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Abstract
This paper presents a fault diagnosis method for rolling bearings working in non-stationary running conditions. The proposed
approach is based on an improved version of the improved complete ensemble empirical mode decomposition with adaptive
noise (ICEEMDAN), the multivariate denoising using wavelet analysis and principal component analysis (PCA), the spectral
kurtosis, and the order tracking analysis (OTA). The results show that the improved CEEMDAN has completely decomposed the
raw signal into different intrinsic mode functions (IMFs) representing the natural oscillatorymodes embedded into the signal. The
most relevant IMF from which the defect was extracted is selected by the kurtogram plot which allows locating the optimal
frequency band having the highest kurtosis value. Multivariate denoising based on wavelet analysis and PCA is used to increase
the signal-to-noise ratio (SNR) of the selected IMF. The results show the great contribution of the denoising approach when
comparing the selected denoised IMF with the original one. Finally, order tracking analysis is applied on the denoised IMF’s
envelope to remove the effect of speed variation, and an envelope order spectrum is obtained. The proposed approach is first
applied on theoretical signal simulating rolling bearing defect in variable regime including three different phases. The final order
spectrum shows exactly the simulated defect order and several of its harmonics. For the experimental validation, several signals
of defective rolling bearings have been measured on the Machine Fault Simulator test rig in variable regime. Despite the
combined variable regime including acceleration-constant regime-deceleration, at the same time, the obtained results indicate
the efficiency of the proposed method to extract the fault order with high accuracy. The maximum error between the theoretical
order and the experimentally obtained one was 1.3% for outer race defect and 1% for inner race defect. Finally, the performances
of the proposed method are compared to those of another diagnosis method designed for variable regime conditions. Both outer
race and inner race defects are considered in acceleration regime. The results show the superiority of the proposed method to
highlight the defect order with highest clarity.

Keywords Rolling bearing faults . Non-stationary conditions . Improved CEEMDAN . Multivariate denoising . Principal
component analysis . Order tracking analysis

1 Introduction

Rolling bearing is the most important part in any rotating ma-
chine. Damage of rolling bearing components can cause

catastrophic failures that influence the running conditions of
the machine and the whole production process. Despite the
use of preventive maintenance management program based
on theoretical calculations, the maintenance crew is often un-
able to predict the exact lifetime of the rolling bearing. Actually,
the overloads applied on the bearing cause its destruction be-
fore scheduled date. The predictive maintenance based on vi-
bratory analysis is then the most reliable technique used for
rolling bearing monitoring and diagnosis in real time. Taking
advantage of the development of signal processing techniques,
several methods have been proposed these last years.

Among the powerful tools used for detection of rolling
bearing faults, time-frequency approaches are the most recent.
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These methods provide local analysis of the signal, instead of
the global analysis given by the classical methods. In the last
two decades, wavelet transform was undoubtedly the star in
the time-frequency analysis of vibratory signals. Many re-
searches applied several versions of the wavelet analysis for
the detection of bearing defects [1–4]. Among the applications
of wavelet analysis, denoising approaches have been widely
used and discussed in the literature. Inspired from the well-
known wavelet denoising proposed by Donoho [5], a new and
effective approach is proposed in [6]. It uses a multivariate
denoising based on wavelet analysis and principal component
analysis. This new denoising method gave better results than
those obtained by the classical soft or hard thresholding
methods.

Wavelet analysis being non-adaptive, however, has its own
disadvantage that their analysis results depend on the choice
of the wavelet base function [7]. To overcome this limit, a self-
adaptive analysis was proposed by Huang in 1998 [8] under
the name of empirical mode decomposition (EMD). EMD
was widely used for detection of rolling bearing faults alone
[9–11] or combined with other signal processing tools
[12–17].

Despite its efficiency, the EMD has the mode mixing
problem, where we may find that different scales may be
consisted in one oscillatory component, called intrinsic
mode function (IMF), or that similar scales may reside in
different IMFs, which could make individual IMF devoid
of physical meaning and lead to false diagnostic. As solu-
tion to this problem, ensemble empirical mode decompo-
sition (EEMD) was proposed in 2009 [18]. The main idea
of the EEMD consists in adding white noise to the ana-
lyzed signal and calculating an ensemble of trials using
the original EMD. The mean of the result of each ensemble
represents the true IMF. By overcoming the mode mixing
problem, the EEMD method provides more accuracy but,
unfortunately, causes more computing time which repre-
sents its principal drawback. Despite this limitation, sever-
al applications used the EEMD for the detection of rolling
bearing defects [19–21]. Moreover, EEMD has a second
serious limitation that the residue of white noise still exists
in the reconstructed components, because the added white
noise is not completely removed from the IMFs by the
averaging process.

For this reason, a new algorithm called complete ensemble
empirical mode decomposition with adaptive noise
(CEEMDAN) was initially proposed by Torres et al. in 2011
[22] and successfully applied on ECG signals. Contrary to
EEMD, CEEMDAN provides complete decomposition with
numerically negligible error. In CEEMDAN procedure, a par-
ticular noise is added at each stage of the decomposition and a
unique residue is computed to obtain each IMF. Nevertheless,
little noise still exists, leading to some spurious IMFs in the
earlier decomposition.

An improvement of this technique is then proposed by
Colominas et al. in 2014 [23] and also applied to analyze
ECG signals. The improved CEEMDAN allows less residue
of white noise and more physical meaning of the obtained
IMFs. The main mathematical improvement consists in
adding an IMF of the white noise decomposed by EMD at
each stage, and a unique residue is then obtained. The true
IMF is computed as the difference between the current residue
and the average of its local means [24]. These techniques
(CEEMDAN and improved CEEMDAN) have been applied
in several papers for the detection of rolling bearing defects
[25–28].

Unfortunately, most of these methods are ineffective to
analyze signals measured in variable regime conditions.
The necessity to monitor this type of machines via vibra-
tory analysis incites the researchers to develop signal pro-
cessing methods adapted from classical well-known tech-
niques or simply propose new ones. Several researches
investigated this field, but the published papers are still
little compared to those treating the steady-state running
conditions [25, 29–31].

The objective of this paper is to propose a new diag-
nosis method for rolling bearings running in variable re-
gime using improved CEEMDAN, multivariate denoising
based on wavelet analysis and PCA, spectral kurtosis, and
order tracking analysis (OTA) (this method will be called
later ICEEMDAN-MVD method). Section 2 is devoted to
the presentation of the theoretical framework of the pro-
posed method including the improved CEEMDAN and its
predecessor versions (the multivariate denoising and the
order tracking analysis). Simulation of rolling bearing de-
fects in non-stationary running conditions is proposed in
Section 3. The proposed approach methodology is de-
tailed in Section 4 and applied on theoretical signal in
Section 5. Experimental application on measured vibrato-
ry signals is carried out in Section 6. Comments and dis-
cussions of the obtained results are given in section 7.
Finally, the proposed approach is compared to another
diagnosis method in Section 8.

2 Theoretical foundations of the proposed
method

2.1 EEMD, CEEMDAN, and improved CEEMDAN

To overcome the mode mixing problem of the EMD, the
EEMD, being a noise-assisted analysis, was proposed. The
EEMD calculates an ensemble of trials using the original
EMD, adding in each trial a different realization of white noise
of finite variance, i.e., random signal having equal intensity at
different frequencies giving it a constant power spectral
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density. The mean of the result of each ensemble represents
the true IMF. This can be summarized as follows [18, 25]:

1. Generate xi(t) = x(t) +wi(t), where x(t) is the original sig-
nal and wi(t) [i = 1, …, I] is the different realizations of
white Gaussian noise

2. Each xi(t) is decomposed by EMD getting its modes
IMFik tð Þ, where k = 1, …, I indicates the modes

3. Assign IMFk as the kth mode of x(t), obtained as the

average of the corresponding IMFk tð Þ ¼ 1
I ∑

I

i¼1
IMFik tð Þ

The main problem of the EEMD is the high computing
time and the residue of added noise present in the IMFs. To
overcome this limitation, the CEEMDAN algorithm was first
proposed by Torres et al. in 2011 [22]. The main idea of the
CEEMDAN is to add white noise in a specific frequency band
during the decomposition. CEEMDAN uses the same EEMD

algorithm to calculate the first mode function IMF1 only, and a
unique first residue is then calculated as

r1 tð Þ ¼ x tð Þ−IMF1 tð Þ ð1Þ

Then, compute the EMDmode over an ensemble r1(t) plus
different realizations of a given noise, obtaining IMF2 tð Þ by
averaging. r2(t) is then calculated as

r2 tð Þ ¼ r1 tð Þ−IMF2 tð Þ ð2Þ

This step is repeated with the other modes until the stop-
ping criterion is reached.

In order to summarize the procedure of CEEMDAN,
Ej(.) is defined as an operator which, given a signal,
produces the jth mode obtained by EMD, and εi repre-
sents the signal-to-noise ratio (SNR); the steps of the
technique are the following:

1. Decompose I realizations of x(t) + ε0 wi(t) by EMD to

obtain the first IMF1 by averaging

IMF1 tð Þ ¼ 1

I
∑I

i¼1IMFi1 tð Þ ð3Þ

2. Calculate the first residue as

r1 tð Þ ¼ x tð Þ−IMF1 tð Þ ð4Þ

3. Decompose I realizations of r1(t) + ε1 E1(w
i(t)) until their

first EMD mode and calculate the second mode

IMF2 tð Þ ¼ 1

I
∑I

i¼1E1 r1 tð Þ þ ε1 E1 wi tð Þ� �� � ð5Þ

4. For k = 2, …, K, calculate the kth residue

rk tð Þ ¼ rk−1 tð Þ−IMFk tð Þ ð6Þ

5. For k = 2, …, K, define the (k + 1)th mode as

IMFkþ1 tð Þ ¼ 1

I
∑I

i¼1E1 rk tð Þ þ εk Ek w tð Þð Þð Þ ð7Þ

6. Go to step 4 for next k

Steps from 4 to 6 are repeated until the obtained residue is
no longer feasible to be decomposed and satisfies

R tð Þ ¼ x tð Þ−∑K
k¼1IMFk tð Þ ð8Þ

where K is the total number of modes. The original signal x(t)
can be expressed in the end as

x tð Þ ¼ ∑K
k¼1IMFk tð Þ þ R tð Þ ð9Þ

Even with the CEEMDAN algorithm, little residue of
added white noise still exists in the obtained IMFs.
Improved CEEMDAN is then proposed by Colominas et al.
in 2014 [23]. Applied on theoretical and ECG real signals, the
new improved version is presented to be more effective than
all the previous versions. The improved CEEMDAN algo-
rithm is summarized as [23]

1. Calculate the local means of l realizations using the EMD
algorithm: xi(t) = x(t) + ε0 E1(w

i(t)) and obtain the first res-
idue: r1(t) = (M(xi(t))), where M(.) is the operator which
produces the local means of the signal and wi is a realiza-
tion of white noise

2. Calculate the first IMF as IMF1 tð Þ ¼ x tð Þ−r1 tð Þ
3. Estimate the second residue as the average of local means

of the realizations (r1(t) + ε1 E2(w
i(t))) and calculate the

second IMF as IMF2 tð Þ ¼ r1 tð Þ−r2 tð Þ
4. Calculate the kth IMF: IMFk(t) = rk − 1(t) − rk(t)
5. Go to step 4 for next k

2.2 Multivariate denoising using wavelet analysis
and PCA

This new algorithm combines the well-known wavelet
denoising procedure widely used in the literature and principal
component analysis. The denoising procedure is as [6]
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1. Perform the wavelet transform at level J of each column
of x(t)

2. For 1 ≤ j ≪ J, perform the PCA of the detail matrix Dj and
select an appropriate number (pj) of useful principal com-
ponent or suppress the detail Dj

3. Do again step 2 for the approximations of matrix Aj

4. Reconstruct the new matrix xˇ by the inverse wave-
let transform from the simplified details and
approximations

5. Perform the PCA of matrix xˇ and build adequate statistic
for statistical process control (SPC)

2.3 Order tracking analysis

The monitoring of bearing defects is more complicated
when the operating parameters of the system are variables,
in particular for speed and load. The analysis of vibratory
signals in this case is often preferred in terms of order
spectrum rather than frequency spectrum. In the frequency
domain, the data must be sampled at constant time inter-
vals. For the order tracking analysis, it is necessary to sam-
ple the vibration signal at constant angular increments and,
therefore, at a rate proportional to the shaft speed. This is
achieved using analog instrumentation.

In stationary regime, the detection of the bearing defect
type returns to look for its characteristic frequency in the spec-
trum (BPFO, BPFI, BSF, FTF). As well known, these charac-
teristic frequencies are calculated in function of the bearing
geometry and the rotation speed. In the case of non-stationary
conditions, the rotation speed is variable, and these character-
istic frequencies are also variables. It is then almost impossible
to detect the defect by the conventional approaches. The de-
fect characteristic frequencies can then be simplified as

Defect characteristic frequency Hzð Þ ¼ N :C j with j ¼ 1 : 4

where C1, C2, C3, and C4 are constants (which will be later
called defect orders) determined from the bearing geometry
and N is the rotation speed. As solution to non-stationary
effect, it is therefore common to look for these constants
(orders) rather than the characteristic frequencies which are
variables. For this, we must perform an order spectrum rather
than a frequency spectrum.

3 Simulation of rolling bearing defects
in variable regime

The signal of defective rolling bearing is characterized by
periodical impulse train. Each impulse is modulated by a

single harmonic frequency with exponential decay as shown
in Eq. (10):

s tð Þ ¼ e−αtsin 2π f rtð Þ ð10Þ

where α is the damping ratio of the impulse and fr is the
resonance frequency of the bearing.

The period between two successive impulses represents the
defect characteristic frequency that depends on the defect
type. This model has been widely used in the literature to test
different diagnosis methods [1, 2, 32, 33].

In the non-stationary case, the fault frequencies are variable
and follow the speed variation, which means that the periods
between impulses are unequal. If it is an acceleration, the
periods are going to decrease while speeding up. On the other
hand, the periods between impulses are going to increase in
the case of deceleration. In practice, bearing signals are often
contaminated with noise and modulated either by shaft speed,
cage speed, or their difference, depending on the location of
the fault [25]. It is also often that a time lag between impulses
occurs due to the slippage of the rolling elements between the
two bearing rings. The final obtained signal can be then math-
ematically expressed as

x tð Þ ¼ ∑iAih n−iT−τ ið Þ þ n tð Þ ð11Þ

where Ai is the amplitude modulation of the ith impact
force, T is the period between two successive impacts, τ is
the time lag produced by the slip, h(.) is the impulse response,
and n(t) is the white Gaussian noise. The adopted model has
been successfully used in previous literature to represent bear-
ing signals working in variable speed [25, 30, 34].

As example, Fig. 1 a represents a signal simulating rolling
bearing defect in the case of an acceleration. Figure 1b shows
the same signal after adding a variable level of white noise. The
bearing natural frequency is taken equal to 2800 Hz, and the
defect characteristic frequency increases from 100 to 300 Hz. If
we assume a defect order equal to 3, the rotation speed increases
from 33.3 Hz (2000 RPM) to 100 Hz (6000 RPM). To clearly
illustrate the effect of the acceleration on the impacts’ amplitude
and its period and on the added noise, we took a small number
of samples. A much higher number of samples (as in the mea-
sured signals) mean very high computing time and will not
illustrate the variable regime, properly.

The application of the well-known demodulation technique
(still called envelope analysis or high-frequency resonance
technique) around the natural frequency allows obtaining the
envelope spectrum of Fig. 2. No information can be obtained,
and the peaks present in the envelope spectrum do not corre-
spond to any known frequency.

4 Proposed approach methodology

The proposed approach procedure contains four main steps:
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a. First step: Decompose the signal by the improved
CEEMDAN

It is well known that a signal measured on rotating machine
reflects its vibratory state. The problem is that this raw signal
contains different frequency components. These frequency
components correspond to different vibratory phenomena
generated by the machine parts at the same time (shafts, bear-
ings, gears, coupling, electrical motor, etc.). To get informa-
tion about the occurrence of specific defect, it is imperative to
extract its signature from the raw signal, and this is not usually
obvious.

For this, the proposed ICEEMDAN-MVDmethod uses the
improved CEEMDAN to decompose the signal into several
IMFs. As complete decomposition, the ICEEMDAN will iso-
late the signature of the rolling bearing defect in specific IMF.

b. Second step: Perform kurtogram plot and select the opti-
mal frequency band

After decomposing the signal into different IMFs, the ques-
tion is which IMF contains the signature of rolling bearing
defect. A rolling bearing defect excites the structure in high
frequency range, and the bearing natural frequency will be

modulated by the defect characteristic frequency. The first
IMFs (probably IMF1 or IMF2) must contain the signature
of rolling bearing defect since it corresponds to high frequen-
cy range. It is then capital to look for a rational criterion to
select the optimal IMF fromwhich the defect can be extracted.
As rolling bearing defects generate periodic chocks, the most
reliable criterion is that sensitive to the impulsive forces.
Through several papers in the literature, the kurtosis has been
shown as the most sensitive indicator to detect mechanical
defects inducing periodical shocks.

For this, in the second step of the proposed method, a
kurtogram plot is performed using the fast spectral kurtosis
algorithm established by Antoni [34]. It allows locating the
best frequency band allowing the highest kurtosis value.

c. Third step: Compute FFT spectra of all the IMFs and
perform multivariate denoising

In this step, the FFT spectra of all the obtained IMFs are
calculated. The objective is to isolate the IMF covering the
optimal frequency band selected by the kurtogram. The IMFs
corresponding to low-frequency components will be automat-
ically removed. As second confirmation of the optimal IMF’s
choice, the multivariate denoising approach based on wavelet

Fig. 1 Signal simulating rolling
bearing defect in acceleration
regime. a Pure signal. b Noisy
signal

Fig. 2 Envelope spectrum of the
noisy signal using HFRT
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analysis and PCAmethods is applied. The SNR of the selected
IMF will be considerably improved and makes it possible to
give final confirmation and more accuracy.

d. Fourth step: Apply order tracking analysis and perform
envelope order spectrum

The most relevant IMF is being selected, and another
problem still exists. Actually, this IMF was selected from
a signal measured in non-stationary condition. It is

almost impossible to extract the rolling bearing defect
without removing the effect of speed variation. The pro-
posed solution consists in using order tracking analysis
on this IMF’s envelope. An envelope order spectrum is
then obtained instead of an envelope frequency spectrum
as in the case of steady-state condition. The obtained
envelope order spectrum will highlight the defect order
and several of its harmonics.

NB. Steps 1 and 2 can be inverted without affecting the
final result.

Decompose the signal s(t) into 

different IMFs using improved 

CEEMDAN 

Compute the kurtogram of the 

analyzed signal using the 

spectral kurtosis algorithm 

Apply the multivariate denoising 

using wavelet and PCA analyses 

on the obtained IMFs

Compute the FFT spectra of the 

obtained IMFs 

First selection of the most 

relevant IMF

Final selection and confirmation 

of the most relevant IMF

Apply the Order Tracking 

Analysis on the envelope signal 

of the selected denoised IMF

Perform an envelope order 

spectrum and extract the defect 

order

Input signal s(t) to be analyzed 

Theoretical signal simulating 

rolling bearing defect in variable 

regime

Experimental signal of defective 

rolling bearing measured in 

variable regime

Perform RPM vector according 

to the simulated signal

Introduce RPM signal measured 

via a tachometer simultaneously 

with vibratory signal

Decompose the signal s(t) into 

different IMFs using improved 

CEEMDAN 

Compute the kurtogram of the 

analyzed signal using the 

spectral kurtosis algorithm 

Apply the multivariate denoising 

using wavelet and PCA analyses 

on the obtained IMFs

Compute the FFT spectra of the 

obtained IMFs 

First selection of the most 

relevant IMF

Final selection and confirmation 

of the most relevant IMF

Apply the Order Tracking 

Analysis on the envelope signal 

of the selected denoised IMF

Perform an envelope order 

spectrum and extract the defect 

order

Input signal s(t) to be analyzed 

Theoretical signal simulating 

rolling bearing defect in variable 

regime

Experimental signal of defective 

rolling bearing measured in 

variable regime

Perform RPM vector according 

to the simulated signal

Introduce RPM signal measured 

via a tachometer simultaneously 

with vibratory signal

Fig. 3 Global flow chart of the
proposed method
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The global flow chart of the proposed method is given in
Fig. 3.

5 Application on simulated signal

The proposed ICEEMDAN-MVD approach is first applied on
the simulated signal of Fig. 4. This signal is more complicated
than that in Fig. 1 since it contains three phases: an accelera-
tion from 33.3 Hz (2000 RMP) to 100 Hz (6000 RPM) in the
first phase, a constant rotation speed at 100 Hz (6000 RPM) in

the second phase, and finally, a deceleration from 100 Hz
(6000 RPM) to 33.3 Hz (2000 RPM) in the third phase. In
all the considered phases, the defect order is taken equal to 3.
Consequently, the defect characteristic frequency ranges be-
tween 100 and 300 Hz. The bearing natural frequency is still
taken equal to 2800 Hz.

Figure 5 shows the FFTspectrum that reveals the simulated
natural frequency (2800 Hz). The calculation of the spectral
kurtosis using the fast algorithm detailed in [33] allows
obtaining the kurtogram in Fig. 6. The kurtogram shows that
the optimal frequency band having the highest kurtosis ranges

Fig. 6 Kurtogram of the
simulated signal

Fig. 5 FFT spectrum of the
simulated signal

Fig. 4 Noisy signal simulating
rolling bearing defect in variable
regime (acceleration-constant
regime-deceleration) with
simulated defect order equal to 3
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between 1900 and 3700 Hz with a center frequency at
2800 Hz, equal to the simulated natural frequency. This fre-
quency band is then the best one revealing the periodical im-
pacts generated by the simulated bearing defect.

Then, the improved CEEMDAN approach is applied,
decomposing the simulated signal into several intrinsic
mode functions. Figure 7 shows the first four IMFs and
their spectra. The other IMFs correspond to low-
frequency components and do not have a significant con-
tribution in the defect detection. As first observation, IMF3
and IMF4 are automatically removed since they contain
frequency components lower than the optimal frequency
band. On the other hand, spectra of IMF1 and IMF2 show
frequency modulations around the frequency band selected

from the kurtogram (1900 Hz to 3700 Hz), with advantage
for the IMF1 highlighting more concentrated modulations.
IMF1 seems the most relevant mode from which the defect
can be extracted. This conclusion will be confirmed after
performing the multivariate denoising.

As next step of the proposed method, multivariate
denoising based on wavelet and principal component analyses
is realized on the four IMFs obtained from the improved
CEEMDAN. Figure 8 shows the four denoised IMFs,
confirming with no confusion that the denoised IMF1 is the
most relevant since it has a very significant kurtosis (21.72).
The contribution of the denoising method is very obvious, and
periodical impacts generated from the simulated defect are
very clear.

Fig. 8 Denoised IMFs obtained after the application of the multivariate denoising approach

Fig. 7 First four IMFs and its spectra obtained after the application of the improved CEEMDAN on the simulated signal
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Finally, order tracking analysis is applied on the envelope
signal of the denoised IMF1 to remove the effect of speed
variation. Figure 9 shows the order spectrum highlighting
the simulated defect order (3) and several of its harmonics.

6 Experimental validation

In order to prove the efficiency of the proposed method in
practice, several signals have been measured on a laboratory
test rig in variable speed regime. The test rig is SpectraQuest®

Machine Fault Simulator (MFS) as described in Fig. 10. The
MFS is equippedwith a kit of defective bearings having single
point defects on outer race, inner race, and ball (combined
defect is also available). The machine is also equipped with
an automatic speed variator, allowing signal measurement in
both constant and variable regimes. The signals are collected

by accelerometers mounted on the bearing housing. The in-
stantaneous rotation speed is measured simultaneously with
vibratory signals via a tachometer. All collected data are then
transferred to a 16-channel acquisition card in a PC. The post-
treatment is carried out on Matlab® environment.

The proposed method is applied on the signal in Fig. 11 mea-
sured on a bearing with outer race defect. According to the bear-
ing’s geometry, the defect order is equal to 3.048. As for the
simulated signal, the measured signal contains three phases: an
acceleration from 0 to 1800 RPM, a constant speed at
1800 RPM, and finally, a deceleration from 1800 to 0 RPM.
The signal contains 1,068,186 points and sampled at 15360 Hz.

Figure 12 shows the FFT spectrum of the measured signal,
some modulations due to the system’s natural frequencies are
visible, and the most relevant modulation cannot be known
without performing the kurtogram plot. Figure 13 shows the
kurtogram of the measured signal obtained after the

Fig. 10 Machine Fault Simulator

Fig. 9 Envelope order spectrum
of the denoised IMF1 obtained
from the order tracking analysis
(simulated defect order = 3)
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calculation of the spectral kurtosis, showing that the optimal
frequency band ranges between 2200 and 2500 Hz with a
center frequency around 2350 Hz.

The improved CEEMDAN is then applied on the measured
signal, and Fig. 14 shows the first four IMFs and their corre-
sponding spectra. As for the case of simulated signal, IMF3
and IMF4 are immediately removed, and their spectra corre-
spond to low-frequency components. IMF1 and IMF2 are
then taken as first selection since their spectra cover the opti-
mal frequency band selected by the kurtogram. The multivar-
iate denoising approach based on wavelet analysis and PCA is
applied on the four IMFs. One can note that the kurtosis of the
denoised signals of IMF1 and IMF2 is close (28 for IMF1 and
23 for IMF2). To remove the confusion about the most rele-
vant IMF’s selection, FFTspectra of all the denoised IMFs are
performed. According to Fig. 15, the denoised signal of IMF2
is the relevant one since its spectrum covers the optimal fre-
quency band selected by the kurtogram. Even if the kurtosis of
the denoised IMF1 is little higher than that of denoised IMF2,
its spectrum does not properly cover the optimal frequency
band.

Order tracking analysis is finally applied on the envelope of
the denoised signal (DIMF2), allowing the order envelope
spectrum of Fig. 16. The spectrum highlights a main compo-
nent corresponding to the order 3.09 and several of its

harmonics. This order is very close to the outer race defect
order of the used rolling bearing (3.048) with an error of 1.3%.
Moreover, this order spectrum is clearer than that obtained
from the denoised IMF1 (Fig. 17) which confirms the assump-
tion put before.

7 Comments and discussion on the obtained
results

From the obtained results, some comments must be
emphasized

1. Both theoretical simulation and experimental validations
confirm that the improved CEEMDAN allows complete
decomposition of the analyzed signal. The obtained IMFs
have more physical meaning than those for EEMD anal-
ysis, for example. The disadvantage of the improved
CEEMDAN resides in the high computing time, especial-
ly for signals having a high number of samples. For this,
we noticed that beyond certain ensembles’ number, there
is no difference in terms of result accuracy. Between 10
and 100 ensembles, no significant difference was obtain-
ed; contrariwise, the difference between the computing
times was immense.

Fig. 12 FFT spectrum of the
measured signal

Fig. 11 Signal of outer race
defect measured in variable
regime (acceleration-constant
regime-deceleration) with
theoretical defect order equal to
3.048
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2. Spectral kurtosis is proposed for the selection of the most
relevant IMF. The kurtogram plot allows revealing, in

very clear way, the optimal frequency band having the
highest kurtosis value. The IMF from which the defect

Fig. 14 First four IMFs and its spectra of the measured signal

Fig. 15 Denoised IMFs and its spectra

Fig. 13 Kurtogram of the
measured signal
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can be extracted must imperatively cover this frequency
band. In this context, it is important to mention that this
approach only validates for the mechanical defects induc-
ing periodical impulses (like rolling bearing and gear de-
fects). For other defects, specific criteria must be found,
tested, and applied.

3. To our knowledge, the pairing of multivariate denoising
based on wavelet analysis and PCA and on the

ICEEMDAN method for the detection of rolling bearing
defects in variable regime is original. Actually, the IMFs
obtained from improved CEEMDAN (especially the rel-
evant one) still contain little level of white noise. The
contribution of the multivariate denoising was high effi-
cacy when comparing the original relevant IMF with the
denoised one. This step has considerably improved the

Fig. 18 Envelope order spectrum
obtained from the proposed
method for outer race defect
(theoretical outer race defect
order = 3.048)

Fig. 16 Envelope order spectrum
of the outer race defect in variable
regime obtained from the
denoised IMF2 (theoretical outer
race defect order = 3.048)

Fig. 17 Envelope order spectrum
of the outer race defect in variable
regime obtained from the
denoised IMF1 (theoretical outer
race defect order = 3.048)
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clarity of the order spectrum obtained by the OTAmethod
and then the diagnosis accuracy.

4. The proposed ICEEMDAN-MVD method uses order
tracking analysis on the envelope of the relevant IMF
instead of the IMF itself. The final spectrum is an enve-
lope order spectrum that highlighted, in both simulation
and experience, the defect order with high accuracy. It is
very important to notice that this step gives accurate re-
sults, and RPM signal measured by the tachometer (or
RPM vector in the case of simulation) must be carefully
introduced simultaneously with the vibratory measured
signal.

8 Comparison with another diagnosis method

The proposed method is compared to another diagnosis meth-
od designed for the detection of rolling bearing defects in
variable regime. This method has been presented in [25],
and it is a hybrid approach combining the original
CEEMDAN and wavelet multiresolution analysis (WMRA).
In this method, the signal is decomposed by the CEEMDAN

and the most relevant IMF is select by the calculation of the
kurtosis. TheWMRA is then applied on the selected IMF, and
a reconstructed signal is built from theWMRAdecomposition
details (corresponding to high-frequency components). Order
tracking analysis is then applied to get order spectrum. The
comparison concerns the same signals presented in [25], i.e.,
outer race and an inner race defect signals measured in accel-
eration regime. Just the final envelope order spectrum is pre-
sented as comparison.

The first comparison concerns a signal measured on a
bearing with outer race defect in acceleration regime.
Figures 18 and 19 show the envelope order spectra obtain-
ed from the proposed method and the CEEMDAN-WMRA
method, respectively. Without confusion, the order defect
is clearly highlighted by the order spectrum obtained from
the proposed method. Only the peaks corresponding to the
defect order and its harmonics are visible, contrary to the
CEEMDAN-WMRA method where the order spectrum is
disturbed by frequency components making the defect or-
der detection less obvious.

The second comparison is carried out on a signal of inner
race defect in acceleration regime. According to the bearing’s
geometry, the defect order is equal to 4.95. Figure 20 shows

Fig. 20 Envelope order spectrum
obtained from the proposed
method for inner race defect
(theoretical inner race defect
order = 4.95)

Fig. 19 Envelope order spectrum
obtained from the CEEMDAN-
WMRA method for outer race
defect [25] (theoretical outer race
defect order = 3.048)
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the result obtained from the proposed method. A main order
of 4.9 and some of its harmonics are clearly identifiable,
very close to the inner race defect order with an error of
1%. The defect order is highlighted more clearly than in
the order spectrum provided by the CEEMDAN-WMRA
method (Fig. 21).

9 Conclusion

In this paper, a diagnosis method designed for the detection of
rolling bearing defects in non-stationary running conditions is
proposed. The proposed method is based on an improved
complete ensemble empirical mode decomposition with adap-
tive noise, the multivariate denoising based on wavelet and
principal component analyses, the spectral kurtosis, and order
tracking analysis. The proposed method is shown to be very
effective in the detection of the defect order in both simulated
and experimental signals measured on defective rolling bear-
ings in variable regime. For the simulation, the defect order
has been exactly highlighted by the envelope order spectrum.
For experimentation realized on bearings with single point
defects in combined variable regime including three phases
at the same time, the final order spectrum highlighted the
defect order with an error of 1.3% for outer race defect and
1% for inner race one.

A comparison with another diagnosis method confirms the
great advantage using the proposed method. The defect order
is clearly detected in both outer race and inner race faults
compared to the order spectrum obtained from the
CEEMDAN-WMRA method. Note that the proposed ap-
proach is very simple to implement in an automatic diagnosis
system. Despite that the mathematical foundations and the
calculation programs are hard to understand by maintenance
engineers, the final order spectrum is so simple that any mem-
ber of the maintenance crew can interpret.
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