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Abstract
A new approach for updating model-based stability chart predictions in milling based on experimental data is presented. The
approach utilizes Deep Neural Networks (DNNs), which are pre-trained with simulated data that is generated by predicting
machine dynamics through receptance coupling and evaluating stability through an analytical stability model. The weights in the
DNN are fine-tuned by re-training the networks with a small experimental dataset containing only a few dozen samples. Target is
to match network predictions with the experimentally observed stability states acquired under different cutting conditions. The
presented approach avoids measurement or model-based estimation of cutting force coefficients as well as the measurement of
tooltip dynamics or extensive model parameter identification, making it an attractive approach for industrial applications. In an
experimental validation, where stability charts for various engagement conditions and different tool clamping lengths are
predicted, a good match between predictions and experimental stability limits is achieved. It is shown that an ensemble learning
method, where predictions of multiple networks are combined, can improve prediction accuracy. Furthermore, it is demonstrated
that the new approach requires approximately five times fewer experimental samples than previously proposed model-free
machine learning approaches to reach the same prediction accuracy on a test set.

Keywords Chatter stability . Receptance coupling . Deep neural networks, transfer learning

1 Introduction

Up to today, chatter vibrations belong to the most critical
phenomena limiting the productivity in milling. Typically, sta-
bility lobe diagrams are used to distinguish between stable and
unstable cutting depths as a function of the spindle speed. Yet,
it is often observed that the experimental stability limits differ
from the theoretical ones. On the one hand, this is because the
stability models yielding the theoretical stability limits are
inaccurate. On the other hand, this is caused by the input
parameters to these models, which may not be precisely
known or changed during operation.

Besides information about the engagement conditions and
tool geometry, the most critical parameters that are typically
required for stability predictions are the cutting coefficients,
which relate the uncut chip thickness with the resulting forces,

and the dynamics at the Tool Center Point (TCP) of a cutting
tool. Both of these inputs can either be obtained through
models or experimental characterization. While modeling
avoids the usage of expensive measurement equipment and
time-consuming experiments, inaccuracies in the modeling
stage can lead to significantly wrong predictions. On the other
hand, experimental characterization may also be inaccurate if
the boundary conditions of the actual process differ from the
ones valid in the characterization stage.

Regarding the estimation of the cutting coefficients, two
principal techniques have been established in the past. One
possibility is to derive the coefficients from orthogonal turning
experiments, where they are determined through an
orthogonal-to-oblique transformation [1]. Another solution is
mechanistic calibration, where average forces are recorded at
various feed rates [2]. However, it must be taken into account
that coefficients may change as a function of the spindle
speed, as it was for example shown by Grossi [3], for different
radial engagements and cutting strategies [4] and for different
feed rates as investigated by Campatelli et al. [5].

Significant challenges also need to be overcome to achieve
accurate model predictions or perform reliable measurements
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of the tooltip dynamics. A common model-based method for
estimation of tooltip dynamics is the receptance coupling tech-
nique, which was introduced by Schmitz and Donalson [6]
and Schmitz et al. [7]. In this approach, the tool and holder
are segmented into Timoshenko beam elements and the dy-
namics of the tool-holder combination are analytically
coupled with the dynamics of the machine and the spindle.
This eliminates the need to measure each tool-holder combi-
nation. Several approaches have been proposed to identify the
dynamics of the machine tool and spindle [8–10]. However,
despite the advances in the precision of the models over the
last years and decades, accurate prediction of the tooltip dy-
namics remains challenging due to several reasons. First, the
precise modeling of the fluted section of a tool is very com-
plex. Kops and Vo [11] suggested replacing the fluted portion
of a tool with a cylinder having 80% of the nominal diameter.
Özsahin and Altintas [12] sliced the fluted section of the tool
and coupled the analytical predictions for each oriented slice
to obtain tooltip frequency response function (FRF) predic-
tions. This approach, however, requires the precise geometry
of the tool, which is often not available to the machine user.
Furthermore, contact parameters between tool and holder are
very hard to estimate; yet, they can have a substantial influ-
ence on the resulting dynamics. The contact is typically
modeled either by implementing a multi-point coupling along
the contact length between holder and tool as it was for exam-
ple proposed by Yang et al. [13], or by assuming a lumped
spring-damper element between the holder and the outer por-
tion of the tool as suggested by Schmitz and Donalson
[6]. Experimental identification of the contact parame-
ters can be performed in free-free boundary impact tests
on the tool and holder, as proposed by Matthias et al.
[14], or on the whole spindle-holder-tool assembly, as
done by Özsahin et al. [15], but these procedures re-
main very time-consuming and require expensive equip-
ment. Lastly, unless they are identified in extensive ma-
terial identification tests, the material properties of a
given tool and holder can only be estimated within an
uncertainty range. All these points render precise model-
based tooltip FRF predictions difficult.

If the tooltip dynamics of the whole machine-spindle-
holder-tool assembly are characterized experimentally, the
tooltip or the workpiece of interest is usually impacted with
an instrumented impulse hammer and the response is mea-
sured by means of an accelerometer or non-contact sensor.
Yet, the prediction accuracy may suffer since the dynamics
of the system may change during operation of the machine.
For example, Matsubara et al. [16] showed that thermal influ-
ences can lead to changes in the natural frequency of a spindle
system. Among others, Cao and Altintas [17] showed that the
centrifugal forces and gyroscopic moments at high spindle
speeds can substantially influence the bearing and spindle
shaft dynamics. Additionally, dynamics may change under

different load conditions, as it was found by Jamil and
Yusoff [18] and Postel et al. [19].

Due to previously described limitations, approaches that
identify dynamics during operation have gained popularity
over the last years. One possibility is the operational modal
analysis (OMA) [20], where the response of the machine is
measured with an accelerometer during regular cutting oper-
ation. This allows the estimation of the natural frequency and
damping ratio, but the identification of the dynamic stiffness is
not straightforward. Özsahin et al. [21] proposed an inverse
identification approach that is based on experimentally deter-
mined limit axial depths of cut and chatter frequencies. Data
for two slightly different spindle speeds are required for the
inverse identification of the tooltip dynamics. Similar ap-
proaches were presented by Grossi and Campatelli [22] and
Eynian [23]. These methods, however, require dedicated tests
under defined conditions and are hence not suitable for shop
floor environment.

Since both model-based and experimental methods usually
demand intense preparation and analysis, in recent years, it
was also tried to utilize machine learning techniques for the
prediction of stability limits. Friedrich et al. [24] trained a
classification neural network with simulated stable and unsta-
ble depths of cut for different radial engagements and spindle
speeds. Their continuous learning algorithmwas designed in a
way that onlymore recentmeasurement points were taken into
account, while old data points were deleted. Approximately
2500 simulated training points were necessary to replicate the
stability chart with acceptable accuracy, but no validation of
the method with experimental data was performed. Recently,
Cherukuri et al. [25] presented a machine learning approach
for turning stability prediction. The authors trained a multilay-
er neural network with simulated stability boundaries. For a
training sample size of at least 600 samples, an acceptable
match between predicted and analytical stability boundary
was achieved.

It should be noted that the two previously listed approaches
require a large number of samples to learn the shape of the
stability lobes, which is also one of the reasons why only
simulated data was used. Furthermore, themethods are limited
to one specific tool-holder combination with one defined tool
length and workpiece material, which means that all training
points need to be acquired under these defined conditions.

The approach presented in this work can reduce the number
of necessary experimental training points by approximately
one order of magnitude while allowing the learning from
and predictions for multiple dynamic configurations. This is
achieved by utilizing transfer learning for deep neural net-
works (DNNs). A multi-layer classification network is trained
with simulated stability data generated using a simple dynam-
ic model of the tool and holder and an analytical stability
model. This is done in order to make the network learn the
general dependencies of the stability boundary on several
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influencing and easily measurable parameters. The pre-trained
network is then fed with experimentally measured stability
states and process conditions of arbitrary cuts to fine-tune
the network with real data and allow for more accurate stabil-
ity predictions in future processes. One of the main goals of
the presented approach is to keep the measurement effort to a
minimum, making it a promising approach for the industry.
The required experimental data for fine-tuning can simply be
gathered during regular cutting operations.

The remainder of this paper is organized as follows: In
Chapter 2, the necessity to include feedback from actual chat-
ter test results to obtain accurate stability predictions is moti-
vated by showing the influence of modeling inaccuracies on
the resulting stability boundary. Details about DNNs and the
newly developed ensemble transfer learning approach are de-
scribed in Chapter 3. Experimental validation of the method is
given in Chapter 4 before the paper is concluded in Chapter 5.

2 Model-based stability predictions

In this section, the influence of modeling parameters on the
resulting stability predictions is shown. The results motivate
the need to include some feedback from actual cutting opera-
tions in order to obtain reliable stability predictions. For this
purpose, the dynamics of a tool-holder combination are
modeled analytically, and predicted tooltip dynamics are fed,
together with process information, into an analytical stability
model.

Such stability models usually require four different inputs:
the dynamics in the tool-workpiece contact zone, process in-
formation such as the engagement conditions, information
about the tool geometry, and the cutting coefficients, which
relate the uncut chip thickness with the resulting forces. While
the tool geometry and engagement conditions are usually
known with sufficient precision, cutting coefficients and
tooltip dynamics can be associated with high uncertainty.
This is especially true when these parameters are modeled
and not measured. To demonstrate the effect of modeling un-
certainty on the predicted dynamics, the tool-holder combina-
tion shown in Fig. 1a) is considered for a full immersion
cutting operation in aluminum. The specifications of the hold-
er and tool are listed in Table 1.

A commonly used approach to predict the required tooltip
dynamics is the so-called receptance coupling substructure
analysis (RCSA) technique, which is illustrated in Fig. 2 and
was first proposed by Schmitz and Donalson [6]. The target is
to avoid measurement of each new tool-holder combination
and rather predict tooltip dynamics (Point 1) analytically. For
this purpose, the tool and holder (substructure A) are modeled
using Timoshenko beam elements and are then analytically
coupled to the dynamics of the machine-spindle unit (sub-
structure B) at the holder flange at Point 3 in Fig. 2. The

dynamics of the machine tool up to the holder flange (Point
3) can be obtained through analytical modeling, finite element
simulation or experimental identification and remain the same
for all TCP FRF predictions. Figure 1b) shows an attempt to
model the tool and holder by segmenting it into several beam
elements. Compared to FE modeling, the analytical modeling
has as advantage that the CAD files of the holder and tool are
not required and that the model can quickly be adapted to new
clamping lengths (see Fig. 1c).

The tooltip FRF can be evaluated as follows [26]:

H11 ¼ HA;11−HA;13 HA;33 þHB;33

� �−1
HA;31; ð1Þ

where all matrices include both translational ( f ) and rotational
(M) receptances and their cross-terms):

Part of
substructure

B

a)

Part of
substructure

B

b)

c)

Part of
substructure

B

Fig. 1 a Picture of a four fluted, 8-mm diameter solid carbide endmill
clamped to an ER32 collet chuck with 40-mm clamping length. b
Equivalent segmented beam model. Kht is the lumped spring-damper
matrix of the tool-holder contact and df is the outer diameter of the
equivalent cylinder representing the fluted section of the tool. c
Segmented model with 28-mm clamping length. Substructure B is
indicated in Fig. 2

Table 1 Characteristics of the tool-holder combination used in the
simulation and the experimental study

Holder Model Zürn HSK-A63 63.11.20.2

Type ER32 Collet chuck

Tool Model Voha 0134 56 080

Type Solid carbide endmill

Length 100 mm

Diameter 8 mm

Nb. Flutes 4

Helix angle 30°

Clamping length 20–40 mm

Collet chuck clamping torque 160 Nm

Int J Adv Manuf Technol (2020) 107:4123–4139 4125



Hij ¼ hij;ff hij;fM
hij;Mf hij;MM

� �
; i; j ¼ 1; 2; 3: ð2Þ

The tool and holder are elastically coupled with a connec-
tion matrix at the holder tip, which contains the contact stiff-
ness and damping parameters between the cutting tool and the
holder and has the following simplified form [14, 27, 28]:

Kht¼ kxf þ iωcxf 0
0 kΘM þ iωcΘM

� �
ð3Þ

In there, kxf and kΘM are the translational and rotational
stiffness terms and cxf and cΘM the translational and rotational
damping terms, respectively and ω is the frequency in rad/s.

HB,33 is the identified direct receptance at the spindle
flange and is identified experimentally by following the ap-
proach shown in the work by Namazi et al. [9]. For further
details on the receptance coupling technique, the reader is
referred to [26], for details on the modeling of the tool-
holder contact to [14]. The top plot in Fig. 3 shows predicted
tooltip FRFs in x-direction for the 8-mm diameter tool
clamped to the collet chuck with various clamping lengths
(see Fig. 1).

In order to makemodel-based stability predictions, the zero
order solution (ZOS) by Budak and Altintas [29] is used. In
their analytical model, the critical limit axial depth of cut ap, lim
and the chatter frequency ωc can be evaluated as a function of
the FRFs in feed and normal direction and the tangential and
radial cutting coefficients. The bottom plot in Fig. 3 shows
predicted stability charts for a slotting operation when

supplying the previously predicted, clamping length-
dependent FRFs to the ZOS.

Cutting coefficients are assumed as Ktc = 800 MPa and
Krc= 300 MPa. These values were obtained in previous ex-
periments with a 12-mm diameter, four-flute carbide endmill
with 30° helix angle in Aluminum 7075 at 10000 rpm and
serve as the reference values in this case study. It is important
to note that the presented approach does not require precise
values for the model parameters but will eventually correct
erroneous model assumptions. For this reason, a rough esti-
mate of the coefficients is sufficient at this stage.

Multiple challenges and uncertainties also exist when fol-
lowing an analytical substructuring approach for the tool and
holder: First, for many segments that have features such as
holes, threads, and grooves, it is not clear how the equivalent
diameter of the cylindrical elements should be chosen. This is
especially true for the fluted portion of the tool. Frequently, the
assumption df= 0.8 · dnom is made [11, 30, 31], where df is the
equivalent outer diameter of the cylindrical element
representing the fluted section and dnom is the nominal outer
diameter of the tool. Another issue is the contact between tool
and holder, which is often either modeled as a lumped spring
damper element or as distributed springs and dampers. Precise
identification of these parameters is a challenge and many
different approaches have been proposed over the years.
Lastly, unless identified in material identification tests, the
material properties, notably the Young’s modulus, Poisson’s
ratio, and material loss factor of tool and holder material, can
only be estimated within an uncertainty range. Table 2 lists all

Fig. 3 Predicted tooltip FRFs in x-direction for different clamping
lengths between 20 mm and 40 mm (top) and predicted stability limits
for slotting operation (bottom). Reference values from Table 2 are
assumed

Fig. 2 Concept of substructuring. Substructure B includes the machine
tool and spindle up to the holder flange, substructure A the tool and holder
from the holder flange on. Both substructures are coupled rigidly at Point
3. Point 2 is the elastic coupling point between tool and holder and Point 1
is the tooltip
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parameters that are assumed to be uncertain for the considered
scenario, along with the respective reference values and the
assumed standard deviations. The uncertainty of the equiva-
lent diameter of the beam element representing the fluted sec-
tion is considered, while all additional uncertainties of the
geometric dimensions originating from features such as holes,
threads, and chamfers are neglected. The reference values for
the tool-holder contact are estimated based on previous con-
tact parameter identifications, where the approach byMatthias
et al. [14] was followed.

Next, the clamping length is fixed at 28 mm, the uncertain
parameters from Table 2 are varied according to their normal
distributions, and tooltip FRF predictions are made in feed and
normal direction. Subsequently, stability limits for a slotting
operation are predicted using the ZOS. As stated before, rough
estimates for the cutting coefficients are obtained from previ-
ous experiments but could, for example, also be derived from
a database. They are also listed in Table 2. Figure 4 shows the
resulting stability predictions, where all parameters were sam-
pled 75 times from the respective distributions listed in

Table 2. The prediction that is obtained with the reference
values is also shown. It should be noted that many uncer-
tainties are still not included in this simulation: Spindle dy-
namics may change during operation, identification of sub-
structure B dynamics may be erroneous, and runout and tool
wear may influence stability boundaries as well. Furthermore,
the stability model may not be able to capture the full, possibly
nonlinear, behavior of the system.

The observations show that precise model-based stability
predictions without any feedback from actual cutting experi-
ments or dynamic measurements are extremely challenging.
Any effort to increase the accuracy of the model-based pre-
dictions leads to excessive measurement effort. In this work,
the required feedback loop is closed by implementing a trans-
fer learning approach, where the whole modeling stage is
transformed into a DNN. Using this pre-trained DNN as a
starting point, the weights in the network are then fine-tuned
by making the network adapt its predictions to match the

Fig. 4 Influence of the uncertainty of all parameters listed in Table 2 on
the resulting stability boundary. All parameters were sampled 75 times
from their respective normal distributions. “Reference” denotes the
stability boundary that is obtained when assuming the reference values
from Table 2

Table 2 List of all uncertain
parameters along with the
respective assumed reference
values (mean) and standard
deviations for the Gaussian
distributions

Description Parameter Reference value Standard deviation

Young’s modulus tool (carbide) Et [GPa] 580 29 (5%)

Young’s modulus holder (steel) Eh [GPa] 210 10.5 (5%)

Density tool ρt [kg/m
3] 15,600 390 (2.5%)

Density holder ρh [kg/m
3] 7800 195 (2.5%)

Loss factor tool γt [−] 0.001 0.00045 (45%)

Loss factor holder γh [−] 0.001 0.00045 (45%)

Outer diameter equivalent cylinder of
fluted section

df [mm] 6.4 0.38 (6%)

Translational tool-holder contact stiffness kxf [N/m] 5 · 108 1.6 · 108 (33%)

Rotational tool-holder contact stiffness kΘM [Nm/rad] 5 · 105 1.6 · 105 (33%)

Translational tool-holder contact damping cxf [N/(m/s)] 500 165 (33%)

Rotational tool-holder contact damping cΘM[Nm/(rad/s)] 0.1 0.033 (33%)

Tangential cutting coefficient Ktc [MPa] 800 132 (16.5%)

Radial cutting coefficient Krc [MPa] 300 49.5 (16.5%)

Fig. 5 Structure of a DNN with Ni inputs, L hidden layers, and No

outputs. The bias terms that are added to each node of the hidden and
the output layer are not shown
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experimentally observed stability states. By following this ap-
proach, prediction inaccuracy originating from inaccurate
model parameters and inaccurate modeling strategies can be
compensated.

3 Ensemble transfer learning with DNNs

3.1 Deep neural networks

To compensate for the inaccuracies in the dynamicmodels and
the stability model, in this work, deep neural networks
(DNNs) are employed. The general structure of a DNN is
shown in Fig. 5. It consists of one input layer having Ni input
variables, one output layer with No output variables and L
hidden layers in between the input and the output layer.

Each hidden layer l has N l½ �
n nodes, where each node j in layer

l contains an activation function g[l], which transforms the sum

of each output of the previous layer a l−1½ �
i multiplied with a

weightw l½ �
j;i and the bias term b l½ �

j to obtain the output a l½ �
j of this

node,

a l½ �
j ¼ g l½ � W l½ �; a l−1½ �; b l½ �

� �
¼ g l½ � ∑

N l−1½ �
n

i¼1
w l½ �

j;i � a l−1½ �
i þ b l½ �

j

 ! ð4Þ

where W[l] is a matrix that contains all weights of the respec-
tive layer l,

W l½ � ¼
w l½ �
1;1 … w l½ �

1;N l−1½ �
n

⋮ ⋱ ⋮
w l½ �
N l½ �

n ;1
… w l½ �

N l½ �
n ;N

l−1½ �
n

264
375 ð5Þ

Here, the hyperbolic tangent, one of the most common
activation functions for DNNs, is used as the activation func-
tion for the hidden layers,

g l½ � xð Þ ¼ sinh xð Þ
cosh xð Þ ¼

e2x−1
e2x þ 1

: ð6Þ

In the application case considered, the inputs to the net-
work are the spindle speed n, the depth of cut ap, the tool
clamping length scl, as well as the entry angle φst and exit
angle φex, which are determined by the radial engagement of
the tool. All these parameters are known with very high pre-
cision. Since a classification problem is considered, i.e., the
process is stable or unstable, the output consists of two nodes,
one of them representing stability and the other one instability.
To obtain the probability for each of the two states, a softmax
function is chosen as the output layer’s activation function.
The softmax function normalizes the value of each output

node by the sum of all outputs of the neural network. This
makes the output of the respective output class correspond to
the probability that sample s belongs to this output o,

po ¼
exp ∑

N L½ �
n

i¼1
w Lþ1½ �
o;i � a L½ �

i þ b Lþ1½ �
o

 !

∑No
j¼1exp ∑

N L½ �
n

i¼1
w Lþ1½ �

j;i � a L½ �
i þ b Lþ1½ �

j

 ! : ð7Þ

For this reason, it is especially well suited for a binary
classification problem as it is considered here. In this special
case, a typical loss function for the training of such a DNN is
the binary cross-entropy loss [32], which is given by

LCE ¼ −
1

Ns
∑
s¼1

Ns

ys � log bys� �
þ 1−ysð Þ � log 1−bys� �h i

; ð8Þ

and is a particular case of the general cross-entropy loss. In
there, ys is the true class label for sample s (0 - stable or 1 -
unstable) and bys is the predicted probability for this sample
being unstable. The total cross-entropy loss is obtained
by summing all individual sample losses and dividing
the sum by the number of samples Ns. Note that output
node 1 corresponds to class 0 (stable) and the output of
node 2 to class 1 (unstable). In this work, an Adam
optimization algorithm is used for the training of the
network. The mini-batch size is chosen as 16, and the
learning rate as 0.001.

While such DNNs have been used in previous approaches
for chatter prediction in milling and turning [25, 33], the
methods required a very large amount of data samples for
training. Here, a so-called transfer learning approach is used
to decrease the number of necessary experimental training
samples.

Fig. 6 Structure of the optimized DNN. tanh stands for the hyperbolic
tangent activation function
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3.2 Optimized DNN structure

To perform efficient transfer learning, it is important to work
with a neural network structure that is well suited for replica-
tion of the stability behavior.

For this task, a hyperparameter tuning for the network
structure is performed by evaluating the performance on a
simulated dataset. The reference values for each parameter
from Table 2 are assumed.

The stickout length of the tool is varied, the Timoshenko
beam model is updated to the respective clamping length, and
tooltip FRF predictions are made through the receptance cou-
pling theory. Additionally, the entry and exit angles are varied
to make the network learn the influence of the radial engage-
ment conditions.

The general network structure is hence as shown in Fig. 5,
where the input parameters are

I ¼ n; asim;φst;φex; scl½ �; ð9Þ
and the categorical output classes are

C ¼ stable; unstablef g: ð10Þ

In total, Nsim = 14850 samples are generated, where for
each sample, spindle speed, entry and exit angle and clamping
length are sampled uniformly from the ranges [6000 rpm,
18,000 rpm], [0, 0.4π], [0.6π, π], and [20 mm, 40 mm], re-
spectively. Artificial stable and unstable points are generated
using the equation

asim ¼ aZOS � 1þ xð Þ; ð11Þ
where x is a random number between − 0.3 and 0.3 and aZOS is
the theoretical stability limit for sample s given by the zero
order solution. The point is hence stable if the simulated depth
of cut asim is lower than the theoretical stability limit aZOS, and
unstable otherwise. While the ZOS is known to be inaccurate
for some engagement conditions, for the application case here,
it is important to generate general shapes of the stability limits
such that the network can learn the idea of the lobes. The fine-
tuning eventually happens with experimental data.

Fig. 8 Concept of the transfer learning. First, a DNN is pre-trained with
simulated data using existing models for dynamics and stability
evaluation. Due to deficiencies in the models and inaccurate model
parameters, this DNN will yield stability predictions that do not
perfectly match the experimentally observed stability states. Still, it is

already aware of the key dependencies of input parameters and stability
states and knows the concept of lobes. The pre-trained network is then
fine-tuned with experimental data, which makes the network adapt to the
actual behavior of the system. This fine-tuned network can then be used to
predict stability charts for new cutting operations

Fig. 7 Comparison of stability predictions using the optimized DNN and
the prediction made by the analytical stability solution. Test conditons:
75% radial engagement up-milling, clamping length 28 mm
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In order to find an appropriate network structure, the num-
ber of hidden layers and the number of nodes in each layer are
set as hyperparameters. Additionally, the regularization λ,
which penalizes large network weights and can avoid
overfitting to the training data, is added as a hyperparameter

as well. In this case, the cost function becomes a weighted sum
of the cross-entropy loss from Eq. (8) and the sum of all
weights

L ¼ 1−λð Þ � LCE þ λ � wms; ð12Þ

Fig. 9 Ensemble transfer learning strategy with Nnet networks. 1. All
uncertain parameters are sampled Nnet times from their respective
distributions. 2. Nsim samples are generated with random clamping
lengths, spindle speeds, and axial and radial engagements. 3.
Theoretical tooltip dynamics and stabilty states of the respective
samples are evaluated using receptance coupling theory and an

analytical stability model. 4. The gathered inputs (clamping lengths,
spindle speeds, axial and radial engagements) and outputs (stabilities of
the simulated cuts) are used for pre-training of the networks. 5. These
networks are then fine-tuned using experimental data. 6. For a new
cutting scenario, the resulting stability predictions of the individual
networks are averaged using the truncated mean approach from Eq. (14)
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where wms is the mean of the sum of squares of all Nw network
weights and biases,

wms ¼ 1

Nw
∑Nw

i¼1w
2
i : ð13Þ

A genet ic algori thm is employed to tune the
hyperparameters. The simulated dataset is split into one
training, one validation, and one test dataset containing
80%, 10%, and 10% of the data, respectively. The predic-
tion accuracy of the validation set, i.e., the percentage of
correctly predicted stable and unstable points is chosen as

objective criteria for the hyperparameter tuning. The
highest validation accuracy (93.5%) is obtained for a
three-layer network containing 25, 12, and 27 nodes, re-
spectively, and a regularization parameter λ = 0.088. Its
structure is shown in Fig. 6. Figure 7 shows one sample
simulated analytical stability limit along with predictions
made by the network, and a very good agreement can be
observed.

The optimized network structure is now kept for all the
following operations.

3.3 Transfer learning for chatter prediction

Transfer learning describes a method where a model that has
been trained on one problem is used as a starting point for a
slightly different but related problem. In this application case,
the original problem is to learn the idea of stability lobe dia-
grams from simulated data (pre-training), while the related,
slightly different problem is to adapt the network weights such
that the network’s predictions match with actual experimental
observations (fine-tuning). Hereby, the required experimental
dataset is several orders of magnitude smaller than the simu-
lated one, which is used for pre-training. In this approach, the
observation is exploited, that the general shape of the stability
lobes is often comparatively well predicted with existing sta-
bility theories, but the lobes are shifted with respect to the
spindle speed or the depth of cut.

Table 3 Cutting cases and
number of cuts (training samples)
that were included in the fine-
tuning in Sections 4.1–4.3 and
Section 4.5

Case Clamping length Milling strategy Radial immersion Training samples

Stab. Chat. Tot.

A 40.0 mm Down 50% 7 0 7

B 40.0 mm Down 80% 3 3 6

C 40.0 mm Slotting 100% 2 3 5

D 37.1 mm Down 70% 4 4 8

E 37.1 mm Down 90% 6 1 7

F 37.1 mm Slot 100% 5 1 6

G 34.0 mm Up 75% 2 2 4

H 34.0 mm Down 85% 1 3 4

I 30.9 mm Up 90% 2 2 4

J 30.9 mm Down 65% 3 1 4

K 27.9 mm Down 75% 0 2 2

L 27.9 mm Down 85% 2 2 4

M 24.8 mm Up 55% 5 2 7

N 24.8 mm Slotting 100% 4 1 5

O 22.3 mm Up 85% 3 2 5

P 22.3 mm Down 60% 5 1 6

Q 20.0 mm Up 75% 1 4 5

R 20.0 mm Down 95% 1 0 1

56 34 90

Fig. 10 Setup for the experimental case study
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While with the simulated data it is targeted to make
the network aware of the general shape of stability lobes
and its basic dependencies, the goal of the fine-tuning is
to compensate four sources of errors, which were possi-
bly present in the models and transferred to the pre-
training stage:

& Inaccuracy in the modeling of TCP dynamics
& Uncertainty about the cutting coefficients

& Potential operational changes of dynamics and cutting co-
efficients (e.g., spindle speed dependency)

& Inaccuracies of the stability model used

The concept is further explained with the help of Fig. 8.
First, simulated data is generated by modeling the tooltip dy-
namics, assuming some cutting coefficients and feeding these
inputs into an existing stability model. From the simulated
stability charts, stable and unstable spindle speed/depth of

Fig. 11 Comparison of experimental stability results and predictions
made with the ensemble transfer learning approach (black continuous
lines). Ninety samples were included in the fine-tuning stage
(highlighted with black rectangles). Also plotted is the analytically

predicted stability limit using receptance coupling and the zero order
solution (dashed blue lines). For test conditions, see Table 3. Note the
different y-scales. Marginal cuts are cuts that could not clearly be labeled
as stable or unstable
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cut combinations are derived. This simulated dataset is then
used for training of the DNN. This step is called pre-training.
The network is then aware of the main influences on the sta-
bility lobes and has also learnt the concept of stability pockets,
which repeat with the spindle speed. Nevertheless, this net-
work may have a poor performance when comparing its pre-
dictionswith actual experimental stability states. This problem
is tackled in the fine-tuning stage. A much smaller experimen-
tal dataset is now fed to the pre-trained network, whose initial
weights are equal to the optimized network weights from the
pre-training stage. The network weights will now adapt
slightly to match the DNN predictions with the experi-
mentally observed stability states. In the next step, this
fine-tuned network can be used for stability predictions
of new cutting scenarios and much more accurate sta-
bility predictions are possible.

3.4 Ensemble transfer learning

For the generation of the simulated dataset it is not directly
clear which values for the uncertain parameters from Table 2
should be assumed in the modeling stage. Here, an extension
to the classic transfer learning idea is proposed, which takes

the modeling uncertainty into account. It is based on the idea
of ensemble learning, where multiple networks are trained and
their individual estimates are combined to obtain a single
prediction.

The concept is explained with the help of Fig. 9. All uncer-
tain parameters are sampled Nnet times from their distributions
defined in Table 2 (Step 1). At the same time, Nsim artificial
cutting samples are generated, where spindle speed, depth of
cut, and entry and exit angles are sampled uniformly from
defined ranges (Step 2). Also sampled is the clamping
length, which is, together with the sampled uncertain
parameters from Step 1, used for TCP FRF predictions
through receptance coupling. Resulting FRFs, process
conditions of the respective sample and sampled cutting
coefficients are supplied to the stability model and sta-
bility is evaluated for each sample’s spindle speed/depth
of cut combination (Step 3). The generated dataset
consisting of the inputs spindle speed, depth of cut,
and entry and exit angles as well as the clamping length
and the outputs stable/unstable are used for pre-training
of one network (Step 4). Steps 3 and 4 are repeated for
each of the Nnet networks.

Each network is then fine-tuned using the same experimen-
tal dataset, which is typically one or more orders of magnitude
smaller than the simulated dataset (Step 5).

When predicting a stability chart for new process condi-
tions, each of the networks makes a prediction. Eventually, all
network predictions are averaged using a truncated mean ap-
proach, where very high and very low predictions are exclud-
ed (Step 6),

apred nð Þ ¼ 1

Nnet−2kexcl
∑Nnet−kexcl

i¼kexclþ1an ið Þ: ð14Þ

In there, an(i) is the ith element of the vector an,
which contains the sorted depth of cut predictions of
all Nnet networks at a specific spindle speed n. kexcl

Fig. 12 Details on the ensemble prediction in three sample cases:
Individual predictions of all 200 networks (dashed gray lines) and
resulting ensemble predictions (black continuous lines). Also shown are

the model predictions (dashed blue lines). Stable experimental cuts are
indicated by green points, marginal ones by blue diamonds, and unstable
ones by red points. For test conditions see Table 3

Fig. 13 Comparison of test accuracies of the ensemble method and the
individual networks as a function of the number of networks
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are the integer number of excluded lowest and highest
predictions,

kexcl ¼ int pexcl � Nnetð Þ; ð15Þ
where, in this case, pexcl=0.25 is chosen to exclude the lowest
and highest 25% of all predictions. To transform the classifi-
cation prediction of a network at spindle speed n into a critical
depth of cut an, for each network stability state predictions are
made for incrementally increasing depths of cut, until the sta-
bility state changes from stable to unstable.

4 Experimental verification

4.1 Case study

Now, the tool-holder combination shown in Fig. 1a) is used
for cutting operation in Aluminum 6082. The collet holder is
clamped to a high-performance five-axis machining center
and cuts are performed at various spindle speeds and radial
and axial engagements, where the tool is clamped at different
clamping lengths. In total, 90 cuts are recorded (56 stable, 34
unstable); a summary of the different cutting scenarios is

Fig. 14 Comparison of experimental stability results and predictions
made with the ensemble transfer learning approach (black continuous
lines). Ninety samples were included in the fine-tuning stage
(highlighted with black rectangles). Also plotted is the stability limit

obtained from the model-free approach, where a single DNN is trained
with the experimental dataset (dashed black lines). For test conditons see
Table 3. Note the different y-scales
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given in Table 3. The feed rate is kept constant at ft= 0.05mm/
tooth with a feed in Y-direction. The specific cutting condi-
tions (i.e., which case from Table 3 is chosen, the spindle
speed, and the depth of cut) for the 90 cuts are sampled ran-
domly using a MATLAB script. The experimental setup is
shown in Fig. 10. The stability of each cut is evaluated
through frequency analysis of the recorded sound using a wa-
terproof microphone installed in the working chamber.

The previously described ensemble transfer learning ap-
proach is employed, and 200 individual networks are pre-
trained. Each network is then fine-tuned using the experimen-
tal dataset.

Due to the high number of weights and bias terms in the
network compared to the number of experimental training
samples, each of the networks is able to reach 100% prediction
accuracy for the training set after a couple of seconds of train-
ing. At this moment, the training process is stopped. Now,
stability lobe predictions are made for all 18 cutting scenarios
listed in Table 3, and the truncated mean prediction is

calculated from Eq. (14). For each case, approximately 120
test cuts at different spindle speeds and depths of cut are per-
formed. All cutting tests, along with the respective

Fig. 16 Test accuracies for the four scenarios listed in Table 4

Table 4 Overview of which cases are included in the fine-tuning process for the different scenarios considered in this study: In the “Reference”
scenario, as described in Section 4.1, all 90 samples are included. In scenarios 1–3, as defined in Section 4.5, only a subset of cases is used

Scenario Cases included

A B C D E F G H I J K L M N O P Q R

Reference x x x x x x x x x x x x x x x x x x

1 x x x x x

2 x x x x x x x x x x x x x x

3 x x x x x x x x x x x x x x

Fig. 15 Test set accuracy for the ensemble approach, the mean accuracy
of all individual network predictions as well as the accuracy of the model-
free DNN approach, i.e., when no pretraining is performed. The accuracy
is the percentage of correctly predicted stable and unstable process
conditions
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predictions, are shown in Fig. 11. The samples that are
used in the training process are also indicated. For the
test samples, a prediction accuracy (i.e., percentage of
correctly predicted stability states) of 83.6% is achieved.
Note that marginal cases are not included in the accu-
racy calculations.

Furthermore, the stability prediction that is obtained when
using the dynamics predicted through receptance coupling,
the estimated cutting coefficients and the ZOS is plotted in
blue. For these model-based predictions, the reference values
listed in Table 2 are used. The model approach yields a test
accuracy of 59.4%. The ensemble transfer learning, hence,

Fig. 17 Comparison of experimental stability results and predictions
made with the ensemble transfer learning approach (black continuous
lines) for Scenario 1 from Table 4. The black rectangles are the samples
that were included in the fine-tuning stage. Also plotted is the analytically

predicted stability limit using receptance coupling and the zero order
solution (dashed blue lines). For test conditions see Table 3. Note the
different y-scales. Marginal cuts are cuts that could not clearly be
labeled as stable or unstable
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yields a relative improvement in accuracy of approximately
40% compared to the analytical model predictions.

4.2 Performance of ensemble learning

In this section, the performance of the ensemble approach is
investigated. As described before, the resulting predictions for
a new cutting scenario are averaged using a truncated mean
approach, where the highest 25% and lowest 25% of the indi-
vidual depth of cut predictions are excluded from the averag-
ing. This is done to avoid the inclusion of heavily diverging
predictions.

Figure 12 shows the individual predictions for three sample
cases along with the truncated mean of all predictions. It can
be seen that, while a significant number of individual predic-
tions diverge strongly from the experimental stability bound-
ary, the truncated mean yields a reasonable estimate of the
actual stability boundary. However, it should be noted that
the test accuracy was only slightly affected by the choice of
pexcl. With an exclusion factor of pexcl=0.25, a relative im-
provement of 2.7% in test accuracy compared to the regular
average of all network predictions (i.e., pexcl= 0) could be
achieved.

Figure 13 shows the influence of the number of individual
networks that were included in the ensemble prediction meth-
od. It is clearly visible that the overall accuracy increases
strongly at the beginning when more than one network is
included in the ensemble prediction. From approximately 50
networks on, the test accuracy saturates around 83.6%. It is
very interesting to note that the ensemble prediction is well
above the mean prediction accuracy of all individual net-
works. It could be expected that the ensemble prediction is
close to the mean or the median of the individual predictions,
but it is significantly higher. In fact, only 18 out of the 200
networks achieve a higher test prediction accuracy than the
one achieved by the ensemble method. However, since test
data is not available during the training process, one cannot
make any assumption about which of the networks would
yield especially high accuracies. The ensemble method
yields an approximately 4% higher test fitness than
when a single arbitrary network is chosen (= median
accuracy of the individual networks) and an improve-
ment of approximately 8.3% compared to a single net-
work which is pre-trained with the reference values
from Table 2 (75.1% test accuracy).

4.3 Comparison against model-free machine learning
approaches

It is furthermore interesting to compare the presented hybrid
model/machine learning method against model-free machine
learning approaches, as they have recently been proposed in
the literature [24, 25].

In this case, the network from Fig. 6 is not pre-trained, but
instead, the network weights are randomly initialized, and the
network is trained directly with the training data. The same
training set as it was used in Sections 4.1 and 4.2 (90 training
samples) is used for training. The results of this approach,
compared to the ensemble transfer learning approach, are
shown in Fig. 14. Due to the small number of training sam-
ples, the algorithm fails to capture the concept of stability
pockets. A test accuracy of 72.3% is obtained. To get a more
complete picture of the performance of both approaches, with
and without pre-training, the influence of training set size on
the test accuracy is studied in the next section.

4.4 Influence of the training set size

Now, the number of samples is incrementally increased from
10 to 475 for both the ensemble transfer learning approach and
the model-free machine learning approach. Note that the sam-
ples were sampled randomly from all test cases. Figure 15
shows the development of the test set accuracy as a function
of the training sample size. Three observations can be made:

1. For very small sample sizes, the ensemble transfer learn-
ing approach already starts with a higher accuracy com-
pared to the model-free DNN approach.

2. The slope of the test accuracy is much higher in the low
sample size range (~ 10–50 samples), which means that
the shape of the experimental stability lobes is quickly
captured by the ensemble transfer learning algorithm with
the addition of further experimental points.

3. Over almost the whole range of investigated training set
sizes, the model-free machine learning approach requires
approximately five times more samples to reach the same
test accuracy as it is obtained with the new proposed
approach.

4.5 Influence of the training sample distribution

Another interesting aspect is how the algorithm performs
when the sample distribution of the training samples varies.
This question is addressed in this section. It is assumed that
only for some cases from Table 3 cuts have been recorded,
while for other cases, no samples are available.

In particular, three additional scenarios to the reference
scenario presented in Section 4.1 (90 tests from all cases) are
investigated. They are listed in Table 4. The fine-tuning pro-
cess described in Section 3 is run again for each of the three
additional scenarios. Figure 16 shows an overview over the
achieved test set accuracies for the reference scenario
(Section 4.1) and the three additionally defined scenarios.
The following observations can be made: If only cases with
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long clamping lengths (37.1−40mm, CasesA−E) are supplied
to the algorithm (Scenario 1), still very good prediction accu-
racies can be obtained for medium clamping lengths (27.9
−34 mm, Cases G−L). On the other hand, the test accuracy
deteriorates for very short clamping lengths (20−24.8 mm,
Cases M−R). The resulting predictions for all cases are shown
in Fig. 17. It is interesting to note that for cases M−R, the
updated prediction is still relatively close to the model predic-
tion (compared to, e.g., Cases A−J).

In both Scenario 2 and Scenario 3, four cases are excluded
from the training. In these two scenarios, still very satisfying
test accuracies can be obtained, see Fig. 16.

5 Conclusion

In this paper, a new hybrid approach for the refinement of
stability limits in milling operations is presented. It combines
knowledge about the general dynamic behavior of spindle-
holder-tool assemblies and the resulting shapes of stability
lobe diagrams under various cutting conditions with experi-
mental data by employing ensemble transfer learning on deep
neural networks. First, simulated stable and unstable points
are generated using receptance coupling theory and an analyt-
ical stability model. These stability states deviate from the
actual, experimentally observed stability states due to the im-
perfections of the models and uncertainties in the model input
parameters. To be able to compensate for these deficiencies,
the whole modeling strategy is transferred into a deep neural
network by training it with the simulated data. The network is
now aware of the general dependencies of the stability bound-
ary on some easily measurable parameters and the concept of
stability pockets. Few experimental samples are now used to
fine-tune the network and adapt it to the real behavior of the
system. The approach hence compensates uncertainties in the
modeling stage regarding both uncertain input parameters as
well as inaccuracies of the models used. It is further shown
that the overall test performance is improved by employing an
ensemble learning strategy, where the predictions of multiple
networks are combined.

The presented method avoids any kind of measure-
ment, except for one initial identification of machine
tool and spindle dynamics, which could be done at the
machine tool manufacturer when the machine leaves the
assembly line. This makes it an attractive solution for
industrial implementation.

For the future, it is targeted to also include simulated and
measured chatter frequencies in the pre-training and fine-
tuning stages, respectively. It is expected that this can further
reduce the number of required training samples.
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