-wavelength component from
the primary profile. The ridging height is thereby calculated
by measuring the maximum gap between peaks and valleys
in the waviness profile. A comparison of the measured re-
sults between schedule A and D indicates that the ridging
height decreased from 12.3 to 8.8 μm with increasing an-
nealing temperature and soaking time. Table 4 shows the
low ridging height of FSS achieved by the proposed rolling
route compared with previous research. Therefore, the op-
timisation of rolling route by extending soaking time and
increasing annealing temperature is considered to be effec-
tive to improve the ridging resistance of FSS during subse-
quent forming processes.

(a)

(b)

m

m

m

m

(d)

m

m

m

m(c)

Fig. 13 Waviness profiles of FSS
430 along the TD after 20%
extension: a FSS annealed under
schedule A, b FSS annealed
under schedule B, c FSS annealed
under schedule C and d FSS
annealed under schedule D

Table 4 Achieved ridging height
of FSS 430 compared with
previous research

Samples In the present study Shin et al. [26] Park et al. [12] Huh et al. [32]

Ridging height (μm) 10.4 19.8 16.6 12.7
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4 Conclusions

Ridging is a ‘surface defect’ that is commonly encountered
during the forming process of FSS. A systematic study was
conducted in order to identify the effect of annealing sched-
ules on the microstructure, texture and ridging severity of
FSS 430 during subsequent forming processes. The major
conclusions derived from the present study are listed
below:

(1) During final annealing step, the specimens annealed un-
der 880 °C for 3 min (schedule D) were found to exhibit
the highest recrystallisation fraction of FSS 430, which
contributes to the microstructural refinement and
optimised texture structure. The ridging height was
found to be reduced with increasing recrystallisation
fraction due to the microstructural refinement, especially
in central layers of FSS 430.

(2) The formation of coarse grain bands promotes the in-
complete breakdown of crystals at different layers and
the enhancement of the strength of specific texture com-
ponents, which induces a raised ridging height on the
surface of FSS 430 during the forming process.

(3) A remarkable reduction in the {001} <110> component
was found along with increasing recrystallisation frac-
tion. With low stored energy and Taylor factor, the
{001} <110> component is considered to be one of the
major causes of ridging generation. With high tempera-
ture and extended soaking time during annealing, the
coarse bands with {112} <110> and {001} <110> com-
ponents can be refined to overcome the ridging defect in
FSS 430.
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