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Abstract
In the current scenario, industries need to have continuous improvement in their manufacturing processes. Digital twin (DT), a
virtual representation of a physical entity, serves this purpose. It aims to bridge the prevailing gap between the design and
manufacturing stages of a product by effective flow of information. This article aims to create a state-of-the-art review on various
DTs with their application areas. The article also includes schematic representations of some of the DTs proposed in various
fields. The concept is also represented by a case study based on a DT model developed for an advanced manufacturing process
named friction stir welding. Towards the end, a model for implementing DT in a factory has been proposed.
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1 Introduction

The industrial revolution refers to the change in the process of
production. It originated in the sixteenth century when rich
traders brought together a group of labors tomanufacture textiles
at home. It continued for a period of 100 years when the first
steam engine was designed and the power obtained from this
steam brought a change in the industrial scenario and is referred

as the first industrial revolution or Industry 1.0 [1]. Considering
the manufacturing process of an automobile in Industry 1.0, the
chassis stood still while the individual parts were brought to it.
The whole assembly process lacked efficiency and was time
consuming. With the passage of time, the assembly line concept
was introduced which reduced the manufacturing lead time and
is referred as Industry 2.0 [2]. The advent of computers brought
the next revolution in the industry which eventually led to the
idea of computer-integrated manufacturing. The third industrial
revolution, Industry 3.0, started with the advent of the electronic
components and information technology systems which re-
placed the labor on the shop floor [2]. It led to large-scale auto-
mation of the manufacturing process and reduced the lead time
substantially. Industry 4.0 is the latest revolution in the industrial
era which refers to the digitization of manufacturing by merging
the physical and digital worlds. Its vision is to build smart ma-
chines consisting of mechatronic components where the sensor
system is engaged in collection of data, and the actuator system
for controlling the physical process, both occurring in real-time.
It also aims at energy and resource efficiency, increasing pro-
ductivity, and digital integration of engineering. This internet-
aided manufacturing will provide a basis to identify, monitor,
and control every single product in the production line.

This article presents a review on one of the enablers of
Industry 4.0, i.e., digital twin (DT). In a nutshell, DT aims at
developing a digital and a virtual model of a physical object to
mirror its life and make useful predictions about the physical
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object. The present work describes the importance of DT, a
comprehensive survey of its applications, and the potential to
be implemented in certain manufacturing processes. In order
to provide a better understanding, a few self-drawn schematic
representations of the proposed DTs have been discussed in
details. Although, the theory on DT has been explored by a
few researchers, there is a scanty evidence of a case study
validation exhibiting the implementation of DT. Thus, a
unique application of a DT has been developed, as a case
study validation, for a discrete manufacturing process such
as in friction stir welding (FSW). Avirtual model of the phys-
ical FSWmachine has been developed to evaluate and predict
its health. In this DT, a prediction of large number of aspects of
the machine has been made. The developed DT resides in
cloud, and it constantly communicates with the FSWmachine.
It takes sensory data as the input, processes and analyzes it,
and gives useful information about the process and machine
on a dashboard in real time. The DTallows the user to provide
inputs based on the suggestion which the twin feeds back to
the machine in real time to control it. Further, a model for
implementing DT in a factory containing similar FSW ma-
chines has been proposed which describes the cooperation
among the DTs associated with each of the FSW machine.
The next section introduces the concept of DT and its imple-
mentation in various areas.

2 Digital twin

DT is a strategywithin Industry 4.0 operating on virtualization
principle. As stated by NASA, “DT is an integrated, multi-
physics, multi-scale, probabilistic simulation of an as-built
vehicle or system that uses the best available physical models,
sensor updates, and fleet history to mirror the life of its flying
twin” [3]. This definition can be explained as follows. In order
to get a holistic view of the real-time performance of a
product/component of a machine, and predict its health, the
DT needs several models to make the analysis. For instance,
consider a gearbox, this will involve a thermal analysis to
determine the temperature distribution across it, a wear model
to determine the wear caused to it, dynamic modeling for fault
diagnosis and etc. This constitutes a multi-physics model for
one component. This analysis may be multi-scale in a manner
if the individual analysis will be requiring different solvers.
Since, in addition to the prediction of the real-time perfor-
mance, DT also needs to state the remaining useful life, prob-
abilistic simulations are essential.

In the current technological era, diligent efforts are being
made to implement the Industry 4.0 concepts in the industrial
environment, and as stated earlier, DT is considered to be an
enabler to the implementation of Industry 4.0. A company
invests quite a fortune in designing prototypes of the final
product for testing the efficiency of the same. For instance,

if any equipment is manufactured, then its prototype is to be
tested by the workers or the operators who shall be working on
it in the future. At times, it is unsafe to workwith prototypes as
there could be an occurrence of industrial hazards. The DT
concept eliminates these hurdles and provides a platform for
the workers to learn in a virtual environment. The difficulties
faced by the operator can be immediately rectified without the
need for backtracking or redesigning prototypes for further
testing. DT technique is expected to assist the industries in
up-skilling of its workforce at minimum costs incurred. It is
an economic way of fostering the implementation of Industry
4.0 which is still in its conceptual stages in emerging econo-
mies. Similarly, for manufacturing, a DTmodel can be utilized
to simulate various conditions and help an operator identify
faults.

Figure 1 shows a possible DT’s framework depicting link-
age between a physical and a digital world. The physical
world can comprise of the physical devices in a machine for
instance. These devices are associated with various sensors
and data acquisition devices. The acquired data is sent to the
virtual space where it is analyzed to monitor the process and
health of the machine. Various signal processing tasks, ma-
chine learning algorithms, and simulations will be utilized to
make useful predictions regarding the process as well as mon-
itor individual machine components, and thereby pass on this
information to the physical world for real-time control [4].
The virtual world integrates the history of the machine com-
ponents with the present condition to predict the life of the
component, and thus, takes care of the health of the machine.
The feedback from the digital world can be predictions of few
useful parameters to judge the process, health condition of few
critical components in that machine and their remaining useful
life, suggestions to user as how to ensure safe mode of oper-
ation, control of few parameters to ensure the safe operation of
a machine etc. The following paragraph discusses the various
works onDTwhich has been performed by researchers around
the globe.

2.1 DT for humans

In order to understand the concept of DT in an engineering
application, for which only it has been proposed and is under
development, let us first consider an example of how DT can
be applied in the life of a human being.

The DT for a human is expected to reveal the true condition
of that human [5]. The DT of that person will have information
such as previous history and present condition of the physical
human and will be helpful in predicting the occurrence of vari-
ous kinds of diseases. The DTwill also provide the human with
recommendations on how to improve their health based on the
predictions. It has been reported that this DT will be helpful,
particularly for persons with diabetes. It will keep a track of their
daily activities and will provide recommendations on how to
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improve the quality of their life. In addition, the DT can also be
used to acquire a detailed information about the biological, phys-
ical, and lifestyle data for an individual over a period of time.
Based on the predictions from the collected data, the health of
that individual can be determined. It can also assist in suggesting
the suitable therapy for that person. This is possible because of
the data analytics involved in DTwhich is capable of using the
available data and build models to make useful predictions.
Based on this discussion, Fig. 2 shows a schematic representa-
tion of a DT for a human.

The existing cyber physical systems (CPS) run on the idea
of automated planning and implementation [6]. This some-
how leads to the degradation of human skills in the
manufacturing shop floor. DTs provide a new basis of an
interconnected approach between the stakeholders (human

and devices). Researchers have proposed a DT which will be
a representative of the human employee in the CPS for effec-
tive information sharing, and thereby making the human op-
erator involved in computational decision-making by using a
database that matches the user behavior. The human DT will
actively take part in the automated, decentralized production
planning, and control, mostly in resource allocation.

2.2 DT for product design and product life cycle

The existing research on product life cycle data primarily focus-
es on physical products instead of the virtual models [7]. The
mirroring of a physical product on the virtual space is lacking.
Moreover, owing to this insufficient convergence, the product
life cycle management data is isolated, fragmented, and

Fig. 2 DT for a human

Fig. 1 Framework of DT:
interaction between digital world
and physical world
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stagnant. A product life cycle conventionally has four stages
namely, introduction, growth, maturity, and decline, as shown
in Fig. 3 [8]. Introduction stage involves product awareness and
identification of the market for the product. Growth stage in-
volves product branding and initiative to increase the market
share. Duringmaturity, the product has competition from similar
products, and the sole objective is to secure market share while
ensuring profit. In the decline stage, the product becomes out-
dated and requires rejuvenation and reformation to competewith
the latest products. This concept has affected the efficiency and
sustainability in the product design and manufacturing.

An innovative way for product design and manufacturing by
incorporating a DT has been proposed [7, 9]. The model has
been elaborately brought out through various case studies. The
first stage has been referred as the conceptual stage, where the
DTwill have the natal information about the product, such as the
concept of the product, how the product will look like, and its
functioning. In addition, it will also include a feedback in the
form of customer’s satisfaction for that product, sales, market
competition of that product etc. which will help designers to
note the improvement they need to make in their products
[10]. Following this will be the design stage where the DTwill
have numerous simulations to ensure the performance of the
product as desired in the long run. The virtual product contains
the expectations of the designer in the design stage, and along
with this, also, it has the practical constraints of the physical
world. Here, DT helps designers to optimize design. Finally,
the virtual verification stage deals with prediction of the quality
of the product before their actual manufacturing. DT in the vir-
tual stage, forecasts, predicts, and verifies the functionality of
that product before manufacturing.

A DT model for iron and steel product life cycle has also
been proposed [11]. This model conceptualizes from raw

material acquisition to recycling of the scrap, and these
models have been discussed below. Raw material acquisition
begins in the order stage which will identify the customer
needs, examine them, and understand about the requirement.
Accordingly, the comparison between the existing orders and
the future requirement will be forecast. Following this will be
the design stage which will include strength and fatigue life
prediction models to determine the strength and service life of
the product. Then after, in the production stage, capacity re-
quirement and material requirement planning models will be
involved to determine the equipment and material required to
meet the needs. This information will be passed to the pur-
chase and logistics models. The manufacturing stage will in-
clude different models for different production processes such
as blast furnace, converter, casting, hot-rolling etc. Finally, the
DT will have a product usage model for customer feedback
and a scrap recycling model for tracing the scrap products.
These different models need to have a semantic and real-
time flow of information, i.e., between the physical object
and the virtual space so that the entire life of the product can
be traced.

Based on the above discussion in this section, Fig. 4 shows
a schematic representation of a DT for the product design,
where three stages in the product design, namely, conceptual,
design, and virtual verification, have been shown. The func-
tionalities of the physical space and virtual space have been
shown in the picture. Also, the flow of information between
the three stages has been depicted. To envisage the DTconcept
for product design, let us consider the example of manufactur-
ing of a car. The traditional way follows the development of a
computer-aided design (CAD) model to describe how the car
will appear (the physical object). It is a 3D model listing the
dimensions of the components and the grade of material to be

Fig. 3 Product life cycle

3694 Int J Adv Manuf Technol (2020) 107:3691–3714



utilized in manufacturing of those components. This CAD
model serves the purpose in the design stage and is mainly
based on the experiences of the designer. DT, on the other
hand, stays throughout the life cycle of a product. It also takes
into consideration a CAD model; however, the same is
equipped with the latest sensory data being acquired from
the sensors associated with a similar physical device. The
benefit here is that the manufacturer will have the performance
map of their products out there in the market at all instances. It
can be advocated that the simulation models also have sensory
information with them. However, this does not hold good for
DTs. Although, simulation is utilized for designing and opti-
mization, and to understand how a model may respond to a
situation, DT will provide information on the above and also
how the model will respond in real time. The real-time infor-
mation will help the manufacturer to track the operation of
their components, health of few critical components and etc.
Accordingly, measures can be taken to rectify the product and
incorporate the feedback into the product design as well. The
importance of DT lies in the data analytics involved which is
in tandem with the sensors engaged with the physical devices.
This analysis will form the intelligence of DT. This is possible
by the modern information technology concepts like artificial
intelligence (AI), augmented reality (AR), Internet of Things
(IoT) etc.

2.3 DT for manufacturing shop floor

DTs have significant relevance in the manufacturing context
as they have the ability to optimize the manufacturing opera-
tions, detect bottlenecks, verify settings, and simulate situa-
tions to forecast performance. This sub-section discusses the
DTs proposed for manufacturing shop floors. This includes

the conceptual models describing its components, DTs pro-
posed for improving the supply chain efficiency, optimizing
tasks in the shop floor, optimizing energy consumption, prod-
uct assembly, and geometry assurance. The detailed report on
these proposed models have been discussed in the following
paragraphs.

2.3.1 Conceptual DTs for shop floor

ADTenabled shop floor will comprise of five different layers,
namely, physical, network, data, cyber, and application layers
[12]. The first layer refers to the physical objects present on
the shop floor such as the equipment, sensors, jobs, etc. and
demands the layer to be sensor enabled to have a real-time
perception. The second layer refers to those entities which will
bridge the communication between the physical objects and
the virtual object. Such entities are Ethernet, wireless connec-
tivity, mobile networks etc. The third layer, i.e., data layer
refers to the data available with respect to production, materi-
al, tooling, environment etc. which will be the driving factors
of the DT model. The cyber layer will hold the geometry
model, manufacturing attributes, behavior model etc. The fi-
nal, application layer refers to the integration of the above
models to have a seamless coordination of the activities on
the shop floor. This includes optimization of activities, real-
time monitoring of the events on the shop floor, job schedul-
ing etc. Another DTconceptual model for shop floor has been
proposed consisting of physical space, virtual space, shop
floor service system, and production data [13]. The physical
space will consist of several sensors which communicate with
the virtual space by sending it the real-time data. A set of these
sensors will be engaged to capture the life cycle of materials
and environment data, few sensors to capture the human

Fig. 4 DT for product design
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motion on the floor, work progress, and other sensors will be
engaged with the machineries on the floor for capturing infor-
mation about the state of the machine. The virtual space will
consist of four models, namely, geometry, physics, behavior,
and rule models. While the geometric models will be utilized
for describing the shape, size, position, and assembly relations
of the machine components, the physical models will consti-
tute finite element (FE) analysis of these models by associat-
ing it with the physical properties. The behavior models will
determine the response of the machine under various circum-
stances, and the rule models will consist of machine learning
algorithms and others for evaluation and prediction of the
machine status. The shop floor service system refers to the
management of the data in between the physical and virtual
space. Finally, the production data refers to the metadata about
a particular phenomenon/component. For successful imple-
mentation, integration of the physical and virtual space, ex-
change of data, and evolution of the DT etc. have been iden-
tified to be the major challenges.

2.3.2 DT for improving supplier collaboration

A major hurdle in the progress of a manufacturing industry is
the assessment of the true capacity of suppliers (small and
medium enterprises and micro, medium, and small enter-
prises) to effectively plan their supply chain. The traditional
method for assessing the capacity is making a visit to the
suppliers’ facilities which is time consuming or can be brows-
ing through their profiles on the internet which is uncertain as
many-a-times the information is outdated. In this regard, a DT
of a factory has been proposed to present the true capabilities
of a factory [14]. This DTwill replicate the material handling
equipment, machineries, and layout of the plant. The underly-
ing benefit is the increasing efficiency of supply chain formu-
lation and sourcing by representation of the true capabilities of
an organization.

2.3.3 DT for optimizing plant operations

Avirtual model named as “Plant Simulation” has been devel-
oped and utilized to monitor, control, and optimize the tasks in
a shop floor engaged in assembling hydraulic pistons [15].
The time required for accomplishing the tasks on the shop
floor was recorded, and the DT keeps a track of the same.
During any task, if the cycle time differs, the DT model pro-
vides instructions to the operator. In another work, a DT mod-
el has been proposed for energy consumption monitoring,
analysis, and optimization in the manufacturing shop floor
[16]. The energy consumption monitoring model will track
the energy consumption by equipment on the shop floor by
using various sensors attached to the physical equipment. The
available real-time data along with the historical data of par-
ticular machinery with a model will help in tracking its energy

consumption. The analysis model will be utilized for statistical
prediction purpose by using the available historical data.
Finally, the optimization model will be utilized for parameter
optimization, scheduling, and equipment upgrading.

2.3.4 DT for assembly operation and metrology

A DT model, consisting of a construction stage and an oper-
ation stage, has been proposed for a shop floor engaged in
satellite assembly [17]. The construction stage involves build-
ing of IoT networks for the shop floor for acquiring the digital
record of the manufacturing resources via bar codes, tags etc.
For enabling the real-time flow of resource’s information to
enterprise information management system, the shop floor has
Ethernet connections, Bluetooth, wireless services etc. The
DT included the 3D geometric models, FE software to simu-
late the process etc. The operation stage will have the real-time
information about the manufacturing resources collected
through the IoT networks, information about the production
process collected through interaction between human and
computer, and production activity plan. This information
needs to be updated in their respective virtual models for man-
agement and control of the resources, production process, pre-
diction of production quality, progress in production etc. DT
has also been successfully applied in the field of geometry
assurance [18–20]. The developed DT model contains geom-
etry representation of the assembly line, kinematic relations,
FE analysis, simulation, material properties, and is linked with
the inspection database. It has been applied in the design phase
to design excellent products, and also to distribute tolerances.
Further, during the production stage, the DT model has been
used to monitor and control the assembly system by feeding
the model with scan data of the part geometries.

2.4 DT for diagnostics and prognostics

This sub-section discusses the DTs proposed for diagnostics
and prognostics of some critical components involved in plant
and machines, aircraft, manufacturing process etc.

2.4.1 DTs proposed for wind farm monitoring

Researchers have reported about an IoT platform named
“Pavatar” for investigation and remote diagnosis of an
ultrahigh-voltage converter station [21]. The purpose of this
station is to convert direct current (DC) to alternating current
(AC) of clean energy such as wind, solar, nuclear etc. The
station consists of a synchronous compensator whose function
is to stabilize the outgoing current by absorbing or generating
reactive power, in response to unpredictable voltage fluctua-
tions. Pavatar performs the sensing of the synchronous com-
pensator, environmental conditions, cooling systems, and sur-
rounding activities. It predicts the system errors, detects the
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faults, and diagnoses them. Temperature, pressure, rotation,
and vibration sensors are also included for the investigation.
In addition to these sensors, various battery-free sensors for
monitoring air quality, noise, humidity, and liquid leakage
detectors are also installed to capture the information about
the surroundings. The unit also includes networked cameras
that cover few walk-able distances. The collected data are sent
through networks for data visualization, fault detection, and
diagnosis. Another DT model proposed for wind farm
consisted of sensors such as vibration, speed, and humidity
for monitoring of the farm [22]. A physics-based DT has also
been developed for predicting the remaining useful life and
damage accumulation of wind power converter [23].

2.4.2 DTs proposed for few critical components

Considering the gearbox in a wind turbine being prone to
failure due to gradual degradation, a DT has been proposed
for the monitoring of this component [24]. Torque sensor has
been utilized to sense the input and output torque, and a factor
has been identified to compensate for the deviation between
the measured value and simulated value obtained from the
physical object (gearbox) and virtual object, respectively.
For determining the occurrence of fault, a vibration sensor is
attached, and the energy of the signal is determined. A thresh-
old value has been identified for prediction of the fault. The
developed DT predicts the possible faults in the gearbox by a
neural network which was fed with data acquired from the
vibration sensor and stress value obtained from the simulation.
Accordingly, the maintenance strategies were suggested by
the DT. Thus, here, DT stakes for an advantageous situation
by combining vibration along with the stress. Similarly, a DT
has been developed for the early failure prediction of ball
screw in a milling machine [25]. This component is utilized
in transmitting the force from the motor during the machining
process. A multi-domain software-based model has been built
and a neural network has been utilized for the prediction of
fault. The sensors utilized for the study are a vibration sensor
and a temperature sensor, from which the real-time data is
acquired and is analyzed to predict the chances of early failure.
A case study which deals with the DTof the tanks in a ship has
also been performed [26]. Here, the use of AR and web ser-
vices has been presented to visualize the physical data. The
tanks in the ship include one for carrying gas, one for oil, and
one for water. The real-time data about the level of gas, oil,
and water in the tanks has been studied to be displayed in the
device providing AR. Further information to be carried by the
developed DT of these tanks in the ship has been proposed
which includes data about the size and capacity of the tank and
manufacturing data. In addition to this, more number of sen-
sors can also be associated with these tanks to extract more
insightful information about the health of the tanks, and the
fluid being carried by them.

2.4.3 DTs proposed for aircraft monitoring

A unique proposition titled “airframe DT” for monitoring and
predicting the health of aircrafts has been proposed [27]. The
airframe DT comprises of several sub-modules, i.e., involved
electronics, flight controls, propulsion system etc. These sub-
modules will predict the temperature, stress, strain etc. evolu-
tion in the physical aircraft. Thus, the DTwill be able to make
predictions about the damage caused to the aircraft and re-
quired maintenance. In another work, a versatile probabilistic
model by using the concept of a dynamic Bayesian network
has been built for airframe health monitoring [28]. The model
has been used to track the evolution of time-dependent vari-
ables and prediction of the crack growth. A similar DT model
has been proposed for the prediction of useful life of aircraft
structures [29]. The proposed model includes complex sub-
models such as a thermal model, a dynamic model, a stress
analysis model, and a fatigue model. Each aircraft will have its
own computational fluid dynamics (CFD) DT model, which
will be flown virtually to estimate the loads and environment
the corresponding physical aircraft is going to experience. The
DTwill also be working in close relation with an FE model so
as to extract the information about the aeroelastic vibrations
and structural deflections.

2.4.4 DTs proposed for process monitoring

ADTconsisting of a 3D heat transfer and fluid flowmodel has
been developed and implemented for laser-directed energy
deposition additive manufacturing process [30, 31]. The mod-
el determines temperature, velocity fields, cooling rates, solid-
ification parameters, and deposit geometry for a single-layer
deposit. Similarly, a DT model with multi-objective optimiza-
tion algorithm has been developed for hollow gas production
line which includes a calculation system and a simulation
platform [32]. The system determines the optimization kernel
and transmits the results to simulation platform in the form of
a production order. The simulation platform is equipped with
real physical properties to depict the manufacturing process.

2.4.5 DTs proposed for machine health monitoring

An FE model of a CNC machine has been developed as an
approach for building a DTof the machine [33]. The machine
comprises of a reverse “T” structure with movements in 3-
axis. The developed model has been validated by a modal
analysis. This model will serve the purpose of a DT of the
physical machine. Similarly, a DT for a jet diverter system
has also been developed [34]. The model comprises of three
modules where, the first takes the measured infrared temper-
ature of the tiles as the input and determines the heat flux
density over time, second is a simulation code developed for
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tracking the ongoing activities of the system, and third is an
FE model for calculating the power at each node.

Based on the discussions in this section, Fig. 5 shows a
schematic representation of a possible DT for the diagnostics
and prognostics of a machine. The picture includes a physical
object (machine “A”) equipped with various sensors (sensor
“1” to sensor “n”). The digital counterpart of the physical
machine has been shown as a virtual machine which has var-
ious modules, namely, simulation module, signal processing
module, machine learning algorithms, and many more.
During the operation of the physical machine, sensory data
is acquired and is continuously transmitted to the virtual ma-
chine in real time. The virtual machine performs simulations
of the operations being carried out in the physical machine,
processes the information collected from the sensors associat-
ed with physical machine in real time, and makes useful pre-
dictions. These predictions along with the monitored data and
corrective measures are being suggested by the virtual ma-
chine on a dashboard, as shown in Fig. 5. With those predic-
tions about the ongoing process, users can optimize the pro-
duction and can ensure quality of the product being
manufactured. Since the DT can reveal the true condition of
the physical asset, corrective measures can be taken at the
right instant to prevent failure. In addition, the user can also
optimize the next phase of production based on those
predictions.

DTs are the new age manufacturing breakthroughs owing
to their potential of revolutionizing the production scenario.
As discussed earlier, it is a much more advanced version of
CAD model as it offers a real-time connection between the
digital and physical element. However, developing a digital
counterpart of an entire manufacturing system is cumbersome.
The best option is to create digital replica for a part of the
manufacturing system and execute it and then continue devel-
oping the remaining parts. The DT for a manufacturing system
can be decomposed into different levels such as the level 1,
level 2, level 3, and level 4. In level 1, only the main compo-
nent on which the entire system depends is highlighted. The
DT implemented in this context permits real-time data collec-
tion from sensory devices which enables flexible manufactur-
ing, IoT-driven maintenance regimes, and ensuring safe work
environment. In level 2, only a particular part of equipment
which is used during production is focused upon. When there
is a need to improve the system performance, a DT at level 3,
i.e., for the entire system is utilized. This digital replica pro-
vides real-time production information on the product’s char-
acteristics, its performance, and a database for service history
to facilitate predictive after-sales service. A DTat level 4 high-
lights the entire life cycle of the product, i.e., from the product
design to actual manufacturing and physical distribution. This
is achieved by integrating data across the product life cycle for
assessing the deviations in manufacturing and timely

Fig. 5 DT for diagnostics and prognostics of a machine
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detection of defects/errors, and subsequently updating the
product design.

2.5 Benefits of DT

The proposed concept of DT and the supporting models are
going to bring a revolution in the present industrial scenario. It
aims at refining the existing idea of designing a product,
manufacturing it, and managing its sales. By implementing
DT in a shop floor practicing manufacturing operations, im-
mediate data about the entities present on the shop floor, on-
going operations, and appearing errors can be identified. Thus,
at every instant of time, there will be a visualization of the
ongoing operations, and control of the same can be performed
in case any error occurs. In addition, it will enable the engi-
neers to simulate the system with the real-time information
gathered from the sensors associated with the physical object
and will help to predict and prevent downtime. The DT with
passage of time will become more intelligent by mirroring its
physical counterpart and will have the historical data with the
help of which it can predict its remaining useful life. All these
will ultimately lead to higher level of machine availability by
lowering the downtime and increase in the efficiency of the
production unit and profit. Apart from the monitoring and
evaluation of a system, DTs offer an environment to study
the impact of deviations on the system performance. After
developing a DTof a physical object or service, the real world
errors/defects can be projected at the time of their occurrence.
This provides a scope to incorporate the necessary changes to
avoid the occurrence of any defects or errors. The major ad-
vantage of DTapplication includes optimization and riskman-
agement inherently required for the health sector. Smart ma-
chines are considered to be better than humans in accurate data
collection and communication. In the healthcare sector, this
can be a major breakthrough to save time, cost, and precious
lives. DTs are considered to be the innovative breakthrough in
hospital management and patient’s healthcare. In this regard,
there is a possibility of twinning a human body to a digital
form using virtual simulations. This assists in creating the
digital duplication of the vital organs in a human body which
can be constantly monitored for a patient without the need for
him to walk down to the hospital every time. It can alleviate a
lot of mental stress a patient goes through while conducting
the health check-ups.

2.6 Challenges of DT

The initial challenge is building the virtual model comprising
of various sub-modules as discussed in earlier sections. This
model will be securely placed in a virtual environment, i.e., in
a cloud server, a service system in shop floor, or a service
systemwithin the group enterprise [32]. Once the virtual mod-
el has been developed, it has to be integrated with the physical

object enabling a real-time transfer of information between the
two models [35]. As pointed out, the sub-modules have to be
updated in real time, and work accordingly. There is an emi-
nent need of semantic coordination among the sub-modules.
For instance, if there is a change in the production execution
plan, the design stage needs to be updated accordingly.

During the process of manufacturing, the physical object
will be associated with various sensing devices to sense vari-
ous physical parameters. The virtual model will also be
equipped with such similar sensing devices and a real working
environment, as existing for the physical object. The collected
information will be utilized to run simulations and decipher
information about the process. In order to extract the informa-
tion from the physical parameters acquired from the sensors,
the next challenge is to select proper signal processing tech-
niques to be applied. This will help to identify the needs in the
process monitoring quickly, so that necessary actions to con-
trol the process in real time can be performed [21]. Another
related challenge here is the incorporation of big data analytics
in the DT model [36]. Since this process is going to generate
huge amount of data in various stages of a product, proper and
logical management of the data is essential. Also, the flow of
data concerning the integration of physical-virtual-social
worlds (information from the physical object, information
generated by the DT from simulations and customers) is a
challenge that has to be considered under the data manage-
ment system [37, 38].

The most important feature that a DTmodel should possess
is “intelligence.” The preliminary objective behind the devel-
opment of a DT model is to help build an excellent product, if
the model is concerned about the product design [7].
Similarly, the objective of a DT model of a manufacturing
process will be to monitor and control the process, make use-
ful predictions about the process and involved machineries
[21, 23]. However, the challenge for these models is to grow
their intelligence with the accumulated data, so that it can be
reused and help improve the physical object continuously
[39]. For instance, a DT concerned with a machine will even-
tually learn the symptoms of various situations arising within
the process. It also learns the behavior of the machine in such
situations. This learning needs to be strengthened with time.

3 Case study

This section elaborates a DT model developed and imple-
mented for a welding technique named FSW. The following
paragraph discusses FSW process in detail.

3.1 Friction stir welding

FSW, invented in 1991 at The Welding Institute, UK, is a
solid-state joining technique, i.e., it joins workpieces, being
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in their solid-state only [40]. Frictional heating, mechanical
deformation, and stirring are the three main principles of
FSW process [41]. In order to achieve that, the process makes
use of a designed tool, which has two specific features, name-
ly, a pin and a shoulder. This tool is mounted on the machine
spindle and has the ability to rotate. Schematic diagrams
depicting the FSW process and the tool have been shown in
Fig. 6 a and b, respectively. The joining occurs in four distinct
stages, namely, plunge-in, dwelling, welding, and plunge-out.
During the plunge-in phase, the tool descends into the work-
pieces resulting in the generation of frictional heat and de-
forms the material underneath it plastically. While the pin’s
job is to deform the materials in the thickness direction, the
shoulder generates the frictional heat by interacting with the
materials on the top surface. The length of the pin is deter-
mined based on the thickness of the workpieces to be welded
and is usually taken 0.2 to 0.3 mm lesser than the thickness of
the workpieces. The ratio of diameter of the shoulder to diam-
eter of the pin is 3 or 4. During the dwelling stage, the tool is
allowed to rotate at the same position, i.e., plunge-in position,
to have sufficient amount of deformation, so that the plasti-
cized material can flow. Hereafter, in welding stage, the ma-
chine bed is provided with a linear motion, which along with
the rotating tool helps to transport the deformed material from
one side to the other, resulting in the formation of a joint.
Finally, the tool retracts out of the joint-line leaving behind a
keyhole which is being referred as the plunge-out stage.

Fabrication is a process of value addition which creates
structures, components, machines etc. from various raw ma-
terials. The process of welding is carried out with or without
the application of pressure, heat, or addition of filler material.
The process has an extensive and varied usage that it is no
exaggeration to state that there is no metal industry that would
not make use of it in some or the other manner. Varying from
small machine production to large welded structures and from
small-scale to large-scale industries, welding is used every-
where. With the cut throat global competition towards

industrialization, it is crucial to adopt and practice engineering
methods which are not only economic but also environmen-
tally friendly. Owing to the feasibility of joining the work-
pieces being in their solid state, FSW is advantageous over
the conventional fusion welding techniques. Researchers have
also shown the importance of FSW as a manufacturing pro-
cess, mentioning its sustainable features, and economically
viable process having minimal adverse impacts on the envi-
ronment [42]. This leads to a fact that more number of indus-
tries would adopt and practice FSW in their shop floors. Thus,
applying the digitization techniques to FSW is expected to
improve the overall quality of the process.

Researchers around the globe have attempted to develop
strategies for monitoring of FSW process. For instance, the
gap defects have been monitored by acquiring acoustic emis-
sion signals and force signals [43, 44]. The occurrence of
wormhole, a type of volumetric defect, has been investigated
by using the force signals [45]. Force signals have also been
analyzed in FSW to identify the surface defects [46, 47]. The
tracking of tool position over the joint line has been performed
by analyzing the force signals [48]. The monitoring of FSW
has also been attempted using other signals like current and
voltage signals of the spindle motor, current signal of feed
motor, and speed signal [49]. The speed signals have also been
utilized to classify the defective and defect-free welds [50]. A
comprehensive review on the various research works con-
cerned with the sensor-based monitoring and control of
FSW has been reported in [51]. While most of these works
deal with the identification of defects, classification of defec-
tive and defect-free welds, monitoring process changes etc.,
an integrated model monitoring the process along with the
machine, and suggesting the corrective measures in real time
for FSW is lacking.

The present work aims at developing one such DT of the
physical FSW machine. The developed DT resides in cloud
and it constantly communicates with the FSW machine. It
takes sensory data as the input, processes and analyzes it,

Fig. 6 Schematic diagrams of a FSW process and b tool
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and gives useful information about the process and machine
on a dashboard in real time. The information is the prediction
of the weld quality, machine health, and corrective measures.
The user can respond to the twin’s suggestion in real time
which is fed back to the FSWmachine. This will help prevent
wastage of rawmaterials during weld fabrication. The DTalso
informs the operator about the quality. In other words, a user
can utilize this developed model to feed it with some data and
see how the health of the machine components deteriorates.
Further, as this DToperates virtually from cloud, its diagnosis
and prognostics can be accessed from any location to any user
having an access of the same.

3.2 Experimental details

The FSW machine utilized in the present study is an instru-
mented numerically controlled linear machine (ETA
Technology, WS004) with a maximum rated tool rotational
speed of 3000 rpm and a maximum rated welding speed of
1000 mm/min. A picture of the utilized machine has been
shown in Fig. 7. The workpieces used are 3 mm thick sheets
of aluminum alloy, AA6061. The tool material is H13 tool
steel, and it has a shoulder diameter of 16 mm and a pin
diameter of 6 mm.

The present experimental state was set up with an objective
to monitor the tool health condition during the process of
welding. As discussed in the earlier sections while introducing
FSW, the importance of the tool in the process of welding can
be felt. In the event of tool failure, or change in the conditions
of the tool as compared to a healthy tool, the fabricated weld
will be deteriorated. In order to begin with the investigation,
five different tools with varying health conditions were select-
ed, namely, weldmaterial stuck on tool, pin-less tool, tool with
half-broken pin, cracked tool, and a normal tool (healthy

condition). Figure 8 shows the picture of these five tools. All
the five tools had the same shoulder diameter (16 mm) and pin
diameter (except the pin-less tool). The ideas behind the se-
lection of these specific conditions of tools are as follows.
Usually, the tool material selected is of higher strength than
of the workpiece material, and since the tool does not get
consumed, it has appreciable longevity. However, since, the
pin plunges inside the workpieces every time, it may happen
that with passage of time and continuous use, the pin may get
worn out in the process, may partly break, at times material
may get stick to its surface with improper parametric combi-
nations, or may completely fail. In an automated factory, the
machine has to run seamlessly, and thus, the condition of the
tool at each instant of the welding process has to be ensured.
The welds with these five tools were fabricated with a tool
rotational speed of 1200 rpm, a welding speed of 50 mm/min,
a tilt angle of 2°, and a plunge depth of 0.1 mm.

For enabling the twin with data, the physical machine is
equipped with strain gauge type load cells to acquire the axial
force signals during welding. An external power sensor
(Montronix, PS100) was also used for sensing the spindle
power during welding. The variations in tool rotational speed
and weld speed over the selected tool rotational and weld
speed during the welding are also tracked by the machine.
The sampling rate of these signals was 10 Hz. Along with
these sensors, a turbidity sensor (SKU, SEN0189), a flow rate
sensor (YFS, 201), a capacitive type oil level sensor, and a K-
type thermocouple were utilized for measuring the hydraulic
oil conditions in the return line of the FSW machine.

3.3 Developed DT of FSW

This section discusses the developed DT for health and per-
formance monitoring of the FSW machine. The DT checks

Fig. 7 FSW machine
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various components of the FSW machine and delivers infor-
mation about the maintenance. Figure 9 shows the workflow
of the developed DT for the present FSW machine. The twin
works in four distinct phases for maintaining the overall health
condition and production level of the FSW machine.

& Data acquisition phase: Here, the twin gather signals from
various sensors associated with the FSW machine. In the
present study, force sensor, power sensor, tool rotational
speed and linear speed sensors, turbidity sensor, flow rate
sensor, oil level sensor, and a thermocouple have been
utilized.

& Fault detection phase: After data acquisition, the twin
predicts the possible faults or defects that might be occur-
ring in the FSW machine. Fault detection from signals
acquired from the FSW process is achieved via several
machine learning and signal processing techniques.

& Suggestion phase: Upon identification of the fault, the
twin suggests corrective measures to improve the welding
conditions, and the health condition of different parts of
the FSW machine. The suggestive measures are provided
via a graphical user interface (GUI) and a voice output.

& Cooperation phase: Several smart FSW machines consti-
tute a FSW 4.0 industry. From the information gathered

Fig. 8 Tools of various health conditions. a weld material stuck on tool. b Pin-less tool. c Tool with half-broken pin. d Normal tool (tool of good health
condition). e Cracked tool

Fig. 9 Developed DT’s work flow
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through various sensors associated with a particular FSW
machine of the industry, overall health condition of that
machine is determined. Accordingly, through an optimi-
zation, workload is distributed among various machines of
the industry to minimize overall health loss and maximize
production level. Thus, it can be said that a relatively
healthy machine should perform more amount of FSW
than a relatively unhealthy machine, so that there is an
optimization between the overall health deterioration and
net production level.

As per the suggestions from the suggestion phase, action is
performed to improve the health of the FSWmachine. Finally,
the twin is informed about the current state of the machine so
that it can initialize parameters accordingly for the future cy-
cles of health monitoring. The twin application runs on an
edge computer associated with the FSW machine so that it
can directly collect the required signals.

The present DT is set up in a cloud server named,
“Meghamala,” the private cloud server of Indian Institute of
Technology Kharagpur. A graphical user interface (GUI) has
been created in LABVIEW software installed in the computer
associated with the FSW machine where the data from the
engaged sensors is received, and thereby is continuously sent
to the cloud by using transmission control protocol/internet
protocol (TCP/IP). The mentioned protocol (TCP/IP) is uti-
lized for interconnecting several network devices on the inter-
net by making use of a client/server model. In this model, the
“client” which refers to a machine is provided with a service
by another computer which is being referred as “server.” The
reception of the inputs from the user based on the suggestions
by DT to the FSW machine is also being performed via the
same protocol. TCP/IP block for reading and writing are used
to receive and send the data during the welding process.

Figure 10 shows the dashboard of the FSW DT. The major
tasks performed by the DT of the FSW machine are:

1. Feed motor condition monitoring
2. Spindle motor condition monitoring
3. Tool heath monitoring
4. Hydraulic oil level monitoring
5. Load cell and power sensor’s noise level measurement
6. Return line hydraulic oil quality monitoring

Each of the tasks performed by the DT as shown in the
dashboard is discussed as follows:

1. Feed motor health monitoring: The feed motor of the
FSW machine under consideration can make the FSW
tool traverse up to a speed of 1000 mm/min. During
real-time health check-up, the feed motor is instructed to

traverse at specific velocities (vins) in different ranges, and
the corresponding velocity reached by the feed motor
(vac) is measured by the speed sensor. From here, perfor-
mance degradation percentage of feed motor (pv) is cal-
culated and is depicted in Eq. (1). It is noted that always
vac < vins. Figure 11 shows the current feed motor health
condition of the FSW machine under consideration. It is
observed that pv increases with an increase in vins. Hence,
the twin gives an option to the user to restrict the weld
velocity below a certain range, in this case 200 mm/min,
to avoid strain on the feed motor.

pv ¼
vins−vac
vins

� 100% ð1Þ

2. Spindle motor health monitoring: This process is also
similar to that of feed motor health monitoring. The spin-
dle motor can make the FSW tool rotate with a maximum
rotational speed of 3000 rpm. After each welding, the
FSW machine spindle motor is instructed to spin with
specific rpm (wins) covering the whole range. A rotational
speed sensor (wac) measures the speed with which the tool
rotates. Again, performance degradation percentage for
spindle motor (pw) is calculated as depicted in Eq. (2).
Figure 12 shows the current spindle motor health condi-
tion of the FSWmachine under consideration. It is always
desired to make performance degradation percentage as
minimum as possible. As it is seen that performance deg-
radation increases with weld velocity and tool rotational
speed, the DT suggests restricting the weld velocity and
rotational speed to lower values in order to reduce the
strain created on the motor and increase its lifetime.

pw ¼ wins−wac

wins
� 100% ð2Þ

One notable thing here is that the difference between the
instructed velocity and achieved velocity may arise from con-
trol errors. However, the error associated with any control
system with passage of time will rise because of the degrada-
tion of the components of those motors. Thus, the percentage
degradation is a way to evaluate the health condition of the
motors. The twin will collect the data from the FSW machine
over a period of time for varying process conditions, analyze it
for identifying the percentage degradation at all instants of the
machine in operation, and will also store those data. This
historical data collected over the time (percentage degradation
values of the motors) will be the way to predict the health
condition of the motors. In the present scenario, the observed
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values of the percentage degradation reflect minute devia-
tions; however, the health of the mechanical components
may deteriorate suddenly, and the DT in real time can help
prevent the machine from failure.

3. Tool health monitoring: During the welding, if the infor-
mation about the tool health condition is available, then,
continuing welding with a defective tool can be stopped,
and an alert stating the tool health condition can be gen-
erated. This can reduce the cost of material loss and weld
quality degradation, which could have occurred other-
wise. Due to deterioration of tool health, several kinds
of defects occur during the welding. As defects occur,
the force exerted by the weld sample on the tool un-
dergoes sudden fluctuations. These sudden changes cor-
respond to the presence of high-frequency components in
the FSW force signal and power signal. This property is
utilized for the identification of tool anomaly and

characterization of the selected tool health conditions.
Sudden occurrence of high-frequency components can
only be identified though a time-spectral analysis of a
signal. To capture this information, a signal processing
technique called discrete wavelet transform (DWT) is uti-
lized which provides a time versus frequency information
of any non-stationary signal. The following paragraph
discusses the basics of DWT.

The computation of DWT is done by passing the signal
x[n] through high-pass (g) and low-pass (h) filters. The output
of high-pass filters after down sampling gives the detailed
coefficients (Eq. (3)), whereas the same for the low-pass filters
gives approximate coefficients (Eq. (4)):

CD k½ � ¼ ∑
n
x n½ �:g 2k−n½ � ð3Þ

CA k½ � ¼ ∑
n
x n½ �:h 2k−n½ � ð4Þ

Fig. 10 DT dashboard

Fig. 11 Feed motor health
condition
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DWT coefficients are actually values of convolution of
input signal and impulse response of the filters. To increase
frequency resolution, the approximate coefficients are again
passed through high- and low-pass filters to obtain detailed
and approximate coefficients of the next level, respectively.
This process is repeated.

In FSW, DWTs have been applied to show the effect of
changing process parameters like weld speed and tool rota-
tional speed [52]. DWT was applied on force signal data to
localize both surface and internal defects [46, 53]. Thus, with
the help of DWT coefficients of FSW force signals, the exact
occurrence time of high-frequency components can be identi-
fied with which the point of occurrence of defect in the weld
sample can be located and the welding can be stopped to avoid
material loss. The same force signal can be utilized for tool
health condition monitoring. To achieve this, a support vector
machine (SVM) classifier is used which takes the first-level
DWT coefficients of the FSW force and power signals as
inputs and predicts the category in which the tool health con-
dition falls.

SVM is a supervised classification algorithm in which pa-
rameter values for several sample points belonging to different
classes are taken and the algorithm fits hyperplanes among
different classes of data, trying to maximize the distance be-
tween various classes. For a j dimensional dataset where each
sample X is a 1 × j dimensional vector, the hyperplane can be
described as shown in Eq. (5):

f Xð Þ ¼ WTX þ b ð5Þ
whereWT is a j × 1 dimensional vector and b is a scalar used to
define the position of the separating hyperplane. The width of
the margin is 2

Wj j and the task of SVM is to maximize it or

minimize 1
2 wj jj j2. In FSW, SVM classifier has been used to

differentiate defective and defect-free welds [54]. In this work,
a linear kernel classifier trained with the DWT coefficients of

force and power signals of FSW is used with each of these
defective tools.

Figure 13 shows the variation of the force signal with time
obtained during the process of welding. This force is respon-
sible for proper forging of the workpieces, and in times when
it becomes insufficient, workpieces will not get deformed, and
welding defects will occur. Various stages involved in the
welding process have been depicted in the plot. The first peak
in the plot is a result of the contact between the pin and the
workpieces, and as it continues to go inside the materials to be
welded, the force decreases. This is because of the deforma-
tion of the materials in the thickness direction. The second
peak occurs as the shoulder comes in contact with the work-
pieces. Hereafter, a fall in the force values can be observed
which is because of dwelling. Then after, the force again in-
creases which is because of the traverse of the machine bed,
and at last, the force drops as the tool retracts out from the joint
line.

Fig. 12 Spindle motor health
condition

Fig. 13 Variation of force with time during welding
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Figure 14 shows the variation of spindle power consump-
tion with time obtained during the welding. The figure depicts
an increase in the power consumption as the tool starts rotat-
ing, plunging, and worktable feed due to the induced initial
torque in the electric motors. In case of welding with faulty
parameters, the power plot which now has a stable region
during welding will differ, which will be useful for the mon-
itoring and control purpose.

Figure 15 shows the welds fabricated by using the five dif-
ferent tools, as mentioned earlier. During real-time operation of
the DT, the classifier takes the required DWT coefficients as
inputs and predicts the tool health. Accordingly, it produces
alarm signal to stop the welding process if it finds severe health
condition deterioration. Figure 16 shows the force variation
obtained with the selected tools. Here, the shown pictures in
Fig. 16 contain only the welding data; the plunging, dwelling,
and retraction data have been removed. It can be visualized
from the pictures how the axial force is varying with change
in tool’s health. While large variation in the force signal can be
observed for the tool with deteriorated health, the one obtained
with normal tool has negligible variation, and thus, the normal
tool produced a weld with better quality than others. The weld
fabricated with the cracked tool as shown in Fig. 15e looks
good visually, and the corresponding force signal as shown in
Fig. 16e has little variation. This is so because in the present
case, the tool did not break during the welding. However, the
cracked surface will definitely be interacting with the material
flow, and this is the reason the signal has variations in it, as
compared to a healthy tool. In the case it would have broken,
the weld quality would have been worse.

The pin-less tool failed to join the work pieces. The weld
surface has many defects in case of welds made with half-
broken pin tool, cracked tool, and with weld material stuck
on tool. Best weld is achieved using tool of good health con-
dition. The multiclass classifier designed in this study can
demarcate between five classes of tool health, and it predicts

health with 82% accuracy. The classification boundary along
is shown in Fig. 17.

The red cross mark in Fig. 17 denotes the position of DWT
coefficient of the current weld under consideration in the feature
space. Since it lies within the region of tool with good health
condition; hence, the status bar shows “Tool condition okay.”

4. Hydraulic oil level monitoring: The hydraulic oil level of
the FSW machine is measured with the help of a liquid
level sensor attached with an Arduino UNOR3microcon-
troller. Initially, the oil level of the full tank was measured.
At the end of each welding, the twin collects information
about the oil level in the tank and measures the percentage
of oil remaining in the tank. Accordingly, twin generates
alert signal if the oil level falls below 20%. Figure 18
shows the current hydraulic oil level of the FSWmachine
under consideration.

Fig. 15 Weld sample surface images using tools of different health
conditions. a Weld material stuck on tool. b Pin-less tool. c Tool with
half-broken pin. dNormal tool (tool of good health condition). bCracked
tool

Fig. 14 Variation of power with time during welding
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5. Sensor noise level: Till now, the force and power sensors
were considered to be noise free. But actually, they pos-
sess a DC noise level which mainly arises due to gradual
malfunctioning of sensors with time and also due to vi-
brations of various machine parts. The DC level changes

over time. The DT performs a dry run after each welding
and calculates the DC noise level of force and power
signals by taking the mean value of the signal amplitudes
(Fig. 19). The twin calculates FSW force and power sig-
nals accordingly by subtracting the DC noise levels.

Fig. 16 Force signals for tools of different health conditions. a weld material stuck on tool. b Pin-less tool. c Tool with half-broken pin. d Normal tool
(tool of good health condition). e Cracked tool

Fig. 17 Tool health condition
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6. Monitoring quality of hydraulic oil in return line: Apart
from all these mentioned above, the quality of the hydrau-
lic oil returning to the tank after the process is also being
monitored. Figure 20 shows the various sensors equipped
in the return oil, and they are turbidity sensor, flow rate
sensor, and a K-type thermocouple. The former two sen-
sors are connected to an Arduino UNO R3 microcontrol-
ler which is finally connected to the local computer for
storage of data acquired from the sensors. The thermocou-
ple is for sensing the temperature of the oil in the return oil
and is connected to the same computer through a data
acquisition card via LABVIEW software. The hydraulic
oil being used in the machine is ISO 32 grade. Assuming
the present health of the machine to be good and at its best
condition, the data acquired from these sensors are being
treated as a reference and presenters of the machine’s con-
dition as good.

With passage of time, the oil quality will get degraded by
inclusion of various foreign particles because of the wear and
tear occurring inside the machine elements and would be cap-
tured by the turbidity sensor. Similarly, the flow rate sensor
will capture the change in flow rate (F) from a healthy condi-
tion to an abnormal condition.

The temperature of the oil recorded during a welding has
been shown in Fig. 21. It can be seen that the oil temperature
fluctuates during the plunging and dwelling stages. During the
welding, the temperature remains more or less constant.
Finally, there is a sharp decrease in oil temperature when
welding ends. Usually, the hydraulic oil’s normal operating
temperature is considered in the range of 45 to 55 °C. The
machine components work efficiently when the oil is main-
tained in this normal operating range. The temperature of the
oil will help know the level of wear and tear inside the
machine.

Fig. 18 Hydraulic oil level

Fig. 19 Sensor noise level
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During FSW, the turbidity value remains constant,
i.e., 4 mV. The turbidity value is scaled to a millivolt
range between 1 and 5 V by the turbidity sensor. It can
be seen from Fig. 22 that there is a sharp increase in
the flow rate during the plunging phase and plunge-out
phase. Flow rate remains almost constant during the
welding. The information on mean temperature, turbidi-
ty, and flow rate during the welding is made available
in the GUI of the DT, as shown in Fig. 23.

Thus, with these few sensors and the developed mod-
el engaged in real time, the welding process, and the
machine, both are being monitored at the same time,
and corrective measures are being suggested by the
model to take care of the process and health of the
machine.

4 FSW factory 4.0 model

This section discusses a concept on smart FSW factory 4.0
model to achieve integration of various activities on the shop
floor. The proposed model will consist of several units
performing similar operations. Each unit will have a separate
DT application running on a local edge computer. However,
each of these twins must be able to communicate with each
other, as a result of whichmachine to machine communication
is enabled. It refers to those machines which exchange data
and optimize results through their DT platforms to help each
other take a decision on how to react to a particular kind of
situation. The DTs cooperate among each other. When a fault
is detected by a sensor mapped DT, the twin searches among
all other DTs of similar machines in the smart industry to find

Fig. 20 Monitoring quality of
hydraulic oil in return line

Fig. 21 Oil temperature
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what corrective actions they undertook, upon facing such a
similar kind of situation. Then, by appropriately setting a bias
among the information collected from all other DTs and deci-
sion made by the DT under consideration, the physical ma-
chine is suggested with corrective actions.

Also, in case when a particular production level is to be
maintained in the industry, workload is appropriately distrib-
uted among various machines in such a way that the healthier
machine performs more manufacturing than the relatively less
healthy machine. This ensures minimizing the net health de-
terioration of the machines in the industry while maintaining
the required production level.

In case of FSW, the net health of the major motors of the
machines, i.e., the feed motor, spindle motor, and the hydrau-
lic motor, is determined by pv, pw, and F, respectively. For
similar weld speed, tool rotational speed, and weld material,
the more they change with time, i.e., the higher is their gradi-
ent with respect to the number of welding performed (n), the
worser will be the health of the machine under consideration.

Thus, health factor (Η) can be defined as a function (Ψ) of the
following variables, shown in Eq. (6):

Η ¼ Ψ
dpv
dn

����
����; dpw

dn

����
����; dF

dn

����
����

� �
ð6Þ

If there are k numbers of FSW units in the factory, the
average health condition (Ηavg) of the machines in the factory
can be taken as shown in Eq. (7):

Ηavg ¼
∑
k

i¼1
Η i

k
ð7Þ

If the net amount of welding to be performed is W, the ith

machine will perform WHi
kHavg

number of welding:

∑
k

i¼1

WHi

kHavg
¼ W ð8Þ

Fig. 22 Variation in oil flow rate
with time

Fig. 23 Return line health
condition
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5 Conclusions and future directions

This study presented the DTconcept through a state-of-the-art
review on the proposed and developed DTs in various areas. It
is worth noting that the envisioned “Intelligent DT” involves
two essential attributes, namely, adaptivity and learning.

Literature suffices the benefits of DTs in manufacturing indus-
tries right from identification of suppliers, inventory of raw
materials, and design of prototypes to optimizing the activities
on shop floor, control of manufacturing process, and real-time
health prediction of machines. Few studies concern with the
application of DT in healthcare sector, and a huge potential of

Fig. 24 A typical DT
representation for FSW machines

Fig. 25 A complex DT model
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the same is lying to be explored. This work also presented a
case study where a DT model for FSW has been developed
and discussed in detail. This DT resides in a cloud which
communicates with FSW machine by exchanging data, ana-
lyzes the streaming data, diagnoses it, and displays the infor-
mation on a dashboard, in real time. The DTallows the user to
provide inputs based on the suggestion which the twin feeds
back to the machine in real time to control it. It also consists of
a data model for predicting the tool condition in real time to
prevent wastage of material during the welding. It has the
capability to store the analysis done for different processing
conditions over a period of time and display those as a trend
analysis.

The case study has got immense potential to be used in
future for building a more informative DT model. For exam-
ple, it can have several features as shown in Fig. 24. This may
follow a Turing machine model for complete state representa-
tion of all the DTs belonging to the graph. Figure 25 represents
a complex DT of a factory setup for production use of FSW
systems, where each FSWmachine is connected with an Edge
computing facility trying to have a local state machine of each
setup. The communication between the Edge and the cloud
system happens over message queuing telemetry transport
(MQTT) protocol, and it determines the overall factory output
in terms of the production numbers. For a steady and stable
production line of multiple FSW systems belonging to a dis-
crete production facility, the unit must have equilibrium of
multiple state machines. This can be guaranteed by having
deterministic observation and control of the input data stream
for each state machine, i.e. spindle load, current, moving
speed etc. which can follow patterns of certain distribution
as shown in Fig. 26. Thus, by representing the whole

ecosystem and a collection of autonomous DTs who can have
capability of state exchange and take distributed decision, it
becomes a classical optimization problem for the whole fac-
tory. Thus, a predictable state transition diagram can represent
the pattern of the complex DTat the factory level which in turn
controls each state machines of each FSW machine level.
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