
ORIGINAL ARTICLE

Carbon solid lubricants: role of different dimensions
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Abstract
Over one-third of the worldwide energy production is estimated to be consumed by friction and wear. Delivering adequate
lubrication between two contacting surfaces is one of the most efficient strategies to solve this issue. Over the past several
decades, carbon materials have been regarded as promising lubricating materials due to their versatile structures, and superior
mechanical, thermal, electrical, and chemical properties. This article provides a critical review on the lubricating performance of
carbon materials with different dimensions ranging from zero (0D) to three dimensions (3D). Applications of these 0D to 3D
carbon materials as lubricant coatings, additives in lubricants, and reinforcements in composites are reviewed. The mechanisms
of the enhanced friction reduction and anti-wear performance based on the carbon-based lubricating materials are discussed. This
review provides valuable guidelines on the selection and design of eco-friendly and nontoxic carbon-based lubricating systems.
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1 Introduction

Mechanical failures in machine components, such as engines,
gears, bearings, piston, and cylinder liners, are mainly caused
due to inefficient lubrication. Approximately one-third of the
total energy loss is reported to be caused by friction and wear
every year [1–3]. Furthermore, over 40% of the energy gen-
erated by consuming mined mineral is wasted to overcome
friction, and about 2.7% of CO2 emission worldwide is attrib-
uted to friction and wear [4]. Therefore, highly efficient strat-
egies for decreasing friction and wear loss and saving energy
are urgently required. As early as 4000 years ago, Egyptians
had realized that lubricants such as water, gypsum, and animal
fats could effectively reduce friction [5]. With the fast devel-
opment of new materials, lubricants have been regarded as
one of the most efficient methods to overcome friction and
wear in modern tribology [6, 7].

As one of the basic elements on earth, carbon has been
widely investigated regarding to its outstanding mechanical

[8, 9], thermal [10, 11], electrical [12], and chemical properties
[13]. Based on different types of bonding between carbon
atoms, various dimensions of carbon ranging from zero-
dimensional (0D), one-dimensional (1D), two-dimensional
(2D), and three-dimensional (3D) structures can be obtained
(see Fig. 1) with various properties [14].

C60 is a typical 0D carbon material that consists of 12
pentagons and 20 surrounded hexagons arranged in a
corannulene-like type [15], where all double bonds are
conjugated [16]. It has been deemed one of the most
promising materials in electronic, mechanical, and optical
fields owing to the unique spherical π-electron surface
and availability for chemical modifications. Following
the discoveries of sp2-bonded 1D carbon nanotubes
(CNTs) and 2D graphene, carbon materials have pushed
the enthusiasm of researchers around the world to a cli-
max [17, 18]. Because of the honeycomb lattice structure,
they exhibit electrical superconductivity, ultrahigh me-
chanical strength, and remarkable thermal conductivity,
making the two carbon nanomaterials valuable candidates
for diverse applications [10, 19–21]. As one of the typical
3D carbon materials, graphite has been extensively inves-
tigated as an efficient solid lubricant owing to the weak
interplanar bonding by van der Waals forces [22, 23] and
continues to receive significant attention as a promising
additive in lubricants and self-lubricating materials in re-
cent studies [24, 25].
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Numerous studies have been carried out on lubricating
properties of carbon materials as solid lubricant coatings, ad-
ditives in lubricants, and reinforcements in bulk composites
[26–39]. Furthermore, in the past decade, a significant in-
crease in the number of published scientific papers appears
related to tribology of carbon materials [40], exhibiting a
booming interest in carbon materials from tribologists. Here,
we briefly review the progress in the development of lubri-
cants using carbon materials with different dimensions and
prospect the outlook of carbon materials in future tribological
applications.

2 Carbon materials as lubricant coatings

Highly durable and conductive lubricant coatings have long
been desired to reduce friction and wear. Extensive efforts
have been made to develop conventional coatings applied in
large industrial devices that are suffering from severe friction
and wear [40–42]. Recently, the urgent need for decreasing
friction and wear in micro/nanoscale electromechanical de-
vices has attracted much interest in developing micro/
nanoscale coatings. Carbon materials have been widely ex-
plored as solid lubricant coatings to minimize energy con-
sumption caused by friction in the past several decades due
to their outstanding mechanical and electrical properties at the
micro/nanoscale. In this section, developments of carbon ma-
terials as solid lubricant coatings are briefly summarized.

2.1 Coating methods

Many coating techniques of carbon lubricants have been re-
ported to protect substrates in corrosive or other harmful en-
vironments, among which sol–gel method, electrodeposition,
thermal spray coating, physical vapor deposition (PVD), and
chemical vapor deposition (CVD) have been regarded as the
most effective and applicable ones [43–45]. Each method has

its own pros and cons, which should be considered to meet the
demands of practical applications.

Sol–gel technique is an effective method to coat substrates
with complex or porous structures because of its liquid-based
nature. By using a sol–gel technique, Wang et al. prepared
graphene-reinforced polymer composite coatings with strong
interfacial interactions between graphene and polymer [46].
They first functionalized graphene oxide by a silane coupling
agent and subsequently mixed the silane-functionalized
graphene and pretreated polymer in an aqueous solution.
However, controlling the thickness of such coatings precisely
is rather difficult, although it can be roughly manipulated by
dipping coating times and velocities. Electrodeposition pro-
vides uniform and controllable coatings through a potential
difference between anode and cathode, which can also be
utilized in coating complex structures. It has been one of the
most efficient methods for coating carbon materials, including
C60 [47], CNTs [48] and graphene [49, 50]. A disadvantage of
this technique is the requirement for an electrically conductive
substrate.

Thermal spray coating includes processes using plasma,
electricity, or chemical combustion to achieve high tempera-
ture, thus melting coating materials, followed by a spray pro-
cess on the surface of substrates. Since carbon is difficult to
melt because of its extremely high melting point, few studies
have been focused on coating carbon materials by thermal
spray coating. PVD and CVD are coating techniques through
gaseous deposition. The former typically takes place in high
vacuum, during which solid or liquid phase transforms to gas
phase, followed by condensation of gas to a coating film [45].
In contrast, the latter is a chemical process. In this process, the
surface of substrates is exposed to a high-vacuum environ-
ment with volatile materials acting as precursors to provide
desired elements. Such techniques are widely used to prepare
high-quality and high-resistance coating layers. The limitation
of both methods is their relatively high cost to achieve elevat-
ed temperatures and high vacuum.

Fig. 1 Carbon materials with
different dimensions for
lubrication. Reprinted with
permission from Ref. [14]
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2.2 0D carbon materials

As a typical 0D carbon material, C60 has been regarded as an
excellent solid lubricant because of its unique spherical struc-
ture, outstanding mechanical strength, low surface energy,
stable chemical property, and weak intermolecular bonding
[31, 51]. C60 was first studied as a solid lubricant by Bharat
Bhushan et al. [52]. They tested friction and wear performance
of C60 film under various environmental conditions by depos-
iting fullerene on a polished (111) silicon wafer. The results
indicated that the C60 film coating with a thickness from 2 to
5 μm exhibited low coefficients of friction (0.08–0.12) com-
parable to those of MoS2 and graphite (~ 0.1). By optimizing
the operation conditions, a lowest friction (0.08) was observed
in a nitrogen environment. The authors attributed the excellent
friction properties to the low surface energy as well as low
adhesion to the mating surface of C60. After that, Bharat
Bhushan et al. [53] conducted friction and wear tests of
diamond-like carbon coatings and C60 film on macro and mi-
croscales by sliding against an Al2O3-TiC head slider. The
approximately 20-nm-thick C60 film was found to exhibit
lower friction compared to that of the diamond-like carbon
coating, and both coatings performed better friction properties
at the microscale than macroscale.

Previous studies have also exhibited the extremely low
friction coefficient of C60 ball bearings. For instance,
Sasaki’s group employed monolayer C60 as molecular bear-
ings between graphite plates [54]. They found that the
hexatomic-carbon-ring nanogears between C60 molecules
and graphite helped minimize static and mean dynamical fric-
tional forces, leading to an extremely low-friction motion.
Direct molecular dynamics simulations for C60 molecular ball
bearings were conducted by Li et al. [55]. The molecular ball
bearings exhibited extremely low friction and energy dissipa-
tion because of various motion statuses in a single C60 mole-
cule, including fast thermal rotation and periodic rolling.
Furthermore, the friction of C60 molecular ball bearings could
be manipulated by controlling the dispersion and rotation of
C60 molecules. Tribological performance of other carbon ma-
terials with fullerene-like structures has also been investigated
recently. For instance, Wang et al. [56] prepared fullerene-like
hydrogenated carbon films and tested the friction and wear
properties under different fullerene-like carbon content.
Ultra-low friction coefficient and wear of 0.011 and 1.48 ×
10−8 mm3/N m were achieved, respectively, with a high
fullerene-like carbon content.

Apart from acting as lubricant coating itself, C60 has also
been added into other carbon materials such as graphene and
graphite to form composite surface coatings. For instance,
Wang’s group [31] successfully prepared a novel graphene–
C60 hybrid film by a multistep self-assembly process (Fig. 2).
By virtue of combining the rolling effect of C60 molecules and
excellent mechanical properties of graphene, the hybrid film

exhibited fantastic synergistic effects, resulting in substantial-
ly better lubricating performance than single graphene or C60

films.

2.3 1D carbon materials

Since the discovery of CNTs by arc-discharge evaporation in
1991, they have aroused much interest in research due to their
excellent mechanical, physical, chemical, and thermal proper-
ties [9, 57–59]. Because CNTs are rolled carbon atom sheets
with the same sp2-hybridized structure, ideal linear and rota-
tional nano-bearings can be easily formed during nano-sliding
or nano-rotating, endowing CNTs with excellent lubricating
properties. Zhang et al. [1] directly prepared CNT films on
201 stainless steel by a mechanical rubbing method. Because
of the sliding and densifying of CNTs at the sliding interface,
friction coefficients and wear rates of CNTs/stainless steel
samples were decreased to 1/5 and 1/(4.3–14.5), respectively,
compared with the bare stainless steel. Vander Wal et al. [60]
prepared a series of fluorinated CNT samples under direct
fluorination. The type of chemical treatment was found to play
an essential role in enhancing tribological properties. The
fluorinated CNT samples exhibited excellent lubricating per-
formance with friction coefficients as low as 0.002–0.07. A
report found that the friction coefficients of multi-walled CNT
(MWCNT) films can be easily tuned by changing the surface
temperature and chemistry of either the countersurface or the
nanotubes [61]. The authors argued that the variation of tem-
perature led to changes in the interaction between the surface
chemical groups on MWCNTs and rubbing countersurfaces.
Tribological behavior of samples treated by plasma with var-
ious gases was tested to investigate the influence of surface
chemistry on friction coefficients of MWCNT films. They
found that friction coefficients varied according to the types
of bonding between MWCNT films and countersurfaces, thus
providing a promising strategy to tune friction coefficients by
tailoring the surface chemistry of MWCNTs and
countersurfaces.

CNTs have also been introduced into other materials,
forming CNT-based lubricating composite coatings. Based
on the number of the layers, CNTs can be divided into
s ing le -wa l l ed CNTs (SWCNTs) and MWCNTs.
Satyanarayana et al. [62] investigated the influence of
SWCNTs on the tribological properties of polymer films. In
this study, SWCNTs were used as a filler material for polyim-
ide films on silicon substrate. They found that the existence of
SWCNTs increased the hardness and elastic modulus of pure
polyimide films by 60–70% and reduced the friction of poly-
imide films by approximately 20%. Samad et al. [59] rein-
forced ultra-high molecular weight polyethylene
(UHMWPE) coatings with SWCNTs to enhance the mechan-
ical, thermal, and tribological properties. To ensure a stable
adhesion between SWCNTs and the polymer, they pretreated
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the SWCNTs by plasma to introduce surface functional
groups (e.g., carbonyl, hydroxide, and carboxyl). The en-
hanced bonding between SWCNTs and the UHMWPEmatrix
ensured the polymer intact, therefore preventing the peeling-
off or delamination of the composite film. The wear resistance
was significantly improved despite a slight increase in friction
coefficient.

MWCNTs-reinforced coatings are reported to possess bet-
ter lubricating properties than SWCNTs-reinforced coatings
due to their outstanding self-lubricating and load-bearing ef-
fects [40]. Numerous efforts on dispersing MWCNTs into
various matrices (e.g., ceramics [63], metals [64] or polymers
[65]) have been made to prepare lubricating coatings. Xu et al.
[63] prepared chemically bonded phosphate ceramic coatings
with modified MWCNTs as reinforcements. Although the tri-
bological tests showed that lubricating properties of the com-
posite film deteriorated at 500 °C due to oxidation, the intro-
duction of MWCNTs remarkably decreased friction coeffi-
cient and improved the wear resistance of coatings under
500 °C. The authors attributed the improved properties to
the enhancement of fracture toughness by MWCNTs through
preventing the crack generation and forming bridges when
cracks occur. Wang et al. [66] incorporated MWCNTs into
plasma-sprayed TiO2 coatings and investigated the influence
of MWCNTs on tribological properties of the coatings. They
claimed that although the feedstock powder underwent ex-
treme high temperature (10,000 K) during the plasma-
sprayed deposit process, MWCNTs still remained because of
the short residence time in plasma and the covering bymolten-
TiO2 layer. The addition of MWCNTs was found to signifi-
cantly decrease the friction coefficient and wear rate of the
coating by approximately 36.8% and 93.6%, respectively.
During the tribological tests, the tribo-protruding, tribo-

reorientation, tribo-film, and tribo-degradation of MWCNTs
played essential roles in enhancing lubricating performance of
the coatings (see Fig. 3).

2.4 2D carbon materials

Graphene is a single-atom sheet which consists of sp2 hybrid-
ized carbon atoms [67]. As one of the greatest discoveries in
the twenty-first century, graphene has attracted extensive at-
tention because of its unique mechanical [68, 69], thermal
[11], electrical [12], and chemical properties [13]. Graphene
has also been regarded as an excellent lubricant thanks to its
low surface energy. When coated on other substrates, the ex-
tremely low thickness and low surface energy provide
graphene lower adhesion and friction with the coated surfaces
[29, 33, 70–72]. To date, various methods have been utilized
to grow graphene on different solid substrates, including epi-
taxial growth [73], CVD [74], self-assembly [75], and
photocoupling techniques [76]. Lee’s group [29] synthesized
graphene on Cu and Ni substrates by CVD. After transferring
the CVD-grown graphene to Si/SiO2 substrates, they tested
the tribological properties of graphene as a lubricant film be-
tween contacting surfaces. The tests showed that graphene
grown on the two substrates exhibited quite different friction
behavior, because of a tortoise shell-like pattern appearing
during friction tests. By testing the coefficient of friction of
these CVD-grown graphene sheets, they found that the as-
grown graphene on Ni exhibited excellent tribological prop-
erties that are comparable to bulk graphite. These results indi-
cate that graphene exhibits great potential as an ultrathin lu-
bricating film. Mi et al. [70] designed a novel self-assembling
route to grow graphene films on various substrates by intro-
ducing a thin transition layer of polydopamine (Fig. 4). The

Fig. 2 The schematic diagram of the preparation process of graphene–C60 hybrid film. Reprinted with permission from Ref. [31]
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morphology showed that the graphene layer had been success-
fully embedded into substrates by the self-assembling route,
and such an in situ graphene film exhibited impressive friction
and wear resistance.

Recently, several papers reported direct coatings of
graphene on microspheres to reduce friction and wear resis-
tance [77–79]. For instance, Liu et al. deposited a graphene

film on SiO2 microspheres by a metal-catalyst-free CVD
method and investigated tribological performance of such
graphene-coated microspheres [78]. Because of the multi-
asperity contact by randomly oriented graphene nanograins,
an ultra-low friction coefficient of 0.003 was achieved under a
contact pressure up to 1 GPa. Moreover, the superlubricity
was independent of relative surface rotation angles because

Fig. 4 Self-assembled route of 3-aminopropyl triethoxysilane-polydopamine-graphene film on a silicon wafer. Reprinted with permission fromRef. [70]

Fig. 3 Schematic of the enhancing mechanism induced by MWCNTs for plasma-sprayed TiO2 coatings. Reprinted with permission from Ref. [66]
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of the spherical shape of graphene-coated microspheres. This
novel technique can also be employed to coat other 2D mate-
rials such as MoS2 to achieve microscale superlubricity.

Graphene is also used as a reinforcement in composite
coatings. Through a pulse electrodeposition technique, Algul
et al. [80] prepared nickel–graphene metal matrix composite
coatings and studied the influence of graphene loading on the
tribological behavior of the obtained nanocomposite coatings.
They found that when the content of graphene in electrolytes
increased from 100 to 500 mg/L, the microhardness and wear
resistance increased significantly while the friction coefficient
decreased substantially, indicating that the addition of
graphene successfully improved the tribological properties
of the nickel matrix. Menezes’s group [81] studied the surface
energy and tribological properties of electrodeposited Ni and
Ni/graphene coatings on steel. They found that the low surface
energy of Ni/graphene coating decreases the adhesive forces
leading to low friction and wear compared to Ni coating. In
another research, Menezes’s group studied the wear-corrosion
synergism behavior of Ni-graphene coating and steel [82].
The wear-corrosion was substantially evident in steel as com-
pared to Ni/graphene. This behavior of Ni/graphene was at-
tributed to a compact, refined-grain structure leading to
minimal-grain pull-out during wear.

In addition to graphene sheets, derivatives of graphene
such as graphene oxide (GO) and reduced graphene oxide
(rGO) are also capable of acting as promising lubricants. Via
a novel electrophoretic deposition approach, Liang et al. [83]
successfully introduced GO films with various thicknesses
onto a nanoscale silicon wafer and studied morphology, fric-
tion properties, and wear properties of the obtained samples.
They found that the existence of GO films on the wafer sur-
face significantly reduced the friction coefficient and wear
volume of the silicon wafer by 5/6 and 23/24, respectively.

In addition, simulation studies on the tribological proper-
ties of graphene have also been conducted to facilitate the
understanding of its tribological behavior. Terrell’s group
[84] studied graphene’s abrasive wear and failure and com-
pared the properties with those of diamond-like-carbon coat-
ings. Their simulation results indicated that graphene could
perform as an excellent nanoscale lubricating coating because
of its ultra-low thickness and high load-carrying capacity.

2.5 3D carbon materials

As a typical 3D solid lubricant, graphite has been widely used
in industry for years. Graphite is reported to exhibit better
lubricating properties in humid environments than dry or vac-
uum environments [85]. In a humid environment, water mol-
ecules can penetrate into the space between graphite layers,
therefore rendering graphite easy shearing and low friction.
Moreover, during the tribological process, graphite scrolls
can be formed to reduce the surface energy and thus decrease

friction in the sliding interfaces [33]. Berman et al. [33] com-
pared the tribological properties of graphite with their prior
studies of graphene [71, 86]. The tribological tests of graphite
and graphene were conducted in humid air and dry nitrogen
under the same test conditions. Their results showed that
graphite powder exhibited high friction and high wear losses
in a dry nitrogen atmosphere while the wear of graphene was
significantly reduced in both humid air and dry nitrogen en-
vironments (Fig. 5).

Graphite has also been incorporated into metals to form
composite coatings. Chen et al. [87] incorporated Cu-coated
graphite into Cu-10 wt% Al2O3 spray powder to prepare Cu-
Al2O3-graphite solid-lubricating coatings. Compared with
pure graphite, stable adhesion between Cu-coated graphite
and Cu powder enabled the superior tribological performance
of the coatings. Because of a combined effect of hard rein-
forcement (i.e., Al2O3) and solid lubricant (i.e., graphite), the
composite coating exhibited a relatively low friction coeffi-
cient (0.29).

Diamond-like carbon (DLC) is another important 3D allo-
trope of carbon materials, which is characterized by sp3 bonds
between carbon atoms. DLC has attracted tremendous atten-
tion because of its wide bandgap, high hardness, and excellent
chemical stability [88, 89]. Binu et al. deposited multilayer Ti,
TiN, and DLC coatings on standard tool substrates at varying
sputtering parameters and conditions, such as power density,
partial pressure, substrate temperature, and reactive gases
[88]. After testing the tribological properties of such samples
by a pin-on-disc setup, they found that bombarding during the
sputtering process led to strong adhesion between DLC and
substrates, while the formed DLC coating significantly
strengthened the micro hardness and reduced the coefficient
of friction of substrates. Another research on DLC coating
[89] showed that the top part of sp3-bonded DLC coating
was transformed into sp2-bonded graphene-like structures
during the running-in period, leading to superlubricity perfor-
mance with a friction coefficient below 0.01.

Carbon coating has also been utilized in other applications
such as improving the electrical conductivities of substrates
[90, 91]. Recently, Liu et al. observed an interesting phenom-
enon when preparing carbon coating on lithium iron phos-
phate particles by a spray–pyrolysis system [90]. A highly
reducing atmosphere during carbon coating processes resulted
in the formation of secondary phases. The electrical conduc-
tivities of the phases were dependent on size, temperature, and
annealing atmosphere. Such controllable secondary phases
may have promising potential in tribological applications.

Recent studies on the tribological performance of car-
bon materials with different dimensions and related com-
posites as lubricant coatings are summarized in Table 1.
Lubricant coatings containing carbon materials from 0D
to 3D behave quite differently because of dispersion uni-
formity, various structures, and hybridizations of carbon
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atoms. From Table 1, we can infer that C60, CNTs, and
graphene work well both at the micro- and nanoscale,
while 3D graphite works well as lubricant coatings mainly
at the microscale. Among them, graphene is expected to
perform as a promising candidate for nanoscale electrome-
chanical devices. A low friction of 0.12 could be achieved
by adding graphene even with a thickness of only 1 to
10 nm [29]. Nonetheless, some issues associated with car-
bon lubricant coatings still exist. For example, a dry envi-
ronment is not suitable for graphite [33], and graphene-
based nanoscale lubricant coatings require sophisticated
technologies to make the films continuous with high
quality.

3 Carbon materials as additives in lubricants

Studies on controlling the friction and wear in industrial com-
ponent contacting surfaces by lubricants have lasted over one
hundred years. As one of the crucial factors impacting the
performance of lubricants, lubricant additives can efficiently
decrease friction and wear. Modern lubricants typically com-
prise two components: base oil and additive [92]. The base oil
determines the primary properties of lubricant, eliminating
excess heat and reducing wear/friction, while additives are
utilized to further improve lubricating properties such as oxi-
dative stability, anti-corrosion, viscosity modification, and re-
sistance to biodegradation [93, 94]. In this section, we will

Table 1 Tribological performance of carbon materials as lubricant coatings

Coatings Operating conditions Thickness (μm) Friction coefficient Wear rate (mm3/N m) Ref.

0D C60 1 N, 2.4 mm/s, 20 °C 2–5 0.18–0.12 – [52]

C60 1 N, 2.4 mm/s, 100 °C 2–5 0.08 – [52]

C60 0.1 N, 10 mm/s, 20 °C 0.02 0.12 – [53]

1D 0.1 wt% MWCNTs/polyimide 3 N, 0.16 m/s 100 0.26 2.0 × 10−4 [39]

0.7 wt% MWCNTs/polyimide 3 N, 0.16 m/s 100 0.18 6.5 × 10−4 [39]

0.75 wt% MWCNTs/phosphate ceramic 10 N, 100 rpm, 100 °C 200 ± 10 0.39 8.0 × 10−3 [63]

0.75 wt% MWCNTs/phosphate ceramic 10 N, 100 rpm, 300 °C 200 ± 10 0.28 13 × 10−3 [63]

3 wt% MWCNTs/TiO2 20 N 250–280 0.50–0.55 – [66]

2D Cu-grown graphene on SiO2 5–70 mN, 50 μm/s 0.001–0.01 0.22 – [29]

Ni-grown graphene on SiO2 5–70 mN, 50 μm/s 0.001–0.01 0.12 – [29]

APTES-PDA-rGO 0.1 N–0.2 N 0.012 0.13 – [70]

250 mg/L graphene/Ni 1 N, 150 mm/s – 0.20 9.3 × 10−4 [80]

500 mg/L graphene/Ni 1 N, 150 mm/s – 0.10 8.6 × 10−4 [80]

GO on silicon wafer 400 mN, 25 mm/s 0.05 0.05 – [83]

GO on silicon wafer 400 mN, 25 mm/s 0.09 0.067 – [83]

3D Graphite/steel 1 N, dry N2 – 0.6–0.8 – [33]

Graphite/steel 1 N, humid air – 0.18 – [33]

10 wt% Cu-coated graphite/10 wt%Al2O3/Cu 5 N, 360 rpm 365 ± 16 0.29 2.2 × 10−4 [87]

20 wt% Cu-coated graphite/10 wt%Al2O3/Cu 5 N, 360 rpm 365 ± 16 0.34 1.2 × 10−4 [87]

Fig. 5 Coefficient of friction of
graphite (a) and graphene (b) in
different atmospheres. Reprinted
with permission from Ref. [33]
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review the state-of-the-art literature on carbon additives with
different dimensions in lubricants.

3.1 0D carbon additives

Because of the unique spherical shape, C60 has been widely
used as an additive in various lubricants [26, 37]. Hwang’s
group [37] studied the change of tribological performance in
mineral oil with different viscosities after adding C60 nanopar-
ticles. By testing the raw oil and fullerene-added oil, they
found that with low-viscosity raw oil and high normal load
conditions, the addition of fullerene additives exhibited a no-
ticeable difference in friction coefficient of mineral oil. Yu’s
group [26] introduced C60 into mineral oil to obtain a prom-
ising lubricant used in refrigerator compressors. With the ad-
dition of C60 into mineral oil, the friction coefficients de-
creased by 12.9–19.6%, and the coefficient of performance
(COP) of compressors was improved by 5.6%. The perfor-
mance of lubricants added with other 0D carbon materials
has also been studied [95, 96]. Abdullah et al. [95] prepared
ultrasmooth carbon spheres with diameters ranging from 100
to 500 nm by an ultrasound-assisted process. By adding them
as additives into lubricating oils, friction and wear decreased
by 10–25%. They claimed that carbon spheres could perfectly
fill the gap between interfaces due to their spherical shape and
could act as a nanoscale ball bearing during sliding and reduce
friction and wear.

3.2 1D carbon additives

The high aspect ratio and remarkable mechanical properties of
CNTs make them promising as lubricant additives [34,
97–103]. Outstanding chemical resistance is one of the exotic
properties of CNTs; however, this is accompanied by an issue:
CNTs, because of their high surface area, are extremely diffi-
cult to disperse homogeneously in solvents, therefore limiting
their application as nano-additives in liquid lubricants such as
oil. Therefore, to utilize CNTs as additives, the issue of CNT
dispersion needs to be addressed. Chen’s group [97] success-
fully modified MWCNTs by sulfuric, nitric acids or stearic
acid, and obtained CNTs/oil suspension (Fig. 6) which could
be stable up to 6 months. They claimed that the tribological
properties of the nano-lubricant depended on both the tribo-
logical behavior of CNTs and the dispersion of CNTs in oil.
Francisco et al. [100] added 0.5 wt% single-walled CNTs into
an ionic liquid, 1-octyl, 3-methylimidazolium chloride. Due to
the capability of separating the sliding surfaces by interactions
between the single-walled CNTs and ionic liquid molecules,
the obtained composite exhibited excellent tribological prop-
erties (ultra-low friction and preventing wear) for polycarbon-
ate sliding against stainless steel.

However, SWCNTs are rather difficult to prepare, and the
high cost also hinders further application of CNT-added

lubricants. MWCNTs, with simpler fabrication processes
and lower cost than SWCNTs, are attracting much attention
recently. Chauveau et al. [98] dispersed MWCNTs with vari-
ous concentrations in oil and studied lubricant mechanisms of
the MWCNT-added oil by a tribometer. The results showed
that the coefficient of friction was apparently reduced with the
addition of MWCNTs. They also found that both the entrain-
ment velocity and the content of MWCNTs were crucial to the
lubricant film-forming capability of oil. Bo et al. [34] first
treated MWCNTs by imidazolium-based ionic liquids, 1-
hydroxyethyl-3-hexyl imidazolium tetrafluoroborate, and
then added the ionic liquid-treated MWCNTs into a base lu-
bricant, 1-methyl-3-butylimidazolium tetrafluoroborate. The
results showed that because of the unique cylindrical shape
of such ionic liquid-treated MWCNTs, they exhibited excel-
lent anti-wear performance as an additive in 1-methyl-3-
butylimidazolium tetrafluoroborate at relatively low concen-
trations under different conditions. Menezes’s group [104]
studied the effect of the particulate mixture on friction and
wear performance. The particular mixture was prepared by
adding graphite or MWCNTs in the base oil. In was found
that MWCNTs-based particulate mixture increased both fric-
tion and wear when compared to graphite-based particulate
mixture. This is because the MWCNT particulate mixtures
witnessed capillary effects that absorbed the base oil, creating
a highly viscous slurry rendering the particulate mixture use-
less as a lubricant.

3.3 2D carbon additives

Graphene can also act as an effective additive to improve the
tribological properties of base oil. However, graphene faces
the same issue as CNTs: graphene is extremely difficult to
disperse homogeneously in water-based lubricants or oil be-
cause of its high surface area. Thus, modifications to graphene
become to be an appropriate approach to improve its disper-
sion in the base oil. Zhang et al. [105] modified graphene
sheets by oleic acid and dispersed them in gear oil uniformly
via a 15-min ultrasonication process. Compared to the pristine
gear oil, the addition of graphene with low concentrations
(0.02–0.06 wt%) decreased friction coefficient and diameter
of wear scar by 17% and 14%, respectively.

In addition, the derivatives of graphene have also been
frequently used as additives [106–108]. Song el, al. [32] pre-
pared GO nanosheets by an improved Hummer’s method and
then distributed such GO nanosheets into water-based lubri-
cants. Using the same process, they also introduced oxidized
MWCNTs separately into the samewater-based lubricant. The
tribological results on a UMT-2 ball-plate tribotester showed
that the GO nanosheet-added water-based lubricant possessed
less friction coefficient and wear than the oxidized MWCNT-
added water-based lubricant. Kinoshita et al. [109] prepared
GO by an improved Hummer’s method and introduced GO
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into water-based lubricants. They found that the friction coef-
ficient of such water-based lubricant was reduced to a low
value of approximately 0.05 after adding GO, and even after
60,000 cycles of friction testing, no obvious surface wear was
observed.

Eswaraiah et al. [110] used a novel solar exfoliation
to exfoliate GO, therefore obtaining ultrathin graphene.
After preparing GO by Hummer’s method, they spread
GO over a Petri dish and kept the sample under sun-
light. Under the illumination of the sun, different carbon
atom layers were separated and formed ultrathin
graphene layers. They mixed such obtained ultrathin
graphene with commercial engine oil and tested the tri-
bological properties of the mixed engine oil. The results
showed that compared to the pristine engine oil, the
ultrathin graphene-added engine oil decreased friction
and wear by 80% and 33%, respectively.

Gupta et al. [30] studied the mechanisms of how rGO
improves the lubrication and anti-wear properties as an
additive. They investigated the role of rGO concentration
in the lubrication of solid body contacts and found that
when the concentration of rGO was relatively low, the
lubrication was dominated by base oil; while at higher
concentration, rGO aggregated seriously in the base oil,
therefore deteriorating interlayer sliding. Only at an op-
timized concentration can rGO play a role as an effective
additive in the base oil, and such concentration of rGO
reduced the friction coefficient and wear by 30% and
50%, respectively. Based on the Fourier-transform infra-
red spectroscopy (FTIR) analysis and wear track, they
proposed a new model where rGO sheets and polyethyl-
ene glycol (PEG) molecules were linked through hydro-
gen bonding (Fig. 7). When the contact pressure was
relatively low, rGO sheets could align between PEG mol-
ecules. The parallel arrangement between graphene and
PEG molecules provided less shear strength, therefore
effective lubrication. While under higher contact pres-
sures, shear mobility occurring in graphene started dom-
inating lubrication behavior, thus reduced the friction
more significantly while deformation of the wear tracks

became negligible. They also investigated the influence
of oxygen functional groups in rGO on lubricating prop-
erties [111]. Two different rGO decorated by hydroxyl
and epoxy-hydroxyl groups were fabricated and blended
with two different molecular weights of PEG, respective-
ly. After that, they tested the tribological properties and
found that compared to rGO terminated by epoxy-
hydroxyl groups, the ones terminated by hydroxyl ex-
hibits reduced wear due to fewer defects on hydroxyl
functionalized graphene planes, but increased friction be-
cause of the lower friction energy caused by intercalation
of PEG in epoxy-hydroxyl-functionalized rGO.

Menezes’s group [112] studied the effect of graphene
and graphite as additives in canola oil. These additives in
oil showed a lower coefficient of friction and wear rate
compared with bare canola oil. The graphene sheets were
more effective than graphite in terms of reducing friction
and wear. The optimal concentration of the additive in
canola oil was approximately 0.7 wt%. Moreover, the
worn surface of the contacting materials was smoother
in the presence of solid lubricant rather than bare oil.
In another work, Menezes’s group [113] studied the ef-
fect of multiphase lubricants on friction and transfer lay-
er formation during sliding against various surface tex-
tures. The sliding tests were conducted in multiphase
lubricants that consist of canola oil and graphene at dif-
ferent concentrations. A minimum friction coefficient of
0.05 was achieved for various surface textures by
adopting a specific concentration of graphene. The
amount of graphene required to achieve the minimum
friction coefficient is attributed to the variations in asper-
ity and graphene additive interaction when sliding
against different surface textures.

3.4 3D carbon additives

Graphite has also been used as additives in lubricants. Su et al.
[114] studied the lubricating properties and lubrication mech-
anisms of graphite oil-based nanofluids by adding graphite
nanoparticles into vegetable-based oil. They found that

Fig. 6 Micrographs of CNTs in
lubricants: (a) after modification
with stearic acid; (b) before
modification. Reprinted with
permission from Ref. [97]
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friction and wear were significantly reduced as the volume
fraction of graphite nanoparticles increased. Due to the small
size and high surface energy of graphite nanoparticles, a phys-
ical deposition film was formed during the test, therefore re-
ducing friction and wear. Lee et al. [115] introduced graphite
nanoparticles as an additive into industrial gear oil and inves-
tigated the tribological properties of the formed lubricants. It
was found that graphite nanoparticles could significantly re-
duce the contact between the plates by acting as ball-bearing
spacers, therefore improving lubricating properties compared
to pristine gear oil. Martorana et al. [116] formed colloidal
suspensions by dispersing fine graphite flakes and carbon
nanofibers in ethanol; then they tested the effect of such car-
bon additives in a closed hydraulic loop. They found that the
addition of graphite particles could form thin lubricating
layers at the surface of gears, causing a significant reduction
in friction.

Recent studies on the tribological performance of carbon
materials with different dimensions as additives in lubricants
are summarized in Table 2. Carbon materials with different
dimensions can perform as excellent additives in lubricants
such as mineral oil, engine oil, and vegetable oil. The addition
of carbon materials can substantially reduce friction coeffi-
cient and wear rate even with an extremely low loading con-
tent. From Table 2, one can see that SWCNTs perform better
thanMWCNTs. However, employing SWCNTs as an additive
also results in extra costs. Moreover, increasing content of
carbon materials to an appropriate extent can improve tribo-
logical performance, while at a higher concentration, the dis-
persion issue of the carbon nanomaterials needs to be
addressed.

4 Improving lubricating properties of bulk
composites

Apart from being acting as lubricant coatings and additive in
lubricants, carbonmaterials have also been utilized to improve
tribological properties of bulk materials [120, 121]. This sec-
tion will discuss the latest research on using carbon materials
with different dimensions as reinforcements for ceramics,
metals, and polymers to enhance their lubricating
performance.

4.1 0D carbon materials

Only a few studies are reported on enhancing lubricating
properties by employing C60 as reinforcement for bulk
materials. Wang et al. [122] prepared aligned CNT/C60-
epoxy nanocomposites and conducted tribological tests.
It is found that the friction coefficients of C60-epoxy
composite and aligned CNT-epoxy composites were
26.2% and 38.1%, respectively, lower than that of pure
epoxy. Yoshimoto et al. [123] synthesized C60/expanded
graphite composites and studied the synergistic effects
via a combination of C60 and graphite. The results
showed that C60 played an essential role in enhancing
lubricating performance, and the C60/expanded graphite
composites could be further used as a promising anti-
wear additive in lubricants. Their earlier work also
showed that superlubricity and ultra-low spatial-average
friction could be achieved using graphite-confined C60

monolayer systems [54, 124].

Fig. 7 Lubrication mechanisms in (a) PEG steel-steel contact (b) 0.2 mg mL−1 rGO-PEG-lubricated contact and (c) 1.0 mg mL−1 rGO-PEG-lubricated
contact. Reprinted with permission from Ref. [30]
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4.2 1D carbon materials

Numerous studies have shown that CNTs can act as a perfect
reinforcement in composites [28, 125–127]. Moghadam et al.
[57] proved that the stress transferred to the nanotube (σf)
through the interface could also be described by the shear
lag models used in fiber-reinforced composites:

l f
D f

¼ σ f

2τmf
ð1Þ

where τmf is the shear stress between CNTs and matrix; lf and
Df are the length and the diameter of the CNT, respectively.
From the model, one can see that more load can be transferred
to CNTs as the aspect ratio of CNTs increases.

Puchy et al. [128] described tribological properties of Al2O3-
CNTcomposites prepared by spark plasma sintering. With a low
loading content of CNTs, the composite exhibited reduced fric-
tion and depth penetration, which can be attributed to the grain
size effect and reinforcement effect of CNTs. Bastwros et al.
[129] mixed CNTs with aluminum particles by high-energy ball
milling, followed by cold compaction and hot extrusion to pre-
pare composite samples. They systematically investigated how
thewear performance changedwith the loading content of CNTs,
sliding velocity, and applied load (Fig. 8). As the loading content
of CNTs increased, both coefficient of friction and wear rate
significantly decreased. An addition of 5 wt% CNTs could re-
duce the coefficient of friction and wear rate of composites by
55.6% and 78.8%, respectively. FromSEMmicrographs of worn
surfaces in Fig. 8c–e, the dominant wear mechanism changed
from adhesion to abrasion as the CNTs content increased. Due to
the self-lubricating properties of CNTs, they formed a carbon
coating on the contacting surfaces during the test and acted as a
solid lubricant, therefore decreasing friction and wear.

Zhang et al. [28] synthesized vertically oriented CNTs on
inconel substrates by CVD, after which they electrodeposited
MoS2 on the surface of the vertically oriented CNTs. This novel
composite showed excellent tribological properties at both room
and elevated temperatures. Hereafter, Wang’s group [126] pre-
pared continuously aligned CNTs byCVD and produced aligned
CNTs-reinforced epoxy composites by the capillary-induced
moistening method under vacuum condition for 2 h. When slid-
ing both pure epoxy samples and the aligned CNTs- reinforced
epoxy samples, the results showed that increasing sliding veloc-
ity led to decreased wear rates and friction coefficients. With a
test condition of 1.2 MPa and 0.69 m/s, the wear of CNTs-
reinforced epoxy composites was decreased by up to 219 times
compared to pure epoxy. Golchin’s group [127] utilized
MWCNTs as a reinforcement to enhance the tribological prop-
erties of UHMWPE. The results of the water-lubricated sliding
test showed that the obtained MWCNTs-reinforced UHMWPE
exhibited a lower friction and higher wear resistance compared to
the pure UHMWPE.
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4.3 2D carbon materials

The outstandingmechanical properties, large surface area, and
low density make graphene an ideal reinforcement for com-
posites [130, 131]. Single-layer graphene is difficult to be used
in large-scale applications because of its high cost; instead,
multilayer graphene with a lower cost contains 10–30 layers
of graphene and possesses properties similar to those of
single-layer graphene. Xu et al. [132] prepared multilayer
graphene-reinforced TiAl matrix composites by spark plasma
sintering. They mixed multilayer graphene powder with com-
mercial powders of Ti, Al, B, Nb, and Cr in a molar ratio of
48:47:2:2:1 by ball milling at vacuum and then put the mixed
powder in a mold for the spark plasma sintering process. The
tribological results showed that the multilayer graphene rein-
forcement reduced the friction coefficients to 1/5 and de-
creased wear by a factor of nearly 4–9 times, indicating that
multilayer graphene acted as an excellent reinforcement to
enhance the tribological properties of the matrices.

However, like CNTs, the severe aggregation of graphene in
the matrix can inhibit further promotion of tribological prop-
erties and limit the loading content of graphene added into the
matrix. Tremendous efforts have been made to tackle this
issue. As a typical example, Hwang et al. [130] fabricated
rGO/Cu composites by a novel molecular-level mixing meth-
od and a following spark plasma sintering process (see Fig. 9).
They prepared GO first and then mixed them with Cu salts in
aqueous solution during which GO assembled with Cu ions.
After that, they reduced the obtained GO/Cu to rGO/Cu pow-
ders with a subsequent spark plasma sintering process to pre-
pare rGO/Cu composite. Through such a novel method, they

successfully realized a homogenous dispersion of graphene in
the copper matrix, and such structure exhibited extremely high
adhesion energy between sintered graphene and Cu
(164 J m−2) compared to that (0.72 J m−2) between graphene
grown on a Cu substrate. Using a similar method, Gao et al.
[38] prepared graphene-reinforced copper matrix composites
through fabricating GO/Cu powder by electrostatic self-
assembly and subsequent sintering process by powder metal-
lurgy. They achieved a 65% decrease in friction coefficient
compared to pure copper. Menezes’s group [133] synthesized
aluminum matrix composites reinforced by graphene
nanoplatelets by a powder metallurgy method. The graphene
nanoplatelets-reinforced composites showed outstanding tri-
bological properties and demonstrated the self-lubricating na-
ture of the composite during tribological conditions.

4.4 3D carbon materials

Graphite can also serve as a promising reinforcement in
bulk composites [134–136]. Ravindran’s group [36] pre-
pared Al 2024-SiC-graphite hybrid composites by a pow-
der metallurgy method. The prepared composites with
5 wt% graphite as reinforcement exhibited significantly
decreased friction and wear because of the self-
lubricating effect of graphite. Ma et al. [137] investigated
how the tribological behavior of Cu/graphite composites
changed depending on sliding speed and found that the
friction and wear regimes of the composite changed at a
critical speed (Fig. 10). At speeds below this critical
speed, a graphite-rich lubricant layer formed at the contact
interface due to the large strain gradient in the subsurface

Fig. 8 Coefficient of friction (a) andwear rate (b) of Al and Al-CNTsamples. c–e SEMmicrographs of worn surfaces of Al-CNTsamples: (c) 1 wt%, (d)
2.5 wt%, (e) 5 wt%. Reprinted with permission from Ref. [129]

3886 Int J Adv Manuf Technol (2020) 107:3875–3895



deformation zone, therefore greatly improving the tribo-
logical properties of the composite. While at speeds
higher than this critical speed, delamination wear caused
by high sliding speed inhibited the formation of such a
graphite-rich lubricant layer, resulting in severe wear.

Additionally, they also investigated the effect of surface
texture on the tribological behavior of Cu/graphite composites
[138]. At the beginning, they prepared Cu/graphite compos-
ites by a powder metallurgy method and tested the tribological
properties on the surfaces of several annealed 1045 steel discs
with different predisposed surface types: parallel grooves tex-
ture (PG) generated by unidirectionally grinding, random
grooves texture (RG) generated by “8” shape grinding and
polished surface texture (PS) generated by polishing. Based
on the friction and wear behavior of Cu/graphite on different
textures, they proposed a formation process of a transfer layer
(Fig. 11). These three textures exhibited different ratcheting
effect. The PG and RG textures produced more severe defor-
mation on composite compared to PS texture resulted in the
accumulation of large size slivers, which would break to large
flakes in the following sliding process. These large flakes
gradually turned to continuous transfer layers under continu-
ous rolling and shearing during sliding, leading to lower fric-
tion coefficients. On the contrary, sliding against PS texture
gave rise to the formation of small fragments which were
difficult to adhere to surfaces. Therefore, continuous transfer
layers could hardly appear on PS texture. Menezes’s group
[139] synthesized Al-16Si-5Ni-5Graphite composite to sub-
stitute steel in piston ring materials. They found that the Al-
16Si-5Ni-5Graphite composite showed better tribological per-
formance than steel under limited or boundary lubrication
conditions. The superior tribological behavior is attributed to
the presence of graphite in the composites acting as a solid
lubricant on worn surfaces reducing friction and wear.

Recent studies on the tribological performance of car-
bon materials with different dimensions acting as im-
proving lubricating properties of bulk composites are
summarized in Table 3. Few studies are reported on
investigating tribological properties of fullerene-
reinforced bulk composites. CNTs and graphene have
been widely regarded as excellent reinforcements to en-
hance mechanical properties of bulk matrices [19, 57].
From Table 3, one can see that CNTs and graphene are
outstanding candidates to improve tribological properties
of composites. Ideal dispersion and strong bonding be-
tween CNTs/graphene and matrix are known to be the
two key factors determining the performance of com-
posites [57]. Therefore, pretreatments of carbon mate-
rials such as surface functionalization and surfactant in-
troduction can be quite helpful. New pretreatment strat-
egies under the guidance of both experiments and com-
putational modeling are still urgently needed to effec-
tively address the foregoing two issues.

5 Applications of carbon solid lubricants

5.1 As lubricant coatings

Because of their prominent friction reduction and wear resis-
tance performance, carbon solid lubricants with different di-
mensions have been widely employed in vast applications,
such as lubrication in industrial machines [116, 144–146]
and electromechanical devices [147–149], acting as lubricant
coatings, additives in lubricants, or reinforcements in bulk
lubricating composites. Particularly, solid lubricant coatings
are often applied to reduce friction and wear in slidingmotions
when liquid lubricants tend to be squeezed out [7]. Moreover,

Fig. 9 Schematic of the fabrication process of rGO/Cu nanocomposites by molecular-level mixing method. Reprinted with permission from Ref. [130]
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carbon coatings are better choices in extreme environments
such as ultra-high or ultra-low temperatures, where liquid lu-
bricants do not survive [7]. Wang’s group [150] prepared
diamond-like carbon/ionic liquid/graphene composite coat-
ings and investigated lubricating performance towards space
applications, which require excellent stability and high bear-
ing capacity of the coatings. They conducted tribological tests
under high vacuum and radiations to simulate space environ-
ment. They found that the diamond-like carbon/ionic liquid/
graphene coating exhibited long-term, stable tribological
properties even under strong radiations, suggesting that such
a carbon-based coating could be utilized as a space lubricant.
By virtue of their superior electrical conductivity and good
chemical stability, carbon lubricant coatings also exhibit sub-
stantial potential in the application of electrical contacts com-
pared to traditional metal materials (e.g., Ag), which suffer
from high material loss during sliding electrical contacts
[147–149].

5.2 As additives in lubricants

Carbon materials with different dimensions have been intro-
duced into base lubricants to further improve their perfor-
mance in practical applications. For instance, Yu’s group
added a 0D carbon material, C60, into pure mineral oil to
enhance lubrication in domestic refrigerator compressors
[26]. They found the COP of the compressor was improved
by 5.6% with the addition of C60. Cornelio et al. [145] con-
ducted rolling-sliding tests for both CNT-added oil and water.
Their test results showed that CNTs acted as an excellent
additive in base lubricants for applications in a wheel-rail sys-
tem. Singh et al. [146] employed graphene nanoparticle as an
additive in base lubricant and applied the hybrid lubricant in
turning operation. By using graphene-added lubricant, the tool
flank wear and nodal temperature were decreased by 12.29%
and 5.79%, respectively. Bayer’s group [116] found that the
addition of 3D graphite particles in ethanol could form thin

Fig. 10 SEM micrographs of
worn surfaces at different speeds:
(a) 0.001 m/s, (b) 0.01 m/s, (c)
0.1 m/s, (d) 0.5 m/s, (e) 1 m/s, (f)
8 m/s. Arrows are the sliding
direction of the pin. Reprinted
with permission from Ref. [137]
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lubricating layers at the surface of gears, causing a significant
reduction in friction, which could be used to improve the
efficiency of a gear pump–driven hydraulic circuit.

5.3 As reinforcements in bulk lubricating composites

Tribological contacts in practical applications such as aero-
space, automotive, marine and other sectors require not only
low friction and wear but also outstanding mechanical prop-
erties [151].When acting as reinforcements in bulk lubricating
composites, carbonmaterials can simultaneously enhance me-
chanical strength [57] and lubricating properties [120, 121],
and therefore can meet the demanding requirements for vari-
ous practical applications. For instance, Sinha’s group [152]
reported a self-lubricating nanocomposite towards
microelectromechanical system applications. In the nanocom-
posite, CNTs or graphite was added as a reinforcement to
improve the poor mechanical and tribological properties of
SU-8 matrix. Pang et al. [144] fabricated GO-reinforced
UHMWPE composites, which exhibited excellent wear and
corrosion resistance under a seawater environment. The au-
thors claimed that such composites could be suitable candi-
dates for marine applications. In addition, along with their
non-toxicity and outstanding biocompatibility, carbon

materials have been considered as promising modifiers in
bio-tribological systems. Recent studies have confirmed the
significant improvement of both tribological and mechanical
properties of the UHMWPE matrix for joint replacement by
employing various carbon materials as reinforcements
[153–155].

6 Summary and prospects

Because of the multifarious structures and outstanding me-
chanical, chemical, electrical, and thermal properties, carbon
materials have been extensively studied in versatile applica-
tions. Furthermore, as one of the basic elements in human
bodies, carbon is absolutely eco-friendly and nontoxic. This
article reviews the lubricating performance and applications of
carbon materials with different dimensions ranging from 0D
to 3D, acting as lubricant coatings, additives in lubricants and
reinforcements in bulk lubricating composites.

Despite the remarkable achievements in lubrication, carbon
materials are still facing many open challenges: (1) more sta-
ble adhesion between coatings and substrates, thereby contrib-
uting to better friction and wear performance. For most
carbon-based tribological systems, they are connected by

Fig. 11 Schematic of transfer layer formation. Reprinted with permission from Ref. [138]
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weak van der Waals forces, which deteriorate the tribological
performance and lifetime of lubricating coatings. Forming
stable and strong covalent bonds between coatings and sub-
strates by introducing surface functional groups might be an
efficient way to solve this issue. (2) Efforts to achieve homo-
geneous dispersion of carbon nanomaterials both in lubricant
and bulk materials, which is essential to maximize the en-
hancement effect of these nanomaterials. Currently, re-
searchers improve the dispersion of carbon lubricants in base
oil or bulk matrices mainly by adding dispersants or surface
functionalizations. Such methods improve the dispersibility to
a certain extent while introducing impurities simultaneously,
which can deteriorate the tribological performance of intrinsic
carbon lubricants. Developing and optimizing reliable homo-
geneous dispersions without introducing impurities is always
one of the most promising ways to achieve outstanding tribo-
logical properties. (3) Further understanding of friction and
wear mechanisms under various conditions and environments
to help better select and design appropriate lubricating sys-
tems. Although various mechanisms have been proposed to
help understand the process of friction and wear reduction.
However, in practical cases, such reduction is attributed to
synergic effects of more than one mechanism. Figuring out
how different mechanisms work together would help better

elucidate lubricating behavior of carbon materials, thus pro-
viding efficient guidelines for further development of carbon
lubricants such as controllable modificat ion and
functionalization. Future work addressing such challenges
will tap the full potential of the excellent lubricating properties
of carbon materials.
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