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Study of using cutting chip color to the tool wear prediction

Shao-Hsien Chen1
& Zhi-Rong Luo2

Received: 5 February 2020 /Accepted: 22 April 2020
# The Author(s) 2020

Abstract
In this study, the correlation between chip surface chromaticity and wear of cutting tools is established through experiments, and
a system for judging and predicting tool wear by observing chip color is proposed. At present, the life prediction of cutting tools is
indirectly measured and predicted by using vibration and current. In this study, chip color change is used to predict tool wear, and
back-propagation Artificial Neural Networks (ANN) is used to predict and verify. The average error percentage between the
predicted value and the actual value of tool wear is only 1.73% and 1.66%, respectively, which was confirmed by cutting test and
verification experiments. This study uses Taylor’s tool life model and chip color to analyze, and after repeated tests and
experimental analysis, the average error of repeatability is 4.5%. In the verification of stainless steel cutting hard-cutting
materials, the equipment accuracy is between 0.5 and 3.0 color difference values of grade 2 to 3. Therefore, the measurement
and model establishment of the system can accurately and quickly predict tool wear. In prediction experiment and analysis, the
back neural network is used for test, the maximum error ranges are 0.0012 mm and 0.0097 mm, the mean error percentages are
only 1.73% and 1.66%.

Keywords Cutting tool wear . Chip surface . Color correction

1 Introduction

In the aerospace, national defense, die making, and machinery
industry, the determination of tool wear directly affects cost
and competitiveness. Therefore, it has been of a pivotal posi-
tion. At present, the main way of research is to use sensor to
collect machine signals and analyze it with the processing
parameters [1, 2]. Although this can produce a fairly high
degree of accuracy, the measurement of the sensor needs to
pass the force flow line. In terms of judging parameters, this is
a more indirect way, so it is difficult to fully reflect the actual
situation of cutting, let alone the problem of repeated signal
values. When we use the same sensor to measure different
manufacturing materials or differently designed tools and ma-
chines, the value of the signal will be completely different

because of the force flow line transmission. In this way, each
time a wear determination model is established, only one type
of tool for one machine can be determine. When one needs a
lot of modeling to deal with various tools and machines, this
will lead to an increase in time and cost. How to improve the
problem of the repetitiveness of sensor measurement signals
or to find new alternatives is the current important topic for
research [3–5].

Based on this problem, this study proposes to use the meth-
od of observing the surface color of metal chip [6] to predict
tool wear value. Since the chip tool will directly contact the
tool during cutting, this method is more reflective of the cur-
rent situation of cutting than the method of measuring signals
by using processing parameters and sensors. In the study,
researcher(s) used an industrial camera to capture the surface
color of the chip and obtained color information CIExy chro-
maticity coordinates through software application. Then,
based on the three parameters of tool wear values, cutting
time, and chip color, a set of wear determination model can
be established. Finally, in the test and verification experi-
ments, one can confirm that the prediction model of this study
is accurate enough to complete the study of the impact of chip
features on the tool life [7, 8].

Korkut et al. [9] published the findings regarding the study
of the relationship between cutting parameters and chip surface
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temperatures during the AISI 1117 turning steel process. The
three parameters of the chip surface temperature change for
comparison in terms of different machining velocities, amount
of feeds per revolution, and the depth of cutting. The experi-
mental results show that the increase in machining velocity,
feed rate, or depth of cutting will raise chip temperatures. The
machining velocity and depth of cutting are significant factors
causing the change in temperatures of the chip surface.

Tekiner and Yesilyurt [10] published the parameter
study of cutting stainless steel AISI304 and found that
under the condition of high machining velocity and low
feed per revolution, the curl radius of the metal chip
will increase, with the chip thickness becoming thinner.
Thinner chip can reduce the power consumption of the
processing machine, allowing the machined parts to
have superior surface roughness. In addition, the study
also found that the chip flow rate is slow at low ma-
chining velocity and high feed per revolution and the
high temperature generated by the cutting will make the
chip appear yellow.

Das et al. [11] have published a study on cost estimation by
use of the parameters of surface roughness, tool wear, and chip
type of cutting AISI 4340 steel. ANOVA analysis shows that the
dominant parameter affecting surface roughness is mainly feed
per revolution, followed by machining velocity. The surface
roughness increases as the feed per revolution accelerates; the
machining velocity is inversely proportional. The influence laid
by the tool wear is the machining velocity, the feed per revolu-
tion, and the depth of chip. As for the chip type, the machining
velocity will mainly produce three kinds of chip types, ranging

from slow to fast: spiral curl, long strip shape, and short strip
shape, with the thickness becoming gradually thinner with the
increase in the machining speed and the decrease in feeds per
revolution.

As Zhang and Guo [12] published the milling of AISHH13
tool steel, their research report addressed how the chip type,
phase change, and oxidation reaction cause relevant effect.
Their experiment found that the machining velocity and feed
per tooth are the key factors affecting the chip type, with the
maximum influence of per blade feed. In the X-ray photoelec-
tron spectroscopy of the chip oxide layer for two different
cutting conditions. The composition of the oxide layer ele-
ment changes from Fe2O3 to Fe3O4 as the cutting temperature
rises, in turn causing the chip to gradually become dark blue.

In the report published by Ning et al. [13], the high-speed end
milling was performed by using the die steel AISI H13, with the
cutting temperature was determining by analyzing the chip color.
It use a ball cutter for high-speed end milling at 10,000–
30,000 rpm. the relationship between the color and the tempera-
ture of the chip at different spindle speeds and depths of cutting.
The result shows that as the spindle speed and depth of cut
increase, all cutting temperatures consistently show an upward
inclination.

The chip color is rarely used in literature to judge tool life
and machining status, but many engineers will use chip color
to judge the cutting status; this study applies engineer’s expe-
rience to a digitization. Although much research has been

Table 1 The 2316ISO-B MOD composition of stainless steel element
(%) [14]

C Si Mn P S Cr Ni Mo

0.28 0.3 0.95 0.03 0.003 14.2 ~ 0.5 1.1

Fig. 1 Diagram of flank wear periods

Table 2 The 2316ISO-B MOD physical properties of stainless steel
[22]

Thermal expansion
coefficient (10−6/K)

20~100 °C
10

20~250 °C
12

20~500 °C
13.2

Thermal conductivity
coefficient (W/mK)

20 °C
23

250 °C
24

500 °C
25

Young’s coefficient (kN/mm2) 20 °C
215

250 °C
203

500 °C
180

Fig. 2 The 2316ISO-BMOD effect of tempering temperature of stainless
steel on hardness and corrosion resistance [22]
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carried out on tool wear, there have been few papers that focus
on the cutting chip color to prediction tool wear [14, 15].

2 Machining principle and tool wear

2.1 Tool wear theory

The cutting tool continues to rub against the chip during cut-
ting, so the contact surface generates high temperatures. At
high temperatures, the tool and the chip will chemically dif-
fuse, causing the tool and chip to combine into other com-
pounds, thus reducing tool hardness and toughness. As the
cutting continues, dents on the blades will occur, which is
known as chemical wear or diffusion wear. However, during
cutting, intermittent cutting, vibration, cold and heat changes,
and impurities cause the edge to collapse, which is called
mechanical wear. Generally, the normal wear process belongs
to diffusion wear—in which mild breakage occurs first and
then expands into disintegration. When the tool disintegrates,
the cutting edge of the tool will be deformed, so the cutting
resistance will become stronger, and the cutting temperature
will also rise, which causes the tool to wear quickly, in turn
causing the tool to lose its cutting ability [3, 4, 16].

When the cutting tool performs its duties, the contact surface
parallel to the material is called the flank surface. Cutting fric-
tionwill cause the surface to continue towear. The flank surface

wear area is adjacent to the tool edge, so expansion of wear will
increase the cutting resistance and increase the cutting temper-
ature. Eventually, the tool is damaged and loses its function. In
order to confirm tool life, the International Standards
Organization proposes that when the uniform wear of the flank
surface reaches 0.3 mm, this study is based on the ISO-8688-1/
1994 standard for testing and analysis, or if the surface is peeled
off or severely grooved, or the uneven wear reaches 0.6 mm or
more, the extent to which the tool can be used is exceeded, that
is, the tool life is over and the tool needs to be replaced. If we
use time to separate the tool wear, as shown in Fig. 1, the wear
region can be divided into three periods: (1) initial wear rate, (2)
uniform wear rate, and (3) accelerating wear rate.

In general, in the research and application of metal machin-
ing, in terms of the method of formulating tool life, the
Taylor’s Cutting Tool Formula is often used to establish the
model. In 1906, Taylor [17] proposed the relationship be-
tween tool life and machining velocity. The relationship be-
tween cutting velocity (V) and tool life (T) can be expressed
by the following equation:

VTn ¼ C ð1Þ

Where V is the cutting velocity (m/min); T is the tool
life, i.e., the actual chip time (min); n is the exponent that
depends on what materials for the tool and work pieces;
and C is the constant.In the machining process, the ma-
chining parameters include the feed per tooth and depth of
cutting in addition to the cutting velocity. If all the ma-
chining parameters are taken into account in the tool life
formula, a more complete tool life formula can be obtain-
ed as follows [18, 19]:

V Tn f z
aapb ¼ C ð2Þ

Fig. 3 The 2316ISO-B MOD TTT curves of stainless steel [22]

Fig. 5 Chromaticity diagram [23]
Fig. 4 Machining chip oxidative film model [23]
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Where N is the exponent that depends onwhat materials for
the tool and work pieces; fz is the feed per tooth (mm/tooth); a
is the exponent that depends on what materials for the tool and
work pieces; ap is the depth of cutting (mm), b is the exponent
that depends on what materials for the tool and work pieces;
and C is the constant.

2.2 Stainless steel 2316ISO-B MOD

Due to the high toughness, high thermal strength, low thermal
conductivity, large plastic deformation during cutting, severe
work hardening, high heat of cutting, and difficulty in heat dis-
sipation, the stainless steel materials will cause high cutting tem-
perature at its tip and be seriously as well as easily sticks on the
cutting edge, thus producing accumulated scums, accelerating
tool wear, and affecting the roughness of machining surface.

Stainless steel must contain at least 11% chromium in
terms of the standard definition. The chromium element has
the function of forming a protective layer of chromium oxide
on the surface of the steel. The chromium oxide layer can
insulate metals from contact with the external environment,
making the material less susceptible to oxidative deterioration.
Stainless steel is mainly classified into different types based
on the crystal structure and the strengthening mechanism,
such as the ferrite iron system, the Ma Tian iron system, the
Worthian iron system, the precipitation hardening system, and
the two-way stainless steel [20, 21].

The stainless steel 2316ISO-B MOD used in this study
belongs to the Ma Tian scattered iron series stainless steel in
terms of structure. It is mainly used as the molding material for
production of plastic products. It is widely used in injection
molds, mold inserts, coaxial shells for blow molds, etc.. The
material properties, physical properties, and heat treatment

Fig. 7 Experimental research
process

Fig. 6 Color conversion process
of the display system
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methods of 2316ISO-B MOD stainless steel are shown in
Tables 1 to 2 and Figs. 2 and 3.

2.3 Machining chip colors and oxidative film model

When cutting steel materials, the high-speed friction between
the tool and the cutting materials will generate a lot of cutting
heat. The chips will be heated rapidly by the heat of cutting

and will be rapidly cooled in the air after being cut away from
the base. This phenomenon causes the chips to produce dif-
ferent colorings of oxidative films on the surface. The color of
the oxidative film is affected by the thickness (d) of the oxi-
dative film, the refractive index (n) of the oxidative film and
the base material, and the absorption coefficient (k), as shown
in Fig. 4. The machining color during the cutting process
changes in the following order: yellow → yellow brown →
brown→ purple→ deep purple or dark blue→ blue→ light
blue → blue green → yellow green → dark red.

Shown in Fig. 5, the relationship between the thickness of
the chip oxidation film and the chromaticity coordinate point
shows a solid continuous line. The lines extending radially
from the center indicate the hues such as Y (yellow), R
(red), P (purple), B (blue), and G (green).

Fig. 9 CCD industrial camera
equipment

Fig. 8 Machining center equipment

Fig. 10 Tool holders and cutting inserts
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3 Measurement equipment development
and create model

The machining chip color and the measurement equipment
data are mainly created by calculation of the numerical con-
version of RGB values, XYZ tristimulus values, xy chroma-
ticity values, etc., and for the display, the system accepts the
electronic signals, and according to the signal strength, color
mixture can be obtained. The corresponding color will appear
on the display screen, so the numerical conversion of the dis-
play color will be different from that of the mathematically
calculated mode of the colorimetry. The process of color space
conversion will be described in details as shown below. The
process of color space transformation of the display system is
shown in Fig. 6.

The main process for establishing the machining color and
measurement equipment data is shown as follows.

Step 1. Normalization

The color signals initially input on the display is [R8-bit G8-

bit B8-bit] 8-bit RGB signal values, the numeric range of the
three primary colors are all 0 ~ 255, and after conversion they
become [R0 G0 B0], the normalized RGB signal values.

I0 ¼ I
255

ð3Þ

where I0 = R0, G0, B0 are the normalized RGB signal values and
I =R8-bit, G8-bit, B8-bit are the new 8-bit RGB signal values.

Step 2. TRC transformation

TRC means Tone Reproduction Cure, indicating the rela-
tionship between the signal value and brightness of the display
input, while the normalized RGB signal values [R0 G0 B0] are
converted into linear RGB values [R G B]; in general, the display will adopt the value γ to normalize the relationship

between the RGB values and the linear RGB ones. The value
γ will change due to different monitor specifications.
Generally, it falls between 1.8 and 2.4.

R ¼ R0ð ÞγR
G ¼ G0ð ÞγG
B ¼ B0ð ÞγB

Table 3 Tool holders and cutting inserts specification table

Tool holder (R217.69-3232.0-18-3AN)

ap Cutting depth (mm) 17

Dc Tool outer diameter (mm) 32

dmm Tool holder diameter (mm) 32

lp Tool holder length (mm) 170

l2 Total length (mm) 210

N Revolution speed (rpm) 11,100

Cutting insert (XOMX180631TR-ME13 F40M)

Coated PVD + TiAlN

Ra Rake angle (∘) 30

rε Nose radius (mm) 3.1

EA clearance angle (∘) 15

Table 4 Parameter table
of processing experiment Cutting velocity 500 m/min

Feed per tooth 0.1 mm/tooth

Cutting depth 0.5 mm

Cutting width 20 mm

Cutting time 0.2746 min

Milling method Single-blade milling

Cutting fluid None

Fig. 11 Machining experiment flow
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where R, G, and B indicate the values of linear RGB signal.
γR, γG, γB, correspond to the value γ of R, G, B.

Step 3. Linear transformation

Linear transformation means a step that converts the
RGB values [R G B] into three stimulus values, which
process uses a computational 3 × 3 matrix, and the 3 × 3
transformation matrix will vary with different standard

displays. The standard for different types of displays is
described in the Eq. 4.

X
Y
Z

2
4

3
5 ¼ M

R
G
B

2
4

3
5 ð4Þ

where X, Y, and Z are tristimulus values, while M is a
3 × 3 linear transformation matrix.

Step 4. Chromaticity transformation

The XYZ tristimulus value [XYZ] can be transformed into
the x y chromaticity value [x y] based on Eq. 5 and be
displayed in the CIExy chromaticity diagram or transformed
into the L*a*b* chromaticity value. [L* a* b*] is displayed in
the figure of the CIE LAB color space.

L* ¼ 116f
Y
Yn

� �
−16

a* ¼ 500 f
X
X n

� �
− f

Y
Yn

� �� �

b* ¼ 500 f
Y
Yn

� �
− f

Z
Zn

� �� � ð5Þ

f
I
In

� �
¼ I

In

� �1
3

;when
I
In

� �
> 0:008856

f
I
In

� �
¼ 7:787

I
In

� �
þ 16

116
;when

I
In

� �
≤0:008856

ð6Þ

where I/In = X/Xn = Y / Yn = Z / Zn

Fig. 12 Color information
reading and correction process

Fig. 13 One-dimensional comparison table (1D LUT)
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X, Y, Z are the tristimulus value of an object.
Xn, Yn, Zn the benchmark-white tristimulus value, and the

tristimulus value will be produced with different kinds of light
sources.

Step 5. Color perception transformation

This step transforms the [L* a* b*] of the CIE LAB color
space into the [L C h] of color perception. L, Cab* , and hab
indicate the brightness, chrome, and hue, respectively.

Cab* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a*ð Þ2 þ b*

� �2h ir
ð7Þ

hab ¼ tan−1 j b
*

a*
j

� �
ð8Þ

where the calculation of hab produces different combinations
of positive or negative values of a* and b*.

Take b*
a*

	 

as the absolute value, and then find the appro-

priate angle based on its quadrant coordinates.

Fig. 15 Human-machine
interface of tool wear
determination system

Fig. 14 Test and verification
process of tool wear model
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4 Experimental process and equipment

The experimental process of this study is shown in Fig. 7. It is
primarily divided into three phases: machining experiment,
color information reading and correction, and tool wear deter-
mination and verification. Details are explained as follows.

This study used a machining center for milling, where the
experimental equipment as shown in Fig. 8. the 3 axes, X, Y,
and Z, moved on travel of 1000 mm, 800 mm, and 700 mm,
respectively. The feed velocity was from 1 to 20,000mm/min,
and the maximum revolution of the main spindle was
14,000 rpm. Figure 9 is a CCD industrial camera equipment.

The cutting tool used in the cutting experiment is tool
holders and cutting inserts, as shown in Fig. 10 and Table 3.

4.1 Machining experiment

The process and parameters at the phase in this study are
shown in Fig. 11 and Table 4. Refer to the recommended chip
parameters in the tool catalog, and enter the parameters into
the Taylor’s formula for calculation of tool wear, and calculate
the results based on the actual situation, and adjust the values

No.1st test No.4th test No.7th test

Fig. 17 Cutting tool wear and
chips of group 1

Fig. 16 Cutting tool wear curve
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to get the most appropriate cutting experimental parameters.
The cutting velocity V recommended by the reference tool
catalog is 105 ~ 130 (m/min), the feed rate per blade fz is
0.1 ~ 0.2 (mm/tooth), and the part cutting depth ap is made
by Eq. 9 by calculation.

f z ¼
tc � 2rε

2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap � 2rε−ap2

p ð9Þ

where fz means feed per tooth (mm/tooth), tc means chip
thickness (mm) that is a fixed value 0.06 mm, rε means nose
radius (mm) that is a fixed value 3.1 mm, and ap means cutting
depth (mm). To get the cutting depth ap, first convert Eq. 9
into

ap2−2rε � ap þ tc � rε
f z

� �2

¼ 0 ð10Þ

The chip thickness is 0.06 mm; refer to the stainless steel
material of the tools catalog, substitute chip thickness, and
condition into Eq. 11 to solve depth of cutting.

ap ¼
2rε �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2rεð Þ2−4 tc � rε

f z

� �s

2
ð11Þ

Use Eq. 11 to calculate the depth of cutting ap: 0.15 ~
0.63 mm.

4.2 Color information Reading and correction

This study established a set of color correction models
to make the chip colors obtained by chip photographing
be standardized. It can be used to evaluate the color
reproduction ability and at the same time allows for
the sharing of data with other photographing systems.
The process shown in Fig. 12 below provides a detailed
description.

In the calibration of the measuring device, apply the
gray color block in the standard color checker passport
of the standard color information to obtain the RGB
shooting value, and set it as the x-axis, and the y-axis
is set to the RGB standard value attached to the color
checker. Establish a one-dimensional comparison table
(1D LUT) model that converts RGB shot values to stan-
dard values, as shown in Fig. 13. And then input the
color patch RGB shooting values into the one-
dimensional comparison table (1D LUT) and converted
into standard values R', G', B'. Use the color correction

No.1st test No.4th test No.7th test

Fig. 18 Cutting tool wear and
chips of group 2
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system established in the study, and we can improve the
color difference of the camera from ΔE_ab^* = 18.6 to
2.9. According to the color difference specification of
the National Bureau of Standards (NBS), the smaller
color difference of the third level is within an accept-
able range of the upper middle level.

Establish a regression equation for converting the standard
value R'G'B' into the color space CIE LAB as exemplified by
Eqs. 1–3, and then convert it into the matrix type of Eq. 4, and
convert the previously obtained R'G'B' value with color
checker. The CIE LAB standard value attached to the passport
color card is applied by Eq. 4 to calculate the value of the color
correction matrix M and thus establish the color correction
model, which is evaluated by the color reproduction capability
specification developed by the National Bureau of Standards
(NBS) [10]. If the color correction ability is insufficient,
please improve your photographing surroundings until the
color difference level reaches the target level, and finally take
the material chip to obtain the parameters of the tool wear.

L* ¼ a0 þ a1R
0 þ a2G

0 þ a3B
0 þ a4R

0
G

0 þ a5R
0
B

0

þ a6G
0
B

0 þ a7R
02 þ a8G

02 þ a9B
02 þ a10R

0G0B0

þ a11R
03 þ a12G

03 þ a13B
03 ð12Þ

a* ¼ b0 þ b1R
0 þ b2G

0 þ b3B
0 þ b4R

0G0 þ b5R
0B0

þ b6G
0B0 þ b7R

02 þ b8G
02 þ b9B

02 þ b10R
0G0B0

þ b11R
03 þ b12G

03 þ b13B
03 ð13Þ

b* ¼ c0 þ c1R
0 þ c2G

0 þ c3B
0 þ c4R

0G0 þ c5R
0B0

þ c6G
0B0 þ c7R

02 þ c8G
02 þ c9B

02 þ c10R
0G0B0

þ c11R
03 þ c12G

03 þ c13B
03 ð14Þ

L* a* b*
� � ¼ 1 R0 G0 B0 R0G0 R0B0 G0B0 R02 G02 B02 R0G0B0 R03 G03 B03� ��

a0 b0 c0
a1 b1 c1
⋮
a13

⋮
b13

⋮
c13

2
64

3
75 ð15Þ

No.1st test No.4th test No.7th test

Fig. 19 Cutting tool wear and
chips of group 3
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4.3 Tool wear determination and verification

Figure 14 shows the experimental process of this phase.
Apply the tool wear, cutting time, and chip color information
CIExy chromaticity coordinates to establish the wear determi-
nation model by the use of the inverse transfer neural network.
The data distribution is 70% for model training, 15% for test-
ing, and 15% for verifying [11]; if the model error is too large,
adjust the number of neurons, transfer functions, or increase
the number of modeling parameters to improve the accuracy
of the prediction model.

4.4 Human-machine interface of tool wear
determination system

In order to facilitate the user to observe the wear of the cutting
tool, this study establishes a human-machine interface, and by
the use of industrial cameras, the user can shoot the chips. The

user only needs to input the image of the cutting chip and the
cutting time to get the tool immediately. The predicted value
of wear is shown in Fig. 15.

5 Results and discussion

5.1 Repeated test for cutting tool wear

The tool life test was performed three times; the funda-
mental purpose was to confirm the repeatability of ex-
perimental data; the three groups of cutting tool wear
curves were compared, as shown in Fig. 16. The cutting
tool wear has the same curvilinear trend; the average
error value is shown in Table 4. The largest difference
in the wear value of cutting test occurs in No. 7 cutting
test for final wear loss, the tool flank wear has reached
VB = 0.3 mm, the value difference percentage is 6.66%,

Fig. 20 Cutting wear and
chromaticity coordinate points of
group 1

834 Int J Adv Manuf Technol (2020) 109:823–839



and the minimum difference is the 2.83% of No. 4
cutting. After repeated tests and experimental analysis,
the average error of repeatability is 4.5%, meaning the
parameters of this cutting test have enough accuracy for
create the prediction model of this study.

5.2 The relationship between tool wear and Taylor’s
tool life

The same parameters are used for three tests to observe the
repeatability of three tests. Figures 17, 18, and 19 show the
relationship between the cutting tool wear loss and chip mor-
phology obtained in the cutting tests, which is established
according to Taylor’s lifetime curve. This study performs
three groups of cutting, cutting 7 times each group, resulting
in 21 wear values and material chips. According to experi-
mental observation, the shape of chips in the first five cuttings
is basically consistent, mainly because of the even wear of

cutting tool. In the sixth cutting, the cutting tool has entered
the quick wear region; the cutting edge and tool flank are worn
quickly; the chips are influenced, leading to different shapes
and colors during cutting.

5.3 The relationship between chip color and tool wear

The chips can be collected and analyzed immediately in the
experimental process; 10 pieces are sampled from each group
and shot; there are 210 CIExy chromaticity coordinate values
of chips; the relationship between the wear loss of cutting tool
and chip color information is shown in Figs. 20, 21, and 22;
the findings are given below.

1. The x and y coordinate values in the CIExy chromaticity
coordinate graph increase gradually with cutting tool wear
loss.

2. The range of chromaticity coordinate points of chips
resulted from initial cutting is smaller, and the range of

Fig. 21 Cutting wear and
chromaticity coordinate points of
group 2
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chromaticity coordinate points of chips expands as the wear
loss increases.

Some elementary conclusions are summed up: The in-
crease of tool wear will cause increasing chromaticity coordi-
nate point area and vice versa.

5.4 Test and verification results of prediction model
of cutting tool wear

The prediction was made using the back-propagation of the
Artificial Neural Networks for this experiment. The basic ar-
chitecture of the network consisted of an input layer, a hidden
layer, and an output layer, which were connected with neu-
rons, the experiment produces 21 material chips, and 2 pieces
of each chip were picked for shooting, and each piece gener-
ated 42 chips as the parameters for test and verification. The
shooting results are shown in Fig. 23 [24, 25].

1. The xy coordinate value of the CIExy chromaticity dia-
gram is the same as that of the cutting experiment result,
showing an inclination in gradual increase.

2. In the experiment, the range of CIExy chromaticity co-
ordinates is different from those in Figs. 20, 21, and 22. The
larger the chromaticity coordinate range is, the larger range of
prediction model of wear, and that’s because this segment
tests and verifies the wear, not the measurement. The experi-
mental values are modeled due to the fact that it is more dif-
ficult for the range of fewer chromaticity points of the sam-
plings to exhibit themselves [26].

This study inputs the parameters obtained during the test
and verification experiments into the wear determinationmod-
el to obtain the results, as shown in Tables 5 and 6.

In this work, observing the results of the two groups shown
in Figs. 24 and 25, we saw that when the amount of wear
increases, the amount of error increases, and the maximum

Fig. 22 Cutting wear and
chromaticity coordinate points of
group 3
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cutting before the tool wear reaches the upper limit of 0.3 mm,
with the maximum error range being 0.0120 mm and
0.0097 mm, respectively. The calculated averaged error per-
centage is only 1.73% and 1.66%, respectively, indicating that
the tool wear prediction model established in this study is
usable.

6 Conclusion

With the proposed this system, we only need to shoot chips
and input cutting times to provide the industry with a simple
and fast tool wear judgment method. The following conclu-
sions can be listed through experiments:

Fig. 23 Machiningwear ofmodel
test and chromaticity coordinates

Table 5 Predicted model errors before the experimental wear reaching
the upper limit

Maximum error value 0.0050 mm

Minimum error value − 0.0070 mm

Maximum error range 0.00120 mm

Averaged error percentage 1.73%

Table 6 Predicted model errors before the experimental wear reaching
the upper limit

Maximum value of error 0.0040 mm

Minimum value of error − 0.0057 mm

Maximum range of error 0.0097 mm

Averaged percentage of error 1.66%
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1. If color correction is not carried out, it would be impossi-
ble to share with other photographic systems or to evalu-
ate the color reproduction ability because this system is
not standardized. The color correction model in this study
can reduce the color difference value from ΔE_ab^* =
18.6 to 2.94, with an improvement rate of 84.19%.

2. According to Figs. 20, 21, and 22, the increase of tool
wear also increases the X and Y values of CIExy chroma-
ticity coordinates, and the chips would gradually change
from light yellow to yellowish brown.

3. As shown in Fig. 24, most serious wear results in greater
difference between the predicted and actual values. This is
due to the fact that the shape of the edge of the tool is in an
unstable status and changes rapidly at this time, plus the
phenomenon caused by the accumulation of wear errors
as the number of cuts increases. The increase of tool wear
will cause increasing chromaticity coordinate point area
and vice versa.

4. In this study, Taylor’s tool life model and chip colors are
used for analysis. After repeated testing and experimental
analysis, the average error of repeatability is 4.5%.

5. In prediction experiment and analysis, the back neural
network is used for test, the maximum error ranges are
0.0012 mm and 0.0097 mm, and the mean error percent-
ages are only 1.73% and 1.66%, meaning the cutting tool
wear prediction model created in this study is usable.

Nomenclature I0 = R0, G0, B0 , Normalized RGB signal values; I = R8-

bit, G8-bit, B8-bit , New 8-bit RGB signal values; γR、 γG、 γB, Value γ of
RGB; X, Y, Z , Tristimulus values; Xn, Yn, Zn, Benchmark-white tristim-
ulus value; L , Brightness;Cab* , Chroma; hab, Hue; V , Cutting velocity
(m/min); T , Tool life (min); fz , Feed per tooth (mm/tooth); tc , Chip
thickness (mm); rε , Nose radius (mm); ap , Cutting depth (mm).
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