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Abstract
Existing ubiquitous manufacturing (UM) systems usually plan production and logistics simultaneously to enhance efficiency. A
UM system can be further benefited by pursuing economical fabrication, improving product quality, and enhancing partner
relationships, which involves possibly conflicting goals, but has rarely been investigated. To address this, an evolving fuzzy
approach is proposed in this study by hybridizing diversifying fuzzy analytic hierarchy process (DFAHP), genetic algorithm
(GA), and fuzzy technique for order preference by similarity to the ideal solution (FTOPSIS). The evolving fuzzy approach has
been applied to a UM system. The superiority of the evolving fuzzy approach over existingmethods in meeting various goals was
successfully demonstrated by the experimental results.

Keywords Evolvingfuzzy .Ubiquitousmanufacturing .Diversifyingfuzzyanalytichierarchyprocess .Geneticalgorithm .Fuzzy
technique for order preference by similarity to the ideal solution

1 Introduction

Ubiquitous manufacturing (UM) is the application of ubiqui-
tous computing to the manufacturing domain to enable con-
venient, on-demand network access to a shared pool of
configurable manufacturing resources, such as software tools,
equipment, and manufacturing capabilities [1–6]. In a UM
system, manufacturing resources are encapsulated as cloud
resources [7]. Software tools are the easiest manufacturing
resource to be encapsulated [8, 9]. Recently, the focus has
turned to various types of equipment, especially those coupled
with computers that are intrinsically suitable for UM, such as
three-dimensional (3D) printers, machine tools, and robots
[10–14].

Some of the recent literature on UM are reviewed as fol-
lows. Radio frequency identification (RFID) and other types
of sensors can be attached to manufacturing resources to mon-
itor and collect real-time production conditions and informa-
tion, based on which better production planning and schedul-
ing can be made [9, 15–17]. Dubey et al. [18] analyzed
existing literature on UM using techniques including interpre-
tive structural modeling (ISM) and cross-impact matrix mul-
tiplication (MICMAC). Then, they established a three-level
framework showing that UM culture, training, secondary
technology, pervasive technology, product quality,
manufacturing flexibility, and teamwork were critical to the
success of a UM system. Chen and Lin [19] established a UM
system for distributing production simulation tasks among
several cloud-based simulation services. Wang et al. [13, 20]
integrated various types of manufacturing facilities with func-
tion blocks. Their methodology was successfully applied to
machining and robotics applications. Chen and Lin [21] con-
structed a UM system based on the application of 3D printing
(3DP) (or additive manufacturing). In their UM system, the
pieces of an order were spread across multiple 3DP facilities.
The printed pieces were then picked up by a logistics service
provider that visited all 3DP facilities sequentially. Chen and
Lin formulated a nonlinear programming model to minimize
the makespan of each order, and proposed a heuristic to help
solve the nonlinear programming problem. Wang et al. [12,
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14] established a fault-diagnosis and early-warning mecha-
nism for a high-end assembly system under a UM environ-
ment. A recent literature review on UM refers to Wang et al.
[22].

A UM system composed of distributed 3DP facilities is the
focus of this study. When an order is received by a UM sys-
tem, it is split among several 3DP facilities that are available,
have fast printing speeds, and close to the customer [10, 21],
which involves both production and logistics planning.
However, a UM system can be further benefited by addressing
more concerns:

(1) The quality of products can be improved to attract and
retain customers [23].

(2) The costs for fabricating products can be reduced to be
more competitive.

(3) A long-term relationship with each 3DP facility can be
fostered for the UM system to be sustainable.

To this end, an evolving fuzzy approach is proposed in this
study to plan the reorganization of a UM system. The evolving
fuzzy approach is composed of three parts: diversifying fuzzy
analytic hierarchy process (DFAHP) [24], genetic algorithm
(GA) [25], and fuzzy technique for order preference by simi-
larity to the ideal solution (FTOPSIS) [26]. First, DFAHP is
applied to derive the priorities of criteria for assessing a 3DP
facility when the UM system administrator’s judgments are
somewhat inconsistent. In this step, a fuzzy mixed integer-
nonlinear programming (FMINLP) problem needs to be
solved, for which a GA is designed. Subsequently, based on
the derived priorities, FTOPSIS is applied to evaluate the
overall performance of each 3DP facility. The best performing
3DP facilities will be chosen. The evolving fuzzy approach
has been applied to a UM system to assess its effectiveness.

The remainder of this paper is organized as follows.
Section 2 first introduces the system architecture and opera-
tional procedure of a UM system, and then details the evolv-
ing fuzzy approach for planning the reorganization of a UM
system. To evaluate the advantages and disadvantages of the
evolving fuzzy approach, it and some existing methods have
been applied to a UM system, which is described in Section 3.
Section 4 presents concluding remarks and lists some topics
for future investigation.

2 The proposed methodology

2.1 The system architecture and operational
procedure of a UM system

Five issues affect the planning of a UM system, as illustrated
in Fig. 1. However, most of the past studies considered only
production and logistics issues [9, 19, 21].

The system architecture of a UM system is composed of
four parts: customers, the UM service provider, 3DP facilities,
and a logistics service provider, as illustrated in Fig. 2. The
UM service provider comprises the system administrator, the
system server, the system database, and the reasoning module.
In this study, the reasoning module is the evolving fuzzy
approach.

The UM system operates according to the following
procedure:

Step 1. A customer places an order online.
Step 2. The UM system administrator searches for available

3DP facilities in the service region.
Step 3. The system administrator negotiates with 3DP

facilities.
Step 4. The system administrator chooses 3DP facilities

using the evolving fuzzy approach.
Step 5. The order is distributed among 3DP facilities.
Step 6. The 3D printing facilities print the assigned pieces.
Step 7. A logistics service provider visits all 3DP facilities to

pick up the printed pieces, or each 3DP facility de-
livers the printed pieces by itself.

Step 8. The customer feeds back his/her assessment of the
service and product quality.

Step 9. The system database is updated with the order details
and the customer’s feedback.

The flowchart in Fig. 3 illustrates this procedure.

2.2 The evolving fuzzy approach

The evolving fuzzy approach is composed of three steps:
FAHP, GA, and FTOPSIS, as illustrated in Fig. 4.

In the evolving fuzzy approach, at first, the UM system
administrator compares the relative priorities of criteria for

Planning a UM 
System

Fig. 1 Issues affecting the planning of a UM system
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assessing a 3DP facility with linguistic terms, such as “as
equal as,” “weakly more important than,” “strongly more im-
portant than,” “very strongly more important than,” and “ab-
solutely more important than,”which are mapped to triangular
fuzzy numbers (TFNs) [27, 28]:

“As equal as” : eaij ¼ 1; 1; 3ð Þ
“Weakly more important than” : aij ¼ 1; 3; 5ð Þ

“Strongly more important than” : eaij ¼ 3; 5; 7ð Þ

“Very strongly more important than” : eaij ¼ 5; 7; 9ð Þ

“Absolutely more important than” : eaij ¼ 7; 9; 9ð Þ

eaij is the relative priority of criterion i over criterion j.
aij1 = max(aij2 − 2, 1) and aij3 = min(aij2 + 2, 9) if eaij≥1.
The average of two neighboring TFNs is also applica-
ble. The results are summarized with a fuzzy judgment
matrixeA. The fuzzy eigenvalue and eigenvector of eA,
denoted by eλ and ex, respectively, satisfy the following
equations:

det eA −ð ÞeλI� �
¼ 0 ð1Þ

and

eA −ð ÞeλI� �
�ð Þex ¼ 0 ð2Þ

where (−) and (×) indicates fuzzy subtraction and mul-
tiplication, respectively. The consistency among pairwise
comparison results can be evaluated with the fuzzy con-
sistency ratio:

fCR ¼
eλmax−n
n−1
RI

ð3Þ

where eλmax is the fuzzy maximal eigenvalue; RI is the
random consistency index [29]. fCR should be less than
0.1~0.3, depending on the problem size.

However, the judgment results by the UM system admin-
istrator may be inconsistent. To address this, the fuzzy

UM Service 
Provider

System 
Administrator

System 
Server

Reasoning 
Module

System 
Database

3D Printing Facilities

…

Customers

Logistics
Service

Provider

Fig. 2 The UM system
architecture
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judgment matrix is decomposed into several fuzzy
subjudgment matrices that are more consistent (Fig. 5).

For this purpose, the following FMINLP model is formu-
lated and optimized:

(FMINLP model)

Max⋅eZ1 ¼ 1

K
∑
K

k¼1

�fCR eA� �
−ð ÞfCR eA kð Þ

� �
ð4Þ

Max⋅eZ2 ¼ ∑
K−1

k¼1
∑
K

l¼kþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
∑
n

j¼1
eaij kð Þ −ð Þeaij lð Þ� �2

s
ð5Þ

subject to

eaij ¼ ∑
K

k¼1
eaij kð Þ
K

∀eaij > 1; i; j ¼ 1∼n ð6Þ

eaij kð Þeaji kð Þ ¼ 1∀i; j ¼ 1∼n; k ¼ 1∼K ð7Þ

eaii kð Þ ¼ 1∀i ¼ 1∼n; k ¼ 1∼K ð8Þ

det eA kð Þ −ð Þeλ kð ÞI
� �

¼ 0; k ¼ 1∼K ð9Þ

CR eA kð Þ −ð Þeλ kð ÞI
� �

¼ 0; k ¼ 1∼K ð10Þ

eaij kð Þ∈ 1; …; 9f g∀eaij > 1; i; j ¼ 1∼n; k ¼ 1∼K ð11Þ

Objective function (4) is to optimize the average improve-

ment in fCR. Objective function (5) is to maximize the dis-
tances between fuzzy subjudgment matrices, so as to diversify
them. Equation (6) is to decompose the fuzzy judgment matrix
into several fuzzy subjudgment matrices. Constraints (7, 8, 9)
and (11) are the basic requirements for a fuzzy judgment (or
subjudgment) matrix. Constraint (10) requires each fuzzy
subjudgment matrix to bemore consistent than the fuzzy judg-
ment matrix. The FMINLP model is converted into the

Search for available 
3DP facilities

Choose 3DP facilities

Each 3DP facility 
prints the assigned 

pieces

Pick up the pieces 
printed by all 3DP 

facilities

Distribute the required 
pieces among 3DP 

facilities

Deliver the order to the 
customer

Negotiates with 3DP 
facilities

The 
Evolving 
Approach

Receive customer’s 
feedback

System 

Database

A customer places an 
order online

Fig. 3 The operational procedure of the UM system
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Attributes

3DP Facility

Fig. 4 The evolving fuzzy
approach

Fig. 5 Decomposing the fuzzy judgment matrix into several fuzzy
subjudgment matrices
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following mixed integer-nonlinear programming problem
(MINLP) that can be solved by applying a GA algorithm.

(MINLP model)

Max⋅Z1 ¼ 1

K
∑
K

k¼1

�
CR A2ð Þ−CR A2 kð Þð Þ ð12Þ

Max⋅Z2 ¼ ∑
K−1

k¼1
∑
K

l¼kþ1
dkl2 ð13Þ

subject to

d2kl2 ¼ ∑
n

i¼1
∑
n

j¼1
aij2 kð Þ−aij2 lð Þ� �2

; k ¼ 1∼K−1; l ¼ k þ 1∼K ð14Þ

aij2 ¼
∑
K

k¼1
aij2 kð Þ
K

∀aij2 > 1; ι; j ¼ 1∼n ð15Þ

aij2 kð Þaji2 kð Þ ¼ 1∀i; j ¼ 1∼n;κ ¼ 1∼K ð16Þ
aii2 kð Þ ¼ 1∀i ¼ 1∼n; k ¼ 1∼K ð17Þ

aij1 kð Þ ¼ max aij2−2; 1
� �

∀i; j ¼ 1∼n; k ¼ 1∼K ð18Þ

aij3 kð Þ ¼ min aij2 þ 2; 9
� �

∀i; j ¼ 1∼n; k ¼ 1∼K ð19Þ

CR A2 kð Þð Þ≤CR A2ð Þ; k ¼ 1∼K ð20Þ
aij2 kð Þ∈ 1; …; 9f g∀aij > 1; i; j ¼ 1∼n; k ¼ 1∼K ð21Þ

4 A 1 2 E 1

Fig. 6 The encoding of a
chromosome

Fig. 7 The service region of the
UM system
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A GA algorithm is designed to solve the MINLP problem.
First, the encoding of a chromosome is illustrated in Fig. 6.
The value of a gene ranges from 1 to 18, corresponding to the
center value of the TFN:

1;…; 9→1;…; 9

0;A 11ð Þ;…;H 18ð Þ→1= 1; 1; 3ð Þ; 1= 1; 2; 4ð Þ;…; 1= 7; 9; 9ð Þ

The weighted sum of the two objective functions in the
MINLP problem is optimized:

Max Z3 ¼ ω1Z1 þ ω2Z2 ð22Þ

Constraint (20) is incorporated into the objective function
as a penalty term to form the fitness function:

Max fitness ¼ ω1Z1 þ ω2Z2 þM ∑
K

k¼1
CR A2ð Þ−CR A2 kð Þð Þð Þ ð23Þ

where M is a large positive value. The roulette wheel method
is applied to choose parent chromosomes to be paired based
on their fitness values. A crossover point is chosen at random.
Offspring chromosomes are generated by exchanging the
genes of parents among themselves until the crossover point
is reached. The mutation of a gene is done by slightly
incrementing or decrementing its value:

3; 5; 7ð Þ→ 2; 4; 6ð Þ or 4; 6; 8ð Þ

Finally, FTOPSIS is applied to assess the overall perfor-
mance of a 3DP facility. First, the fuzzy priority of each cri-
terion is multiplied to the normalized performance to derive
the fuzzy weighted score:

esqi kð Þ ¼ ewi kð Þ �ð Þeρqi ð24Þ

where eρqi is the normalized performance of the qth 3DP facil-

ity in optimizing the ith criterion, which is derived using fuzzy
ideal normalization as

eρqi ¼ epqi
max

r
epri ð25Þ

where epqi is the un-normalized (original) performance. Two

reference points, the fuzzy ideal point eΛþ
kð Þ ¼ eΛþ

i kð Þ
h i

and

the fuzzy anti-ideal point eΛ−
kð Þ ¼ eΛ−

i kð Þ
h i

, are established

respectively as

eΛþ
i kð Þ ¼ max

q
esqi kð Þ ð26Þ

eΛ−

i kð Þ ¼ min
q

esqi kð Þ ð27Þ

The distances from a 3DP facility to the two reference
points are measured:

edþq kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

eΛþ
i kð Þ −ð Þesqi kð Þ

� �2
s

ð28Þ

ed−q kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

eΛ−

i kð Þ −ð Þesqi kð Þ
� �2

s
ð29Þ

Finally, both distance are considered in calculating the
fuzzy closeness:

eCq kð Þ ¼
ed−q kð Þedþq kð Þ þð Þed−q kð Þ

ð30Þ

A 3DP facility is chosen if its fuzzy closeness is higher.
The evolving nature of the proposed methodology resides

in the following aspects:

(1) An evolving computation technique, GA, is applied.
(2) Inputs to the evolving fuzzy approach, including the

product and service quality and the relationship, are up-
dated continuously. As a result, the evolving fuzzy ap-
proach is updated, or evolves, accordingly.

3 Application to a UM system

The evolving fuzzy approach has been applied to a UM
system in Taichung City, Taiwan, as shown in Fig. 7.
The service region of the UM system covered an area
of 47.6 km2. There were more than ten 3DP facilities in
this region.

The performance of a 3DP facility was evaluated with the
following five criteria:

(1) The estimated completion time: The available time and
printing speed of the 3D printer were considered in esti-
mating the completion time.

(2) The estimated delivery time: In the experiment, the
printed piece was delivered by the 3DP facility itself.

(3) The relationship between the UM system and the 3DP
facility.

(4) The average quality of 3D items printed by the 3DP
facility in the past.

(5) The total costs, including the printing and delivery costs.
(6) The performances of a 3D printing facility in optimizing

these criteria were evaluated according to the rules in
Table 1.
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The UM system administrator constructed the following
fuzzy judgment matrix:

eA ¼

1 3; 5; 7ð Þ 1; 3; 5ð Þ 1; 3; 5ð Þ 5; 7; 9ð Þ
1= 3; 5; 7ð Þ 1 1= 1; 3; 5ð Þ 1= 7; 9; 9ð Þ 1= 5; 7; 9ð Þ
1= 1; 3; 5ð Þ 1; 3; 5ð Þ 1 1= 1; 3; 5ð Þ 1; 1; 3ð Þ
1= 1; 3; 5ð Þ 7; 9; 9ð Þ 1; 3; 5ð Þ 1 5; 7; 9ð Þ
1= 5; 7; 9ð Þ 5; 7; 9ð Þ 1= 1; 1; 3ð Þ 1= 5; 7; 9ð Þ 1

266664
377775

The fuzzy priorities of criteria were determined as

0:245; 0:451; 0:565ð Þ; 0:024; 0:037; 0:076ð Þ;
0:054; 0:099; 0:259ð Þ; 0:186; 0:314; 0:468ð Þ;
0:053; 0:099; 0:163ð Þ

ð31Þ

The fCR value of eA was (0.045, 0.154, 0.516), which indi-
cated inconsistency. Therefore, the fuzzy judgment matrix

Table 1 Rules for evaluating the performances of a 3D printing facility in optimizing various criteria

Criterion Rule

The estimated completion time
performance (epq1 )

epq1 xq
� � ¼

0; 0; 1ð Þ if 0:1⋅min
r

xr þ 0:9⋅max
r

xr ≤xq
0; 1; 2ð Þ if 0:35⋅min

r
xr þ 0:65⋅max

r
xr ≤xq < 0:1⋅min

r
xr þ 0:9⋅max

r
xr

1:5; 2:5; 3:5ð Þ if 0:65⋅min
r

xr þ 0:35⋅max
r

xr ≤xq < 0:35⋅min
r

xr þ 0:65⋅max
r

xr
3; 4; 5ð Þ if 0:9⋅min

r
xr þ 0:1⋅max

r
xr ≤xq < 0:65⋅min

r
xr þ 0:35⋅max

r
xr

4; 5; 5ð Þ if min
r

xr ≤xq < 0:9⋅min
r

xr þ 0:1⋅max
r

xr

8>>>>>>><>>>>>>>:
where xq is the estimated completion time.

The estimated delivery time
performance (epq2 )

epq2 xq
� � ¼

0; 0; 1ð Þ if 0:1⋅min
r

xr þ 0:9⋅max
r

xr ≤xq
0; 1; 2ð Þ if 0:35⋅min

r
xr þ 0:65⋅max

r
xr ≤xq < 0:1⋅min

r
xr þ 0:9⋅max

r
xr

1:5; 2:5; 3:5ð Þ if 0:65⋅min
r

xr þ 0:35⋅max
r

xr ≤xq < 0:35⋅min
r

xr þ 0:65⋅max
r

xr
3; 4; 5ð Þ if 0:9⋅min

r
xr þ 0:1⋅max

r
xr ≤xq < 0:65⋅min

r
xr þ 0:35⋅max

r
xr

matrix 4; 5; 5ð Þif min
r

xr ≤xq < 0:9⋅min
r

xr þ 0:1⋅max
r

xr

8>>>>>>><>>>>>>>:
where xq is the estimated delivery time.

The relationship performance (epq3 )
epq3 xq

� � ¼
0; 0; 1ð Þ if min

r
xr ≤xq < 0:9⋅min

r
xr þ 0:1⋅max

r
xr

0; 1; 2ð Þ if 0:9⋅min
r

xr þ 0:1⋅max
r

xr ≤xq < 0:65⋅min
r

xr þ 0:35⋅max
r

xr
1:5; 2:5; 3:5ð Þ if 0:65⋅min

r
xr þ 0:35⋅max

r
xr ≤xq < 0:35⋅min

r
xr þ 0:65⋅max

r
xr

3; 4; 5ð Þ if 0:35⋅min
r

xr þ 0:65⋅max
r

xr ≤xq < 0:1⋅min
r

xr þ 0:9⋅max
r

xr
matrix 4; 5; 5ð Þif0:1⋅min

r
xr þ 0:9⋅max

r
xr ≤xq

8>>>>>>><>>>>>>>:
where xq is the number of orders printed within the last month.

The average product quality
performance (epq4 )

epq4 xq
� � ¼

0; 0; 1ð Þ if min
r

xr ≤xq < 0:9⋅min
r

xr þ 0:1⋅max
r

xr
0; 1; 2ð Þ if 0:9⋅min

r
xr þ 0:1⋅max

r
xr ≤xq < 0:65⋅min

r
xr þ 0:35⋅max

r
xr

1:5; 2:5; 3:5ð Þ if 0:65⋅min
r

xr þ 0:35⋅max
r

xr ≤xq < 0:35⋅min
r

xr þ 0:65⋅max
r

xr
3; 4; 5ð Þ if 0:35⋅min

r
xr þ 0:65⋅max

r
xr ≤xq < 0:1⋅min

r
xr þ 0:9⋅max

r
xr

matrix 4; 5; 5ð Þif0:1⋅min
r

xr þ 0:9⋅max
r

xr ≤xq

8>>>>>>><>>>>>>>:
where xq is the average product quality.

The total costs performance (epq5 )
epq5 xq

� � ¼
0; 0; 1ð Þ if 0:1⋅min

r
xr þ 0:9⋅max

r
xr ≤xq

0; 1; 2ð Þ if 0:35⋅min
r

xr þ 0:65⋅max
r

xr ≤xq < 0:1⋅min
r

xr þ 0:9⋅max
r

xr
1:5; 2:5; 3:5ð Þ if 0:65⋅min

r
xr þ 0:35⋅max

r
xr ≤xq < 0:35⋅min

r
xr þ 0:65⋅max

r
xr

3; 4; 5ð Þ if 0:9⋅min
r

xr þ 0:1⋅max
r

xr ≤xq < 0:65⋅min
r

xr þ 0:35⋅max
r

xr
4; 5; 5ð Þ if min

r
xr ≤xq < 0:9⋅min

r
xr þ 0:1⋅max

r
xr

8>>>>>>><>>>>>>>:
where xq is the total costs.

Fig. 8 The action figure printed
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was decomposed into two fuzzy subjudgment matrices that
were more consistent. To this end, the MINLP problem was
solved using the GA algorithm with MATLAB on a PC with
an i7-7700 CPU 3.6 GHz and 8 GBRAM. The execution time
was less than 1 min. The optimal solution was obtained as

eA*
1ð Þ ¼

1 2; 4; 6ð Þ 1; 2; 4ð Þ 1; 1; 3ð Þ 1; 3; 5ð Þ
1= 2; 4; 6ð Þ 1 1= 1; 3; 5ð Þ 1= 7; 9; 9ð Þ 1= 7; 9; 9ð Þ
1= 1; 2; 4ð Þ 1; 3; 5ð Þ 1 1= 2; 4; 6ð Þ 1; 1; 3ð Þ
1= 1; 1; 3ð Þ 7; 9; 9ð Þ 2; 4; 6ð Þ 1 7; 9; 9ð Þ
1= 1; 3; 5ð Þ 7; 9; 9ð Þ 1= 1; 1; 3ð Þ 1= 7; 9; 9ð Þ 1

266664
377775;

eA*
2ð Þ ¼

1 4; 6; 8ð Þ 2; 4; 6ð Þ 3; 5; 7ð Þ 7; 9; 9ð Þ
1= 4; 6; 8ð Þ 1 1= 1; 3; 5ð Þ 1= 7; 9; 9ð Þ 1= 3; 5; 7ð Þ
1= 2; 4; 6ð Þ 1; 3; 5ð Þ 1 1= 1; 2; 4ð Þ 1; 1; 3ð Þ
1= 3; 5; 7ð Þ 7; 9; 9ð Þ 1; 2; 4ð Þ 1 3; 5; 7ð Þ
1= 7; 9; 9ð Þ 3; 5; 7ð Þ 1= 1; 1; 3ð Þ 1= 3; 5; 7ð Þ 1

266664
377775

The fCR values of eA 1ð Þ and eA 2ð Þ were (0.087, 0.128,
0.475) and (0.024, 0.129, 0.391), respectively. Obviously,
the consistency improved after decomposition.

The fuzzy priorities of criteria determined according to the
fuzzy subjudgment matrices were

f 0:165; 0:263; 0:451ð Þ; 0:025; 0:037; 0:071ð Þ;
ð0:061; 0:106; 0:222Þ; 0:281; 0:469; 0:524ð Þ;
ð0:072; 0:126; 0:187Þg:

and

f 0:397; 0:551; 0:625ð Þ; 0:025; 0:036; 0:074ð Þ;
ð0:054; 0:098; 0:216Þ; 0:146; 0:231; 0:341ð Þ;
ð0:047; 0:085; 0:14Þg

respectively. Obviously, the first priority set emphasized “the
average quality of the printed 3D items,” while the second
priority set emphasized “the estimated completion time.”

Taking the first customer as an example. The first customer
placed an order of 6 pieces of an action figure (see Fig. 8)
online. After receiving this order, the UM system administra-
tor negotiated with each 3DP facility in the service region.
There were nine 3DP facilities available for this order. The
performances of these 3DP facilities in optimizing various
criteria were evaluated according to the rules in Table 1, and
are summarized in Table 2.

FTOPSIS was applied to assess the overall performance of
each 3DP facility. The results (i.e., the fuzzy closeness of each
3DP facility), are shown in Table 3. Then, 3DP facilities were
ranked according to their overall performances. There were
two ranking results corresponding to the two fuzzy priority
sets, as shown in Table 4. The top performing 3DP facilities
were chosen as nos. 8, 5, 9, 4, 7, and 3. These 3DP facilities
printed the required pieces and delivered them to the UM

Table 2 The performances of 3DP facilities

3D printing facility no. epq1 epq2 epq3 epq4 epq5
1 (0.0, 1.0, 2.0) (0.0, 1.0, 2.0) (3.0, 4.0, 5.0) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5)

2 (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (3.0, 4.0, 5.0) (1.5, 2.5, 3.5)

3 (3.0, 4.0, 5.0) (0.0, 1.0, 2.0) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5)

4 (3.0, 4.0, 5.0) (3.0, 4.0, 5.0) (3.0, 4.0, 5.0) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5)

5 (4.0, 5.0, 5.0) (0.0, 1.0, 2.0) (1.5, 2.5, 3.5) (3.0, 4.0, 5.0) (0.0, 1.0, 2.0)

6 (3.0, 4.0, 5.0) (0.0, 1.0, 2.0) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5)

7 (1.5, 2.5, 3.5) (0.0, 1.0, 2.0) (4.0, 5.0, 5.0) (3.0, 4.0, 5.0) (0.0, 1.0, 2.0)

8 (3.0, 4.0, 5.0) (1.5, 2.5, 3.5) (3.0, 4.0, 5.0) (3.0, 4.0, 5.0) (1.5, 2.5, 3.5)

9 (4.0, 5.0, 5.0) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (3.0, 4.0, 5.0)

Table 3 The overall performance of each 3DP facility

3DP facility no. Fuzzy closeness
(priority set no. 1)

Fuzzy closeness
(priority set no. 2)

1 (0.000, 0.224, 1.000) (0.000, 0.124, 0.730)

2 (0.000, 0.536, 1.000) (0.000, 0.394, 1.000)

3 (0.014, 0.499, 1.000) (0.171, 0.700, 1.000)

4 (0.014, 0.528, 1.000) (0.173, 0.716, 1.000)

5 (0.122, 0.730, 1.000) (0.390, 0.858, 1.000)

6 (0.014, 0.499, 1.000) (0.171, 0.700, 1.000)

7 (0.000, 0.545, 1.000) (0.000, 0.409, 1.000)

8 (0.016, 0.765, 1.000) (0.179, 0.749, 1.000)

9 (0.114, 0.599, 1.000) (0.380, 0.839, 1.000)

Table 4 The ranking results

3DP facility no. Rank (priority set no. 1) Rank (priority set no. 1)

1 9 9

2 6 8

3 7 5

4 4 4

5 2 1

6 8 6

7 5 7

8 1 3

9 3 2
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system administrator. The UM system administrator checked
the printed pieces then delivered them to the customer with the
aid of a logistics service provider. The customer fed back his
judgment on the product quality with a score of 7 (from a scale
of 1 to 10).

Several existing methods, including FAHP-fuzzy weighted
average (FWA), FAHP-FTOPSIS, fuzzy ordered weighted
average (FOWA) [30], and FMINLP-fuzzy Dijkstra algorithm
(FD) [10] have also been applied to the case for comparison.
The major difference between FAHP-FTOPSIS and the
evolving fuzzy approach was the decomposition of the fuzzy
judgment matrix or not. In FOWA, the “slightly optimistic”
strategy was adopted. In FMINLP-FD, the FD algorithm was
applied to minimize the production and transportation time.
The ranking results using existing methods are summarized in
Table 5.

The selection results using various methods are compared
in Table 6.

According to the experimental results,

(1) The selection result using the evolving fuzzy approach
was different from those using existing methods. Such a
difference was due to the use of two fuzzy priority sets in
the evolving fuzzy approach.

(2) In contrast, the selection results using FAHP-FWA and
FAHP-FTOSIS were the same.

(3) Unlike FMINLP-FD, the evolving fuzzy approach con-
sidered quality and cost issues as well. That explained
why 3D facility nos. 8, 5, 9, and 7 were preferred.

(4) The frequencies of 3DP facilities that were chosen using
various methods are summarized in Fig. 9. 3DP facility
nos. 4, 5, 8, and 9 were the most frequently chosen 3DP
facilities.

(5) Ten customers evaluated the quality of their orders.
The results are summarized in Fig. 10. Obviously, by
choosing 3DP facilities with good quality–related per-
formances, the scores given by the customers were
consistently high, which was believed to be condu-
cive to attracting and retaining customers.

4 Conclusions

A number of UM systems based on the cooperation of distrib-
uted 3DP facilities have been constructed. However, most
existing UM systems consider only the production and logis-
tics issues, so as to maximize the efficiency of delivering an

Table 5 The ranking results using existing methods

3D printing
facility no.

Rank (FAHP-
FWA)

Rank (FAHP-
FTOPSIS)

Rank
(FOWA)

Rank
(FMINLP-FD)

1 9 9 9 9

2 8 8 6 7

3 5 5 7 4

4 4 4 5 1

5 2 2 2 5

6 6 6 8 6

7 7 7 3 8

8 1 1 4 3

9 3 3 1 2
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Fig. 9 The frequencies of 3DP facilities that were chosen

Table 6 The selection results using various methods

Method Selected 3DP facilities

FAHP-FWA #8, #5, #9, #4, #3, #6

FAHP-FTOPSIS #8, #5, #9, #4, #3, #6

FOWA [30] #9, #5, #7, #8, #4, #2

FMINLP-FD [10] #4, #9, #8, #3, #5, #6

The evolving fuzzy approach #8, #5, #9, #4, #7, #3
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Fig. 10 The quality scores
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order. Other issues, such as product quality, costs, and partner
relationships, have not been taken into account. To fill in this
gap, in this study, an evolving fuzzy approach is proposed. In
the evolving fuzzy approach, the priorities of criteria for
assessing a 3DP facility are derived using DFAHP, for which
a GA was designed. Then, based on the derived priorities,
FTOPSIS is applied to assess the overall performance of a
3DP facility. Finally, the best performing 3DP facilities will
be chosen.

After applying the evolving fuzzy approach to a UM sys-
tem, the following conclusions were drawn:

(1) The production plan made using the evolving fuzzy ap-
proach was different from those using existing methods,
which was obviously due to the consideration of more
issues.

(2) By choosing 3DP facilities with good product quality
and low costs, the UM system was able to attract more
customers.

(3) Pursuing the long-term relationship with each 3DP facil-
ity was conducive to the sustainability of the UM system
in the highly competitive era.

In future studies, the efficiency of the GA algorithm can be
improved to further enhance the applicability of the evolving
fuzzy approach. How the complementarity among 3DP facil-
ities affects the decision of a UM system in choosing 3DP
facilities is another issue that can be investigated. In addition,
just like a UM system that chooses from several 3DP facilities,
a 3DP facility will also choose the UM system that it will join.
The evolving fuzzy approach can be easily applied to fulfill its
purpose. Further, the evolving fuzzy approach can be extend-
ed to deal with the general case involving multiple UM sys-
tems and multiple 3DP facilities, in which UM systems must
compete to get access to 3DP facilities.
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