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Abstract
Additive manufacturing (AM) is a group of processes which manufacture a part by adding sequential layers of material on
each other. In the last decade, these processes have been extensively applied in industry for constructing small volumes of
complex, customized parts. Since parts are built layer-by-layer, the build orientation affects the surface quality and the
total cost of the part. The search for optimal build orientation is not trivial since these factors are, typically, in conflict with
each other. The major limitation of the methods described in the literature to choose the optimal build direction is in the
insufficient accuracy of the estimates of the manufacturing cost and of the surface quality. These factors are very complex
to be estimated, and accuracy in their evaluation requires methods that are very time-consuming. On the contrary, in
practical use, a multi-objective optimization process requires an objective function that is reliable and easy to be evaluated.
In order to overcome these problems, in this paper, original methods to estimate the manufacturing cost and surface quality
as a function of build orientation are presented. They are implemented, for the fused deposition modeling (FDM) tech-
nology, in a multi-objective optimization problem that is solved by an S-metric selection evolutionary multi-objective
algorithm (SMS-EMOA), obtaining an approximation of the Pareto front. The final selection of the recommended orien-
tation is performed by the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. Properly
designed case studies are used to evaluate the reliability of the proposed method, and the results are compared with the
state-of-the-art method to find optimal build orientation.
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1 Introduction

Additive manufacturing (AM) is defined by the ISO/ASTM
52900 [1] as “The process of joining materials to make parts
from 3D model data, usually layer upon layer, as opposed to
subtractive manufacturing and formative manufacturing
methodologies”. These technologies have great potential to
produce small volumes of complex, customized parts and
have many applications in aerospace, defense, automotive,
electronics, tool- and mold-making, energy, and biomedical

fields. According to [1], the AM technologies are classified
in seven categories: binder jetting, directed energy deposition,
material extrusion, material jetting, powder bed fusion, sheet
lamination, and vat photo-polymerization. Table 1 shows the
most important technologies and used materials for the seven
process materials.

All these processes involve the layering of the model,
which is a necessary operation to schedule out the actions
for the deposition of the material. This operation is performed
by assigning a build direction of the object that is orthogonal
to the build platform [1]. The selection of the build direction is
one of the most important issues involved in AM processes
that influences some factors such as the manufacturing cost,
build time, support material amount (for technologies such as
stereo-lithography (SLA), fused deposition modeling (FDM),
and selective laser melting (SLM)), the accuracy, and surface
finish of part surfaces [3]. Therefore, the determination of the
best build orientation is a challenging problem in the AM
setting. Some researchers have focused on obtaining the best
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or near-optimal build orientation, by considering different ob-
jectives. The most important optimization methods published
in the related literature can be grouped into three different
main categories:

– Single-objective optimization [3–8]. The optimal build
direction is obtained by analyzing separately each of the
factors involved in the search for the best direction (vol-
umetric error [1]; cylindricity and flatness errors [5]; sup-
port volume [6]; surface quality [7]; build time [8]). The
best solution is obtained by optimizing for a single factor,
without taking into account the complexity of the conflict
with the other factors in the search for the final result.

– Multi-objective optimization [9–15]. By this approach,
the objective function is, typically, expressed as a weight-
ed sum of the factors affecting the choice of the optimal
build orientation of the part. The weights specify the rel-
ative importance of each factor. With the aim to speed-up
the identification of the solution, metaheuristics algo-
rithms, such as the genetic algorithm [9, 10, 13, 15] or
swarm optimization algorithm [12], are used. These ap-
proaches have the problems of convergence and also the
low quality of the solutions [16].

– Evaluation methods [16–22]. These are a multi-attribute
decision-making problem for which the factors affecting
the orientation choice are treated as attributes. Evaluation
methods are the most interesting approach to solve the
problem here discussed since they analyze the optimiza-
tion problem in its entirety.

Evaluation methods are based on two main steps [17]:

– Identification of a significant set of candidate orientations
– Selecting the most suitable one

Both these phases have a significant effect on determining
the best build orientation. The candidate orientations are car-
ried out by different criteria, generally using the build time and
the surface roughness as attributes of the optimization prob-
lem. Padhye and Deb [18, 21] suggested generating the ap-
proximations of the Pareto front by means of the non-
dominated sorting genetic algorithm-II (NSGA-II) and
multi-objective particle swarm optimizers (MOPSO).
Khodaygan and Golmohammadi [22] modeled the problem
variables by utilizing the Kriging method and the NSGA-II
to obtain the Pareto front. Since the qualities of the decision
result highly depend on the qualities of predesigned candi-
dates, in order to extend the space of candidate solutions,
Qie et al. [16] proposed the PID feedback control technique
based on the quaternion rotation and the user’s requirements.
The quaternion rotation is described as an ordered pair q = (s,
v), where: s ¼ cos ϕ

�
2

� �
, v ¼ u•sin ϕ

�
2

� �
, ϕ = given angle

and u = unit vector of the fixed axis.
The selection of the best build direction among the alterna-

tive orientations is carried out according to the ranking of
results by applying one the following three techniques:

– Three decision-making techniques, including aspiration
point, marginal utility, and L2 metric [18, 21].

Table 1 Range of AM technologies [2]

Process Categories Technology Materials

Binder jetting 3D printing (3DP) Metal
Polymer
Ceramic

Link-jetting

S-print

M-print

Directed energy deposition Direct metal deposition (DMD) Metal
Power
Wire

Laser deposition (LD)

Laser consolidation (LC)

Electron beam direct melting (EBDM)

Material extrusion Fused deposition modeling (FDM) or fused filament fabrication (FFF) Polymer

Material jetting Polyject Photopolymer
WaxInk-jetting

Thermojet

Powder bed fusion Selective laser sintering (SLS) Metal
Polymer
Ceramic

Selective laser melting (SLM)

Electron beam melting (EBM)

Sheet lamination Ultrasonic consolidation (UC) Hybrids
Metallic
Ceramic

Laminated object manufacture (LOM)

Vat photo-polymerization Stereo-lithography (SLA) Photopolymer
CeramicDigital light processing (DLP)

Int J Adv Manuf Technol (2020) 108:263–276264



– Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) approach [22].

– Ordered weighted averaging (OWA) operator [16].

Since in this optimization problem the influencing factors
(typically they are: surface quality, support volume, and build
time) must be evaluated on the geometric model of the object
to be built, the trustworthiness of the evaluated best build
direction strictly depends on the accuracy of the methods used
to estimate them. The published methods in the related litera-
ture present some algorithms for the estimation of the typical
factors used in the optimization problem: surface quality,
build time, and support volume.

Surface quality is often evaluated as the surface roughness
that does not take into account the staircase effect [23]. The
methods for build time evaluation, usually, do not take into
account the complexity of the object or/and the time required
for support deposition (for technologies that utilize support
structures) [24]. The support volume is generally estimated
by a simplified approach or roughly by indirect measures
(the sum of the height of the triangles’ barycentre or the total
area of the overhanging triangles).

In this paper, a new formulation of the models for the total
cost of the part and surface quality evaluation is proposed.
Based on them, two conflicting objective functions, defined
in terms of build direction, are defined. The optimization prob-
lem is formulated, in terms of the simultaneous minimization
of both these objectives under some constraints, and it is
solved by an evaluation method. The identification of alterna-
tive orientations is carried out by an approximation of the
Pareto front, obtained by the S-metric selection evolutionary
multi-objective algorithm (SMS-EMOA). Among the
resulting candidate solutions, the best one is selected by the
TOPSIS method.

The proposed method, implemented for the fused deposi-
tion modeling (FDM or fused filament fabrication FFF) that is
the most widespread technology [20] (for its ease of use, no
need for supervision, the use of environmentally safematerials
and its cost-effectiveness), is tested for some critical cases and
compared with the state-of-the-art.

2 Related works

A reliable and implementable optimization method for the
search for the optimal deposition direction requires that all
the most important influencing factors are taken into account
and that these factors are calculated with good reliability and
within a reasonable time frame. The most significant factors
used to evaluate the quality of the chosen direction are surface
quality, support volume, and build time. These factors are
nontrivial to determine, and different approaches can be used

to determine them. In this section, the most relevant methods,
published in the related literature, are presented and discussed.

2.1 Surface quality estimation methods

Typically, the surface quality of an object obtained with an
additive manufacturing technology is calculated as the area-
weighted average of the estimated roughness of each triangle
[7, 16, 18, 22]. All these methods are affected by a fundamen-
tal error: they measure the surface quality with the roughness
parameter Ra that does not take into account the staircase
effect, as demonstrated in [23]. The staircase effect is the most
significant component of the typical surface texture of an ob-
ject build by AM. For this reason, the choice to use Ra to
measure the surface quality misrepresents the real extent of
the surface defectiveness, since Ra is obtained by applying a
high-pass filter to the primary profile. In order to overcome
this limitation, Di Angelo et al. [23] proposed the use of the
parameter Pa that evaluates the arithmetical mean deviation of
the manufactured profile from the expected smooth profile. In
addition, to calculate the value of this parameter for the entire
range of angle values, they proposed an approximation of the
profile with ellipses. This makes it possible to assess with
greater reliability the expected manufacturing error produced
by the material deposition process.

2.2 Support volume estimation methods

In some additive manufacturing technologies, such as FDM,
SLA, and SLM, support structures are required to sustain
overhanging features. Support structures require extra materi-
al to be added to the part that has to be removed during the
post-processing. The building of the supports affects build
time, the total cost of the part, and surface quality. The effect
of the supports on the build time and total cost can be evalu-
ated as a function of their volume. The volume and the build
time of the supports required to manufacture by AM an
assigned 3D geometric model can be estimated by a complete
simulation of the manufacturing process. This type of analysis
is very time-consuming, and, in practice, it is not suitable for
estimating data in optimization methods. For this reason, in
recent years, several researchers have proposed methods that
approximate this factor by simplified approaches. Khodayan
and Golmohammad in [22] approximate the amount of sup-
port material with a linear dimension that is the sum of the
average of vertical coordinates of the barycenter of downward
facets, weighted on areas, and multiplied for the deviation of
downward faces from the z-axis (deposition direction). Ga
et al. in [25] proposed an indirect 2D measurement of support
volume: the sum of the projection onto the build platform of
each mesh triangle for which the angle between the normal of
the triangle and the deposition direction is greater than 135°.
Similar approaches are proposed by Zwier et al. [6] and
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Singhal et al. [11]. Also, these methods do not use a parameter
that can be related to the quantity of material since they do not
take into account the height of the supports.

In Qie et al. [16], the total volume is evaluated as the sum of
the volume of the build platform and the sum of the volume of
triangular prisms and pyramids under triangles requiring sup-
port. In the implementation reported in the paper, the method
does not to take into account the case in which the supporting
prism stands on a part of the same object.

Paul and Anand in [2] proposed a voxel-based approach for
calculating support structures. In the algorithm, the object de-
fined by 3D-tessellated surfaces is first converted to a voxel
representation. Then, the support volume is calculated as the
sum of the volume of a trapped empty voxel. The voxelization
of tessellated models, typically, has a high computational costs
[19] that is not compatible with optimization method which
required many iterations.

2.3 Build time estimation methods

Build time is one of the most important factors considered in
the estimation of the manufacturing costs of a part produced
by using an AM process. The build time estimation methods
presented in the literature are of two types: detailed analysis-
based and parametric-based approaches. The former needs
that all the operations required by the AM process to manu-
facture the object are known and their execution times are
evaluated. These methods can only be used if combined with
the tool path generator, dedicated to a specific AM machine.
Since, this process for each build direction, the elaboration
process takes a few dozen seconds; as a consequence, these
methods are in practice unusable to support the search for the
optimal deposition direction.

In the last years, researchers aimed their efforts at the de-
velopment of parametric models in which the build time is
expressed as a function of some driving factors, simple to be
evaluated from the analysis of the 3Dmodel of the object to be
manufactured. Some of the most significant elements which
affect build time can be evaluated relatively easily; for
example:

& Number of slices necessary to build the object and the
ratio of the area of the facets that require support to the
total one [6].

& The height of the object as oriented in the AM machine
and the ratio of the area of the facets that require support to
the total one [11].

& The height of the object as oriented in the AM machine
and the mean value of the support height [22].

& The height of the object and the diagonal of the bounding
box as oriented in the AM [13].

These factors do not include the object complexity that
sometimes can affect widely the build time estimations. Di
Angelo and Di Stefano [24] proposed a more complete model
for build time estimation for the fused deposition modeling
(FDM) technology, proposed to be used in e-commerce.
Although this method is more complex than others proposed
in the literature, it includes parameters that are easy to evalu-
ate. This method requires, however, the generation of the ex-
ternal surfaces of the support volume; this phase is too time-
consuming for its implementation in optimization methods.

Based on previous considerations, a modified version of
this method has been used to estimate build time in this work.

3 The proposed evaluation method

Most engineering optimization problems have several objec-
tives to be optimized at the same time. The problems in which
the objectives are usually conflicting in nature are identified as
multi-objective optimization problems (MOPs) and are de-
fined as follows [26]:

min F xð Þ ¼ f 1 xð Þ; f 2 xð Þ;…; f p xð Þ
n o
subject to x∈X

MOPð Þ ð1Þ

involving (p ≥ 2) conflicting objective function fi :ℝ
n⟶ℝ,

which must be minimized simultaneously. The decision vec-
tors x = (x1, x2,…., xn)

T belong to the nonempty feasible re-
gion X ⊂ℝn. Objective vectors are images of decision vectors
and consist of objective values z = F(x) = (f1(x), f2(x),…,
fp(x))

T. In multi-objective optimization, a decision vector x′ ∈
X is called Pareto optimal solution if:

∄x∈X : f i xð Þ≤ f i x
0

� �
for all i

¼ 1;…; p and f j xð Þ≤ f j x
0

� �
for at least one index j:

In this case, F(x′) is called a non-dominated point, and the
set of all non-dominated points is called the Pareto front. Since
the Pareto front is often an infinite set of points, a suitable
approximation must be used to obtain a manageable number
of Pareto optimal solutions, whose images under F are uni-
formly distributed on the complete Pareto front. Then, a deci-
sion-maker, by analyzing a specified number of the Pareto
optimal solutions, selects a final solution. So, consistently
with an evaluation method, the proposed one consists of the
following three steps:

– Definition of the objective functions.
– Solution of the multi-objective optimization problem.
– Selection of the recommended orientation.
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3.1 Definition of the objective functions

In this paper, the optimization of the build orientation is con-
sidered such that the total build cost and surface quality of the
part are the objective functions. Both total build cost and
surface quality can be evaluated as functions of the object
orientation in the AM machine d(θx, θy). The third parameter
θz is not considered since, if it is executed as the last transfor-
mation after the rotations around x and y, each rotation around
the z-axis has no effect on the object manufacturing process
(build time and surface quality). The bi-objective optimization
problem is formulated as follows:

minPa θx; θy
� � ¼ surface quality of the part;

minC θx; θy
� � ¼ total build cost of the part;

such that 0≤θx; θy≤2π:

where the rotation angles around the coordinate axes x and y
are the decision variables d(θx, θy), see Fig. 1.

3.1.1 Definition of the surface quality

The surface quality is one of the principal factors to be con-
sidered in order to choose the build direction of an object
manufactured by AM. Surface quality depends on the type
of AM processes, applied material, build orientation, layer
thickness, and post-processing requirements. It must be noted
that the build orientation and layer thickness are independent
variables of the production process to choose, which signifi-
cantly affects the surface quality of the object. Accordingly, it
is essential to use a valid and reliable model for surface quality
prediction so that the optimization process can achieve a so-
lution of a real high-quality surface.

In this work, the method proposed by Di Angelo and Di
Stefano in [18] is used. They proposed the index Pa (ISO
4287) as a more appropriate index to evaluate the surface
quality. Pa is estimated by a model that approximates the sur-
face profile of FDM-produced objects with a set of elliptical
arcs reproducing the typical texture surface of AM parts
(Fig. 2). This model permits to estimate numerically Pa for
the entire range of the orientation of the surface with respect to
the growing direction of the object, evaluated as the deposition
angle θi = arccos(z • ni(d)). This model performs a good eval-
uation of the arithmetical mean deviation of the manufactured
profile from the smooth ideal profile.

The index to evaluate the surface quality of the part is
expressed by the following formulation:

Pa dð Þ ¼ ∑nT
i¼1Pai dð Þ•Ai

∑nT
i¼1Ai

ð2Þ

where Pai zð Þ is the estimation of the surface quality of the ith
triangular face, Ai is the face area, and nT is the number of
triangular faces.

3.1.2 Definition of the total build cost of the part

The total build cost includes three main components, pre-
build cost, build cost, and post-processing cost. The pre-build
cost is related to all preparations done before building the part
and is considered as a fixed value to each object produced (for
example verification of the integrity of the geometric model
and eventual repair, definition of the layers’ thickness and
build direction). Due to the pre-build cost being fixed, it does
not affect the search for the optimal build direction, so that in
the following it is neglected.

The build cost contains the material’s cost, support mate-
rial’s cost, power consumption, and other fixed costs (such as
machine costs). Since the volume of the object does not
change when the build direction changes, also this component
of the total cost is neglected from the optimization process.

The support material’s cost (Csup) is expressed as:

Csup dð Þ ¼ Usup•Vsup dð Þ

where

– Vsup(d) is the volume of the support material, which is
dependent on the build direction (d)

– Usup is the relative unit cost of the support material

The power consumption cost (Ccons) and the other fixed
costs (Cfixed) are assumed to be proportional to the build time
tf (d):

Ccons t f
� � ¼ Kcons•t f dð Þ

Cfixed t f
� � ¼ Kfixed•t f dð Þ

z

x

y

d

θx

θy

dyz

dxz

Fig. 1 Rotating the part around the axes x and y
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Post-processing costs (Crsup) involve removing the support
structures; it is calculated as the product of the unitary cost of
surface finishing (Ursup) and the sum of the triangles’ area
requiring supports (Asup):

Crsup dð Þ ¼ Asup dð Þ•Ursup

So, the expression of the component (Cd) of the total build
cost, which is a function of the build direction d, is as follows:

Cd dð Þ ¼ Usup•Vsup dð Þ þ Kcons þ Kfixed
� �

•t f dð Þ
þ Asup dð Þ•Ursup ð3Þ

The total build cost depends on two factors: build time and
support volume, and each of them is a function of the build
direction. Due to the difficulty to estimate them, appropriate
simplified models are required rather than a complete model
that is very time-consuming, and, for this reason, they are not
useful to be used in an optimization method.

Estimation of the build time Generally speaking, the build
time is the sum of the time to deposit each layer and the
delay time between two successive layers. The time to
construct each layer is the time required for forming the
contours and filling the interior parts with tool path loops
(Fig. 3). In addition, the time required to complete one

tool path is proportional to the tool path length and to the
number of repositioning actions of the forming tool. The
delay time between subsequent layers’ deposition, called
the recoating time, takes into account the time which is
necessary for the cooling or the solidification of the de-
posited material, the nonproductive time for the proto-
type’s vertical translation.

From the analysis of the state-of-the-art, reported in
Section 2, the most promising parametric method for build
time estimation is proposed by the authors in [19]. As previ-
ously mentioned, this method takes into account the most
important driving factors affecting the build time. An its im-
portant limitation is the needing of the voxelization of the
supports, which requires a time-consuming computational
process, so that it is therefore not suitable for the optimization
process involving many processing cycles. Furthermore, the
used formulation of driving cost factors does not allow to
estimate with the same accuracy the build time of thin and
squat objects. This last aspect is due to that, in the contribution
of the build time of the hatching, it is not taken in account that
the speed of execution of the single tract of the deposition tool
path loops depends on the acceleration that it can assume,
which is linked its length; the greater the length, the greater
the speed attainable from the tool and the lower the execution
time.

Fabrication orientation
Normal vector

Layers 

Surface profile

θ
mean line

An Ap

Fig. 2 Illustration of the surface profile of FDM

Layer contours
Tool path loops

τrepositioning

ith layer

z

x

y

L

nj,x-y

Fig. 3 Definition of some driving
build time factors [19]
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Based on the previous considerations, considering also the
contribution of the support structures, the build time of layer-
manufactured objects can result from the sum of seven differ-
ent components:

t f ¼ tc−mat þ th−mat þ trep−mat þ tc−sup þ th−sup þ trep−sup

þ tdelay ð4Þ

where

– tc-mat is the total time required for the material contour
– th-mat is the total time required for path length of hatching

material
– trep-mat is the total time required for repositioning of the

material deposition tool
– tc-sup is the total scanning time of the supports’ contour
– th-sup is the total scanning time for path length of hatching

supports
– trep-sup is the total time required for repositioning of the

support deposition tool

a) 

Base plane

Bounding box

b) c) 
Plane x-y

node

ray

d)
e)

i
j pi,j,0

pi,j,1

pi,j,2

pi,j,3

pi,j,4

pi,j,5

Frontal view
f)

∗

∗

pi,j,0
pi,j,1

pi,j,2

pi,j,3

pi,j,4

pi,j,5

Fig. 5 Support structure approximation phases

start

.stl File

Bounding box

Partitioning by 
cubic grid

Node 
identification

Ray tracing Ray-triangle 
intersection

Intersection 
sorting by z 
coordinates 

Identification 
of support 
structures

Support volume

Fig. 4 Flow-chart of the proposed
method to estimate the support
volume
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– tdelay is the total delay time between subsequent layers’
deposition

By using the driving cost factors proposed in [19], the
expression of the build time is:

BTAQ ¼ αmat•pmat þ βmat•
Vmat−pmat•L

Khat;m

� �
•IDmat þ γmat•nreposmat þ αsup•psupþ

þβsup• Vsup−psup•L
� �

•IDsup

ð5Þ
where (Fig. 3)

– α is the proportionality coefficient for the total length of
layers’ contour

– β is the proportionality coefficient for path length of
hatching material

– γ is the proportionality coefficient for tip number of
repositions

– L is slicing thickness
– V is volume

– p ¼ ∑nT
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− d•nið Þ2ð Þp

�Ai

L is the total length of layers’ con-
tour [19]

– nT is the number of model triangles
– d is the object orientation
– Ai is the area of the i

th triangular face
– ni is the unit normal vector of the ith triangular face

– nrepos ¼ ∑nT
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− d•nið Þ2ð Þp

�Ai�jτ•ni;xyj
H�L is the number of repo-

sitions [19]
– τ is the hatching vector; this model has suited only for

rectangular hatching of the contour
– ni,xy is the unit normal vector of the ith triangular face

projected onto the x-y plane
– H is the hatch distance between two subsequent segments

of tool path
– ID [%] is the infill density

– Khat,m is a constant value taking into account the object
slenderness

The subscript mat refers to material, and sup refers to
support.

In this paper, a new expression of th-mat is implemented
compared to the model proposed in [19]: the contribution of
the build time due to the material hatching is a function of a
constant whose value varies with the ratio (Vmat − pmat • L)/
Vmat that is assumed as an indirect measure, together with
the number of repositions, of the degree of the slimness of
the object. Furthermore, in the proposed method, the trep-sup
and tdelay are neglected: the first one since it requires the
voxelization of the support structures, and the latter in accor-
dance with an analysis of the independence of the parameters.

Estimation of the support volume Support structures are used
in some AM technologies whenever there are overhanging
features. In order to overcome the limitations of the published
algorithms for estimation of the support structures (more de-
tails are in Section 2.2), in this paper, a new method, suitable
for the implementation of multi-objective optimization, is pro-
posed. Its flow-chart is depicted in Fig. 4.

Starting from the 3D model of the object to be
manufactured defined in terms of external tessellated surfaces
(Fig. 5a), the bounding box is constructed (Fig. 5b). The
bounding is defined by considering also the build platform
that the machine deposits and on which the object is built.
The bounding box is partitioned in number nc cubes
(Fig. 5c) whose dimension is defined as follows:

dgrid ¼
ffiffiffiffiffiffi
Vx

nc
3

r
ð6Þ

where Vx is the bounding-box volume. On the plane x-y, the
center of each square is defined, and each of them is the anchor-
age point of a ray (ri,j) parallel to the deposition direction
(Fig. 5d). For each ray, the Möller–Trumbore algorithm [27] is
applied to find the intersections with mesh triangles (Fig. 5e).
The intersections, sorted by z-coordinate, divide the ri,j into dif-
ferent tracts. The segments r*i; j;k that are internal to the bounding
box and external to the geometric model are used to measure the
extension of the support structure (Fig. 5f highlighted in green).
The volume of supports is determined as follows:

Vsup;AQ dð Þ ¼ IDsup• ∑r*i; j;k
� �

• dgrid
� �2 ð7Þ

where IDsup [%] is the infill density for the support structures.

3.2 Multi-objective optimization problem

The two objective functions (build cost and surface
quality) are very time-consuming to be calculated, and, in

Table 2 Principal technical specifications of the used layer
manufacturing machine

Company German RepRap

Process FDM

Machine X350

Maximum working volume 350 mm× 200 mm× 210 mm

Deposition direction 45°

Lmat and Lsup 0.2 mm

Hmat and Hsup 0.65 mm

IDmat 0.25%

IDsup 0.15%
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the optimization problem here considered, they must be
discretely calculated in order to approximate the objective
functions in their entire definition field. In order to approx-
imate these nonlinear functions with high accuracy, the
radial basis function (RBF) method is employed. In the
proposed method, the Gaussian and linear expressions of
radial basis functions are used, respectively, to approxi-
mate the cost to manufacture the part and the index Pa,
each as a function of the deposition direction d.

In this work, in order to obtain an approximation of the
Pareto front, the S-metric selection evolutionary multi-
objective algorithm (SMS-EMOA) [28] is used. It is a multi-
objective evolutionary algorithm that uses the hypervolume
indicator as a selection measure during the solution process.
The maximum number of the function evaluations is consid-
ered as the stop condition in SMS-EMOA, and the population
size and the maximum number of the function evaluations are
considered to be, respectively, 200 and 10,000.

3.3 Selection of the recommended orientation

All solutions obtained by SMS-EMOA are equally good in the
sense of Pareto optimality; the aim of the decision-based
method is to choose the better solution among the solutions
in the Pareto frontier. Among the decision-based method
available in the literature, in this paper the TOPSIS is chosen.

It is frequently used ([17, 29]) to rank the obtained solutions
and select a solution among the Pareto optimal ones.

The TOPSIS method selects a solution with the smallest
Euclidean distance from the ideal point and the largest
Euclidean distance from the nadir point. The nadir point con-
sists of worst values for all objectives in the Pareto front. The
ideal point combines the best values for the two objectives,
and the nadir point consists of their worst values in the Pareto
front. In addition, the decision-based method determines a
weighted vectorW = [w1,w2]

T such that w1 +w2 = 1, in which
wi is the relative importance assigned to ith objective function.
In the optimization cases performed in this work, the weights
are set as w1 =w2 = 0.5.

4 Results

The proposed method has been implemented using original
software coded in MATLAB®. It requires that some charac-
teristic technical parameters of the prototyping machine (L,H,
τ, W, IDmat, IDsup) and the driving factors for build time and
total cost must be specified. All the experiments analyzed
refer to FDM technology whose technical specifications are
quoted in Table 2.

A specific experimentation was carried out to determine the
driving factors for build time estimation as defined in Eq. (4).
For this purpose, the set of experiments described in [19] is
carried out: the obtained values of the coefficients are reported
in Table 3. In Table 4, the economic parameters used for the
total build cost evaluation (Eq. (3)) are summarized.

In order to evaluate the accuracy of the proposed method in
the identification of the best deposition orientation, selected
test cases have been designed (Fig. 6). The first test case
(Fig. 6a) is the well-known Stanford bunny (https://www.cc.
gatech.edu/~turk/bunny/bunny.html). This model is a critical
case, especially for the build time estimation methods, since it
has both squat and thin structures, respectively corresponding
to the body and the ears. The second test case (Fig. 6b) is a
thin-walled cover with external surfaces oriented at different
angles with respect to the potential deposition direction. The
third and fourth test cases (Fig. 6c, d) are typical covers of
industrial products, which have different values of thickness
due to the presence of holes or ribs. The fifth test case is taken
from the literature ([6, 17]).

In Table 5, the support volume (Vsup, AQ(d0)), the build time
(BTAQ(d0)), and the surface quality (Pa d0ð Þ ) are estimated for
the initial configuration (d0) by using the proposed method. In
the same table, the support volume (Vsup, R) and the build time
(BTR) are determined bymanufacturing each object. The com-
parison of the proposed method with the real values shows
that percentage errors are always low for both, build time and
support volume. The maximum error value for support volume

Table 3 Values of the coefficients of the mathematical model for build
time estimation

Coefficient Value

αmat 3.23 × 10−3

βmat 5.04 × 10−5

γmat 7.52 × 10−5

αsup 7.34 × 10−4

βsup 7.52 × 10−5

Khat,m
Vmat−pmat ∙L

Vmat
≤0:9 1.0

0:9< Vmat−pmat ∙L
Vmat

≤0:955 1.5

0:955< Vmat−pmat ∙L
Vmat

≤0:975 2.0
Vmat−pmat ∙L

Vmat
>0:975 4.25

Table 4 Values of the
coefficients of the
mathematical model (3)
for total build cost
estimation (X350
machine)

Parameter Value

Umat 5.4 × 10−5 €/mm3 (ABS)

Usup Umat

Kcons 0.013 €/h

Kfixed 18.3 €/h

Ursup 10−6 €/mm2
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is 5.97% for casing cover and for build time is 6.92% for
bunny.

In Table 6, the support volume (Vsup, R(dAQ)), the build time
(BTR(dAQ)), and the surface quality (Pa dAQ

� �
) obtained by

manufacturing the objects in the optimal build orientations

(dAQ) as estimated by the proposed optimization method
(Fig. 7, AQ method) are compared with Vsup, AQ(dAQ) and
BTAQ(dAQ). The percentage errors can be considered very
small, since the estimations are obtained by parametric
methods that approximate the real values, without

a) bunny
155.7 mm × 120.7 mm × 154.3 mm b) casing cover

170.7 mm × 140.1 mm × 176.3 mm

c) upper cover
110.9 mm × 37.7 mm × 81mm

d) lower cover
109.8 mm × 81 mm × 28.4 mm

e) base
32.5 mm × 84.5 mm × 50.5 mm

Fig. 6 The test cases in initial configurations

Table 5 Estimation of supports volume, build time, and surface quality for the initial configurations

Test cases

Bunny Casing cover Upper cover Lower cover Base

Support volume (mm3) Vsup, AQ(d0) 45,043.5 337,575 15,167 17,257 1696.5

Vsup, R(d0) 46,690 318,550 14,760 16,420 1720

Differences (%) 3.53% 5.97% 2.76% 5.10% 1.37%

Build time (min) BTAQ(d0) 1824.3 3736.94 373.2 396.97 166.67

BTR(d0) 1960 3624 364 379 168

Differences (%) 6.92% 3.12% 2.53% 4.74% 0.79%

Pa d0ð Þ (μm) 21.64 21.24 15.5 26.82 12.57
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implementing the complex strategies performed by an addi-
tive manufacturing machine.

The optimal build directions obtained by the proposed
method are compared with those obtained with three other
methods described in the literature ([6, 10, 17]) and with the
software Magics (Materialise Magics® 24.01). The KGmeth-
od [17] has been implemented by setting wBuildTime =
wRoughness = 0.5. For the method proposed by Phanak and
Pande in [10] (PP method) and that proposed by
Thrimurthulu et al. in [6] (TPR method), the optimal direction
are taken from the papers where the methods are described.
The related test cases are bunny and base. The tools available
in Magics® have been used to search for directions of the
deposition so that the height of the object (dM−zmin ) and the
surface of the supports (dM−Asmin ) are minimal. In Fig. 7, the
optimized configurations obtained by the different methods

are depicted. The surface quality is evaluated by using the Pa

dð Þ parameter.
In Table 7, the real values of support volume, build

time, and surface quality are reported, determined for
the different optimal configurations obtained with each
method. For each test case, it is highlighted in bold the
best values of support volume, build time, and surface
quality are evidenced in bold. Generally speaking,
Magics® have the limitations of each single-objective
optimization method: the best solution is obtained by
optimizing for a single factor, without taking into ac-
count the complexity of the conflict with the other ones
in the search for the final result. Furthermore, it is not
always correct to consider the height of the object
linked to the build time; the dM−zmin configuration is
not always the shorter time configuration. The dM−Asmin
configurations do not seem to minimize any of the fac-
tors here considered.

The optimal build orientation found by the AQ
method performs, simultaneously, better surface quality
(lower level of Pa parameter) and a lower value of
support volume and build time for casing cover, lower
cover, and base. For the upper cover test case, the AQ

method performs a solution that, with respect to that
obtained with the KG method, has higher values of
build time and support volume but a better quality of
the surface. Lastly, for bunny, with the configuration
resulting from the AQ method, a surface quality slightly
lower (with respect to the PP method) and also signif-
icantly shorter build time and lower supports volume are
obtained.

5 Conclusions

The most important factors measuring the performances of an
additive manufacturing production are the build costs, the sur-
face quality, and the geometric accuracy. In most of the addi-
tive technologies, these factors are mainly affected by the
build orientation, which is one the main technological param-
eters to be settled. In a competitive global market, an accurate
prediction of the best build orientation is strategic in order to
reduce the offer price and maximizing the object quality.

In order to perform a valid determination of the best build
direction, an accurate estimation of above-mentioned critical
factors is mandatory that are not trivial to be evaluated. This is
especially true when the exact additive manufacturing-based
machine activities are unknown, cannot be easily estimated,
and it is very time-consuming to perform them without
slowing down every iterative optimization procedure. It is a
common opinion among researchers, verifiable in the related
literature, that the build time, the support volume, and the
surface quality significantly affect the evaluation of the costs
and quality of many technologies such as SLA, FDM, SLM,
etc.

The strength of the method proposed in this paper is in the
way it is used to perform an accurate estimate of the previous-
ly identified factors (build time, support material, and surface
quality). Efficient and general-purpose methods, based on
parametric models, are introduced. They are specifically suit-
ed to be used in optimization problems where the solution
requires a lot of iterations and their repetitive evaluations.

Table 6 Estimation of supports volume, build time, and surface quality for the optimal configurations obtained by the proposed method

Test cases

Bunny Casing cover Upper cover Lower cover Base

Support volume (mm3) Vsup, AQ(dAQ) 75,330 55,666.5 14,689 12,417 1696.5

Vsup, R(dAQ) 77,240 53,370 14,740 12,380 1720

Differences (%) 2.47% 4.30% 0.35% 0.30% 1.37%

Build time (min) BTAQ(dAQ) 2050 1663.4 370.3 323.67 166.67

BTR(dAQ) 2228 1697 363 321 168

Differences (%) 7.99% 1.98% 2.01% 0.83% 0.79%

Pa dAQ
� �

(μm) 21.11 14.52 15.5 16.93 12.57

Int J Adv Manuf Technol (2020) 108:263–276 273



The process to find the best build direction consists of the
following three main steps:

– Definition of the objective functions and their approxima-
tion with the RBFs.

– The solution of the multi-objective optimization problem
by the SMS-EMOA algorithm, obtaining an approxima-
tion of the Pareto front.

– Selection of the recommended orientation by the TOPSIS
method.

z

base

AQ method KG method [22] TPR method [9] PP method [10]

bunny

x y

casing cover

upper cover

lower cover

dAQ = (5.8636, 6.0241)

dKG = (4.6325, 2.8832)

dAQ = (3.1416, 3.1416)

dKG = (3.1399, 3.2014)

dTPR = (6.0737, 0.1427)

d
KG

= (1.6510, 1.7287) d
PP

= (0.8314, 0.0633) = (4.5443, 3.0951) = (1.8072, 2.7182)

d
AQ

= (1.5708, 1.5708) = (4.3475, 3.1416) = (2.3562, 3.9270)

d
KG

= (4.7132, 1.5664) = (4.6224, 1.6608) = (1.2116, 1.1127)

d
AQ

= (1.5547, 4.7137)
= (0.0039, 0.0023) = (3.7879, 2.7851)

d
AQ

= (4.7075, 1.5750) d
KG

= (5.9516, 0.2945)

= (0, 1.5708) = (5.4978, 5.4978)

Magics® - zmin Magics® - Asup,min

Fig. 7 Optimal direction performed with the methods here considered
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The proposed method, calibrated and tested for the
FDM technology, has been compared in the analysis of
some critical cases with methods at the state-of-the-art.
The obtained results prove that the proposed method esti-
mates build time and the support volume with a smaller
percentage error compared with other methods here ana-
lyzed. In addition, the considered surface quality criterion
is more accurate in evaluating the staircase effect, which
is the most important contribution to surface quality loss.
All this has clear consequences for the resulting optimized
build directions: as it is evident in almost all of the exam-
ined cases, the proposed method seems to overcome the
limitations of the methods at the state of art, which incor-
rectly detects the build direction driving factors.

Future efforts will be addressed to introduce specific
corrective measures to the proposed models will be intro-
duced for extending this method to other additive
manufacturing technologies.

Furthermore, efforts will be addressed to take into
account in the optimization process other important fac-
tors concerning the quality of the produced object, such
as geometric and dimensional errors. At this purpose,
the main problem to be solved is in the lack of gener-
ality of the models that can be used to predict the geo-
metric deformation. It depends on too many different
factors such as the AM technology used and its control
parameters, the operating conditions, etc.
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