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Abstract
Themain defects due to flexible roll forming (FRF) processes include longitudinal bow and wrinkling. In this study, experimental
and numerical analyses were performed using three different blank shapes to characterize the effects of the process parameters on
defects in parts fabricated by FRF with and without leveling roll. Owing to the complexity of the FRF process, two algorithms
were combined for its optimization. Artificial neural network-based Non-dominated Sorting Genetic Algorithm II (NSGA-II)
was used to optimize the effective parameters of the FRF process, such as the sheet thickness, yield strength, and blank shape,
with respect to the target bend angle to minimize the longitudinal bow and wrinkling of the product. The back-propagation neural
network (BPNN) was used to identify two objective functions, while non-sorting multi-objective algorithm simulation was used
to optimize the input parameters to minimize the objective functions. The results showed that the sheet thickness had the greatest
effect on the minimization of the two objective functions, followed by the yield strength and blank shape, respectively.

Keywords Flexible roll forming (FRF) . Longitudinal bow . Wrinkling . Finite element (FE) . Back-propagation neural network
(BPNN) . Non-dominated sorting genetic algorithm II (NSGA-II)

1 Introduction

Roll formed parts have many applications in several indus-
tries, such as the automobile industries, ship construction,
and aerospace industries, to reduce the material weight of
fabricated parts without degrading their performance [1]. In
conventional roll forming processes for the fabrication of parts
with constant cross sections, the initial blank is converted
gradually to the target profile using a series of rotary rolls, as
shown in Fig. 1a. In many applications, products with variable
cross sections require weight loss and performance enhance-
ment; this weight loss is possible by using forming processes
such as roll forming, flexible roller forming, and hydro-
forming [2–5]. Flexible roll forming was developed to over-
come the limitations of the traditional roll forming process,
and several studies have been performed on shape analysis

and process-induced fracture [6, 7]. In flexible roll forming
(FRF), the forming rolls have a linear and rotational motion on
the bend line to produce the desired profile with the variable
cross section, as illustrated in Fig. 1b.

Shape defects may occur owing to complex deformation in
FRF. In general, non-uniform elongations of the material and
the related non-homogeneous deformations over the thickness
or width of the blank may result in waviness or curvatures.
One of the major defects caused by FRF is longitudinal bow,
which is the creation of a height deviation at the profile web in
the longitudinal direction. The cause of the bow is the non-
homogeneous distribution of the longitudinal strain or non-
uniform elongation of the blank, as shown in Fig. 2a and b [8].

Another major defect caused by FRF is wrinkling, which is
instable deformation owing to increase the compression at the
longitudinal direction of the flange. This is due to the complex
deformations that occur in an area where there is a change in
cross section, resulting in some portions of the flange being
compressed in the longitudinal direction of the profile [9]. The
occurrence of winkling during a FRF process is illustrated in
Fig. 3a and b.

Most previous studies on traditional roll forming and FRF
focused on investigating process parameters, the causes of
defects in the product, and the effects of the process
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parameters on the occurrence of defects. Farzin et al. [10]
presented the buckling limit of strain (BLS) as an important
factor of the roll forming process. Their results showed that a
product has no edge buckling when the longitudinal strain
remaining in the longitudinal direction is 0, and the buckling
rate is independent from the value of bend angle and is a
function of the sheet material properties and the ratio of thick-
ness to flange length. Salmani Tehrani et al. [11] analyzed the
localized edge buckling in the cold roll forming process. They
resulted that the cause of this defect is the development of the
longitudinal strain in the process, reducing the local tensile
strength, and increasing the compressive deformation.
Gulceken et al. [12] simulated the FRF process using the finite
element software MSC Marc. The roll design to produce the
profiles with variable cross section in FRF was characterized.
Larenga and Galdos [13] used local heating during FRF to
reduce web warping. Kasaei et al. [9] used finite element
analysis to investigate wrinkling in flange of the profile.
According to the results of the study, wrinkling occurs when
the longitudinal compressive strain is less than the compres-
sive strain required to obtain the target geometry in the tran-
sition zone as calculated by mathematical modeling.
Mohammadi et al. [14] used finite element simulation to ex-
amine the occurrence of web warping. The results showed that
the main cause of this defect was insufficient strain at the edge
of the wings of the profile in the transition zone.

Jiao et al. [15] studied the FRF process by developing an
analytical model for predicting twisting web warping. The ob-
tained results revealed that the longitudinal strain was inversely
correlated with web warping. Woo et al. [16] investigated the
shape defects in automotive parts produced by FRF. They con-
cluded that the use of an FRFmachine with a leveling roll would
reduce longitudinal bow and edge wave defects. Ona et al. [17]
examined the cause of web warping during FRF. They observed
that the main cause of the phenomenon near a transition area was
the occurrence of shrinkage during the forming of the area. Park
et al. [18] investigated numerically and experimentally the defect
of web warping. To reduce this defect, they proposed a new
process called incremental counter forming (ICF). They con-
trolled the longitudinal strain distribution on the profile flange
by combination of forming and ICF parameters. They found that
by increasing the longitudinal strain in convex and concave
areas, the web warping defect can be reduced.

In previous studies that utilized optimization algorithms, ef-
forts were made to achieve the optimal conditions for the

Fig. 2 Longitudinal bow caused by flexible roll forming: a photograph
and b schematic illustration

Fig. 3 Wrinkling caused by flexible roll forming process: a photograph
and b schematic illustration

Fig. 1 a Traditional roll forming
process. b Flexible roll forming
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fabrication of a product with minimal defects. Laouissi et al. [19]
optimized the affected parameters of machining of gray cast iron
using artificial neural networks (ANN), response surface meth-
odology (RSM), and genetic algorithm (GA) methods. They
showed the developed model for machining parameters using
ANN and RSM is very useful tool for prediction propose, and
the comparison of ANN with RSM showed that the prediction
capacity of ANN method is more effective than the RSM

approach. The optimal values of the machining parameters ob-
tained fromGAwere close to the experimental results.Wiebenga
et al. [20] controlled the occurrence of defects in the roll forming
process using robust optimization. They showed that the scatter
in the material properties is a significant factor in controlling the
dimensional quality of the product.

They also showed that adjustment of the final rolls signif-
icantly improved the product quality by reducing the occur-
rence of defects and minimizing the destructive effects of
scattered variables. Radovanovic [21] optimized the turning
operation of AISI 1064 steel using three optimization ap-
proaches including Ip multi-media subsystem (IMS), multi-
objective genetic algorithm (MOGA), and GA. Comparison
of the three algorithm results with experiments showed that
the IMS algorithm provides more appropriate solutions.
Doriana et al. [22] optimized the hot forging process by com-
bining of two methods of ANN and multi-objective optimiza-
tion. They concluded that it was necessary to consider multi-
ple processes when using global optimization methods to ob-
tain optimal results. They also found that the simulation of
tests using the finite element method could be replaced by
the use of an artificial neural network (ANN), which is less
sensitive to the problem dimensions compared with the design
of experiment (DOE). Alizadeh and Omrani [23] integrated
the robust multi-response Taguchi neural network with a CO2

laser cutting process. They used the robust optimization to
control the uncertainty of the neural network results.
Bacanin and Tuba [24] and Yazdi et al. [25] presented a mod-
ification of the artificial bee colony (ABC) algorithm, referred
to as genetically inspired artificial bee colony (GI-ABC). They
showed that GI-ABC afforded an improvement on the perfor-
mance of the ABC algorithm by applying uniform crossover
and mutation operators obtained from GA. Yaghoobi et al.
[26] optimized the pressure path in the hydroforming process
using the neural fuzzy method and GA. They investigated the
effect of the pressure path on the maximum thinning on the
critical areas of the product by developing the adaptive
neurofuzzy inference system (ANFIS) model based on simu-
lation results and then the developed model is used as the
objective function in the optimization process. High speed
and avoiding trial and error and multiple simulations are the
most important advantages of this method.

Table 1 Experiment plan

No. Sheet thickness (mm) Yield stress (MPa) Blank shape

1 0.5 170 tr

2 0.5 170 cv

3 0.5 170 cc

4 0.5 404 tr

5 0.5 404 cv

6 0.5 404 cc

7 0.5 851 tr

8 0.5 851 cv

9 0.5 851 cc

10 0.8 170 tr

11 0.8 170 cv

12 0.8 170 cc

13 0.8 404 tr

14 0.8 404 cv

15 0.8 404 cc

16 0.8 851 tr

17 0.8 851 cv

18 0.8 851 cc

19 1.2 170 tr

20 1.2 170 cv

21 1.2 170 cc

22 1.2 404 tr

23 1.2 404 cv

24 1.2 404 cc

25 1.2 851 tr

26 1.2 851 cv

27 1.2 851 cc

Table 2 Stress-strain values of
three simulation materials SPCC SPFC 590 SPFC1180

True strain True stress (MPa) True strain True stress (MPa) True strain True stress (MPa)

0.00000 170.1475 0.00000 404.7290 0.00000 851.4797

0.06654 287.2302 0.03730 598.4652 0.01232 1129.111

0.12857 328.7990 0.07046 673.5364 0.02196 1240.612

0.19293 359.3925 0.10598 718.6440 0.03324 1291.614

0.26036 388.4670 0.14410 749.7615 0.04574 1317.026

0.33203 395.8192 0.18482 759.2974 0.05468 1321.600
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As mentioned above, most previous studies on FRF focused
on a general analysis of the process, the conditions under which
defects occur, and the parameters that affect the defects. Because
of the complexity of the process and the need to achieve products
with minimal geometric defects, multi-objective optimization
was combined with ANN in the present study. The shape defects
wereminimized by optimizing the parameters that affected them,
thereby enabling the achievement of a product with the desired
bend angle. Numerical simulation of the FRF was used to inves-
tigate the effect of the process parameters on two defects. The
numerical results were verified by experiments performed using

a lab-scale FRF machine. The ANN was used to predict two
defects as objective functions, and non-dominated sorting genetic
algorithm II (NSGA-II) was subsequently used to optimize the
input parameters for each target bend angle under the minimum
conditions of the objective functions.

2 Finite element simulation

To investigate the longitudinal bow and wrinkling defects,
FRF processes with and without leveling roll were simulated

Fig. 5 Flexible roll forming
process: a schematic of the
process simulation and b areas
with different meshing densities

Fig. 4 Different blank
geometries: a trapezoidal, b
convex, and c concave (unit: mm)
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using the FEM code ABAQUS™ Implicit 6.14. The parame-
ters that affect longitudinal bowing and wrinkling include the
bend angle, sheet thickness, yield strength, and blank shape.
Three blank shapes were considered in the analyses, namely,
trapezoidal (tr), convex (cv), and concave (cc). To investigate
the effects of the above parameters, an experiment was de-
signed using the perfect factorial method. The experiment
plan included 27 tests using target bend angles of 15–30° for
two modes of FRF with and without leveling roll, which are
108 tests in total, as detailed in Table 1.

In the simulation, the sheets were modeled as shells and the
rolls were considered to be rigid. A pair of forming rolls
moved in the y-direction and rotated around the z-axis to shape
an entire sheet. The results of the uniaxial tensile testing of the
sheets were applied to the simulation. The stress and strain
results are given in Table 2. An elastic-plastic material model
and the von Mises yield criterion were employed, with the
assumption of piecewise linear isotropic hardening.

For the simulation of the process, the rolls were considered
as rigid body models, and the blank as a deformable part.
Figure 4a-c show the geometries and dimensions of the three
different blanks considered in this study.

The blank was modeled as a shell using type S4R shell
elements. Figure 5a shows the simulated profiles, while
Fig. 5b shows the blank meshing. Because of the greater de-
formation in the bending and flange zones, 1 mm × 3 mm
meshing was applied to both, while larger meshing between

1 mm× 3mm and 9 mm× 3mmwas applied to the web zone.
For definition of the contact condition between the blank and
the rolls, the penalty approach was used.

The CPU time to complete the FE simulation was approx-
imately 4 h. The Coulomb friction model was used, with the
coefficient of friction considered to be 0 [27]. Table 3 summa-
rizes the simulation conditions.

3 Experiments

To verify the numerical results, experiments were performed
using SPCC blanks and the conditions detailed in Table 4. The
laboratory-scale three-stand FRF machine shown in Fig. 6
was employed for the experiments.

The chemical composition and mechanical properties of
SPCC, which is a type of aluminum, are summarized in
Tables 5 and 6, respectively.

To confirm the FEM simulation results, the longitudinal
strain at the flange edge was measured for three different con-
ditions (flange width of 35 mm; sheet thickness of 2 mm; and
bend angles of 15°, 30°, and 45°). The experiments shown in
Fig. 7a-c were performed using the specifications in Table 4.
The longitudinal strain during FRF was measured using a
resistance strain gauges.

4 Optimization

In this study, the inputted effective parameters of the FRF
process, such as the sheet thickness, yield strength, and blank
shape, were optimally determined for each target bend angle.
This was done to minimize the longitudinal bow and wrin-
kling, which were used as the two objective functions of the

Table 4 Experimental conditions

Blank material SPCC

Blank shape Convex

Blank length, L 900 mm

Blank thickness 0.5 mm

Roll gap 0.5 mm

Web width, W 145 mm

Radius of blank, R 3000 mm

Flange width, F 15 mm, 25 mm, 35 mm

Bend angle 15°, 30°, 45°

Roll diameter 75 mm

velocity of feeding 0.26 m/min

Fig. 6 Laboratory-scale FRF machine

Table 3 Simulation conditions

Number of elements 2790

Size of elements (1.5 to 10) × 4 mm

Element type S4R

Integration points 7

Friction coefficient 0

Young’s modulus 207 GPa

Poisson’s ratio 0.3

Density 7850 kg/m3

Table 5 Chemical composition of SPCC (wt%)

Material C Mn P Si Cr Al

SPCC 0.19 0.58 0.04 0.15 0.11 0.003
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ANN-based multi-objective optimization. The ANN was first
used to find both objective functions, and Non-dominated
Sorting Genetic Algorithm II was then used to optimize the
input parameters to minimize the objective functions for each
target bend angle.

4.1 Design of back-propagation neural network

A artificial neural network (ANN) is a parallel operating sys-
tem that simulates the human neuron. Each neuron receives
information from neurons in a previous layer and then distrib-
utes it to neurons in the next layer. As shown in Fig. 8, the
neural network designed to find the objective functions (lon-
gitudinal bow and wrinkling) in this study has three layers,
namely, the input, hidden, and output layers. Based on the
number of inputs, the input layer has four units.

Under the condition that the issue determines the number
of specific training patterns, the number of the hidden layer
units can be specified by trial and error. To do this, a back-
propagation neural network (BPNN) was developed in
MATLAB. The network was tested using a number of hidden
layer units between 3 and 40 and with 24 training patterns.
Considering that the purpose of the network was to find two
objective functions, the number of output layer units was con-
sidered to be 1. It was thus not necessary to assume the input

and output of the neural network. To accelerate the conver-
gence of the network, different momentums and learning rates
were used simultaneously. During the construction of the
BPNN, many parameters had to be set. The initial learning
rate was set to 0.001, while the number of hidden layer units
was set to 1. Out of 108 data sets, 96 sets were selected as
training data and 12 were used as test data. The effects of the
number of hidden layer nodes, conversion function of the
hidden layer, decrease and increase ratios of the training rate,
and momentum on the quality of the network training were
investigated. The training process was terminated when one of
the two following convergence criteria was achieved:

1. Mean squared error (MSE) < 0.001.
2. Number of repetitions = 50,000.

The quality of the training was specified by the mean
squared error and the average mean squared error for all the
repetitions, which are given by Eqs. 1 and 2, respectively.

MSE ¼ 1

n
∑
m

j¼1
∑
n

i¼1
Tij−Pij
� �2 ð1Þ

MSE ¼ 1

r
∑
r

q¼1
MSEq ð2Þ

Fig. 7 Measuring of the
longitudinal strain by a strain
gauge and data logger: a FRF
experimental setup, b location of
the strain gauge, and c data logger
set

Table 6 Mechanical properties of
SPCC sheet Material Ultimate strength

(MPa)
Yield stress
(MPa)

Elongation
(%)

Young’s
modulus (GPa)

Poisson’s
ratio

Density
(kg/m3)

SPCC 339 170 33.2 207 0.3 7850
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A simple and effectivemeans of increasing and improving the
learning rate to prevent instability and oscillation of the network
is the addition of amomentum sentence to the StormDescending
(SD) algorithm. The idea of the back-propagation algorithm is
the addition of an intersection or movement size to each param-
eter of the perceptron multi-layer network, so that the parameter
tends to move in a direction that reduces the energy function.

4.2 Non-dominated sorting genetic algorithm
for optimization

4.2.1 Definition of optimization

Objective optimization involves the optimization (i.e., mini-
mization or maximization) of a single or several objectives
using a number of inequality or equality constraints simulta-
neously [28]. The problem is described in detail as follows:

Find x = (xi) ∀ i = 1, 2, …, Nparam such that
fi(x) is a minimum (or maximum) ∀i = 1, 2, …, Nobj.

subject to

g j xð Þ ¼ 0 ∀ j ¼ 1; 2;…;M ; ð3Þ
hk xð Þ≤0 ∀k ¼ 1; 2;…;K; ð4Þ
where x is a vector include theNparam design parameters, (fi)i =
1, . …, Nobj is the objective function, and Nobj is the number of
objectives.

4.2.2 Non-dominated sorting and Pareto front

In this method, unlike single-objective optimization, there is no
single optimal solution, but a set of solutions is created that none
are dominate to the other, and this is called pareto optimal
solutions.

Here, the constraint violation ℓ(X) of an individual X is
defined as the sum of the violated constraint function values
[29]:

ℓ Xð Þ ¼ ∑B
j¼1γ g j Xð Þ

� �
g j Xð Þ ð5Þ

where γ is the Heaviside step function. A set of non-dominated
individuals is used to form a Pareto-optimal front [29].

4.2.3 Tournament selection

Each individual competes in exactly two tournaments with
randomly selected individuals, a procedure that imitates the
survival of the fittest in nature [28].

4.2.4 Controlled elitism sorting

To preserve diversity, the effect of elitism is controlled by
using geometric distribution to choose the number of individ-
uals from each subpopulation [29]:

Sq ¼ S
1−c
1−cw

cq−1 ð6Þ

To form a parent search population Pt + 1 (t denotes the
generation) of size S, where 0 < c < 1 andw is the total number
of ranked non-dominated individuals.

4.2.5 Crowding distance

The crowding distance of each individual with its nearest
neighbors is shown by this parameter. The crowding dis-
tance parameter is calculated for each member of the
group and computes the density of the solutions around
a specific point in the population. In fact, in order to
calculate the density of solutions around a specific point
in a population, the average distance between two points
is taken from both sides and along each of the targets
[29]. Hence, if the two individuals have the same rank,
each one has a larger crowding distance than each other is
better [30].

4.2.6 Crossover and mutation

Uniform crossover and random uniform mutation were
used to obtain the offspring population Qt + 1. The
integer-based uniform crossover operator takes two dis-
tinct parent individuals and interchanges their correspond-
ing binary bits with a probability 0 < pc ≤ 1. After this
crossover, the mutation operator also interchanges the bi-
nary bits with a mutation probability 0 < pm < 0.5 [28].

5 Results and discussion

5.1 Finite element model validation

Figure 9a-c compare the longitudinal strains determined by
simulation and experiment. As can be observed from the fig-
ure, the maximum longitudinal strain occurs at the edge of the
sheet, specifically near the forming stand, due to the elonga-
tion of the sheet before it reaches the forming stand. As can

Output layerHidden layerInput layer

Longitudianl bow

Wrinkling

Blank shape

Yeild strength

Sheet thickness

Bend angle

Fig. 8 Topology of the designed neural network
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also be observed, there is good agreement between the simu-
lation and experimental results, confirming the accuracy of the
model used for the simulation.

5.2 Effects of network structural parameters
on training quality

5.2.1 Selection of initial weights and biases of layers

The first step in applying the error-back propagation
algorithm is the determination of the initial weights

and biases of the layers. The use of appropriate values
would enable faster convergence of the post-propagation
algorithm. The initial values used for the present net-
work were generated by the init (net) function, which
randomly creates weights and initial biases. The effects
of the activation functions of the hidden layer nodes on
the network learning quality are given in Table 7.

Because the values of MSE and MSEmin for the sigmoid
function are less than those for the other two functions, the
sigmoid function was selected as the hidden layer activity
function.

Fig. 9 Comparison of
longitudinal strains determined by
simulation and experiment; a
convex blank, a thickness of
0.5 mm, a flange width of 35 mm,
and bend angles of a 15°, b 30°,
and c 45° for SPCC and bend
angle of 30° for d SPFC590 and e
SPFC1180
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5.2.2 Momentum

The momentum allows the network to neglect the small-scale
features at the error level. Table 8 gives the effects of the
momentum on the network training quality.

The results show that the errors are minimum for a momen-
tum of 0.85.

5.2.3 Performance of BPNN

The network performance significantly depends on the
selection of the test couples. In this study, the number of
performance tests was systematically increased. Each net-
work performance test was performed using three sets of

data randomly selected from Table. 2. To evaluate the
network performance, the mean squared error for each test
was calculated, and the network corresponding to the
training and test data sets that produced the lowest MSE
was selected as the final network. Obviously, the weights
and biases of the final network were related to the perfor-
mance test that produced the least MSE. Figure 10 shows
the network error curve obtained from the performance
test that produced the least MSE.

A data set consists of 96 set for each output that were
unseen by the ANN during training, and they were used to
test the trained ANN. The qualitative accuracy spread of the
training and test samples are shown in Fig. 11a-d. The points
are clustered along the 45° line, indicating that the predicted
values are close to the true values.

Table 9 compares the neural network training outputs and
the desired outputs for the longitudinal bow and wrinkling. As
can be observed, there is good agreement between the predic-
tions of the neural network and the desired outputs.

5.3 Optimal values of design parameters
for minimizing objective functions and minimum
values of objective functions

In the present study, the objective functions were the longitudinal
bow and wrinkling, which were to be minimized. Three design
parameters, namely, the sheet thickness, yield strength, and blank
shape, were considered for each target bend angle. The lower and
upper bounds of these parameters are listed in Table 10.

Multi-objective optimization involves the simultaneous op-
timization of several fitness parameters. For this purpose, the
Pareto front theory is used instead of single-objective optimi-
zation concepts, and the final solution is chosen from the

Table 8 Effects of the momentum on the network training quality

Test no. Momentum MSE MSEmin

21 0.65 0.012107 0.008452

22 0.70 0.015410 0.004452

23 0.75 0.01659 0.006215

24 0.80 0.009132 0.007120

41 0.85 0.003903 0.003234

Table 7 Effects of the activation functions of the hidden layer nodes

Test no. Activation function MSE MSEmin

12 Sigmoid 0.00752 0.004831

13 Hyperbolic tangent 0.0845 0.005941

14 Linear 0.2543 0.2261

Fig. 10 Network error curve obtained from the performance test with the
least MSE
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optimal Pareto front collection. A design vector x∗ is a Pareto
optimum if and only if there is no other feasible vector x such
that [31]

f i xð Þ≤ f i x*
� �

i ¼ 1; 2;…; n
ð7Þ

and

f j xð Þ < f j x
*� �

for at least one j; 1≤ j≤n: ð8Þ

After the execution of the optimization algorithm, the
Pareto optimal solutions were obtained for all the target
bend angles. Figure 12a and b show the Pareto-optimal

(a) Training (b) Test 

(c) Training (d) Test 

Fig. 11 Accuracy spread of the
ANN predictions (prediction vs.
true value): a training and b test
longitudinal bow data and c
training and d test wrinkling data

Table 9 Comparison of the ANN training outputs with the desired outputs for longitudinal bow and wrinkling

Test no. Longitudinal bow (mm)
Desired output

Longitudinal bow (mm)
Training output

Error
(%)

Wrinkling (mm)Desired
output

Wrinkling (mm)
Training output

Error
(%)

2 (15°)
Leveling roll

ON

0.68 0.71 4.22 1.95 1.89 3.17

6 (18°)
Leveling roll

OFF

0.31 0.32 3.12 0.45 0.43 4.65

10 (21°)
Leveling roll

ON

1.06 0.99 7.07 2.31 2.38 2.94

14 (24°)
Leveling roll

OFF

3.22 3.26 1.22 3.95 3.90 1.28

20 (30°)
Leveling roll

ON

9.00 8.84 1.80 4 4.24 5.6

24 (24°)
Leveling roll

OFF

4.19 4.31 2.78 0.70 0.72 2.77
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curves obtained using NSGA-II for a target angle of 15°
in FRF with and without leveling roll, respectively.

The best results were selected through ranked selection and
identification of the optimal Pareto front for the decision var-
iables and objective functions.

The optimal values of the design parameters and the obtained
values of the objective functions of the longitudinal bow and
wrinkling for different target bend angles in FRF with and with-
out leveling roll are presented in Tables 11 and 12, respectively.

The distributions of the three design parameters consid-
ered for the optimization are presented with respect to the
generation in Fig. 13a-c. From the distributions of all the
parameters and their scattering over their allowable

variation ranges, it can be concluded that the sheet thick-
ness has the greatest effect on the minimization of the two
objective functions for all the target bend angles, followed
by the yield strength and the blank shape, respectively.

After the optimization, the results were compared with
those of the experiments and numerical simulations.
Figure 14a-d compare the experimental, numerical, and opti-
mization results of the longitudinal bow and wrinkling for
FRF with and without leveling roll. Good agreement can be
observed between the results.

6 Conclusion

In this study, ANN-based multi-objective optimization
(NSGAII) was used to optimize the effective parameters
of the FRF process, such as the sheet thickness, yield
strength, and blank shape, with respect to the target
bend angle, to minimize the longitudinal bow and wrin-
kling of the product. Following is a summary of the
findings of the study and the conclusions drawn from it.

Table 10 Decision variables and their ranges

Parameter Lower bound Upper bound

Sheet thickness (mm) 0.1 1.5

Yield strength (MPa) 170 900

Blank shape 1 3

Fig. 12 Pareto-optimal curves
obtained using NSGA-II for a
target angle of 15° in FRF a with
leveling roll and b without
leveling roll

Table 11 Optimal values of the
design parameters and the
obtained values of the objective
functions of the longitudinal bow
and wrinkling for different target
bend angles in FRF with leveling
roll

Row Target bend angle
(degree)

Thickness
(mm)

Yield strength
(MPa)

Blank
shape

Longitudinal
bow (mm)

Wrinkling
(mm)

1 15 0.7 851 tr 0.23 0.84

2 16 0.4 785 cc 0.11 0.36

3 17 0.6 819 cc 0.28 0.57

4 18 0.3 851 cv 0.31 1.22

5 19 0.7 672 cc 0.45 1.30

6 20 0.8 350 cc 0.19 1.18

7 21 0.9 535 cc 0.41 0.95

8 22 0.5 297 tr 0.79 1.65

9 23 1 610 cc 0.29 0.98

10 24 0.9 498 cc 0.28 1.08

11 25 0.6 185 cc 0.31 2.72

12 26 0.7 440 tr 1.52 2.81

13 27 0.5 404 cc 0.39 2.02

14 28 0.5 851 cv 1.05 2.21

15 29 0.5 190 cc 1.15 1.79

16 30 0.8 404 cc 0.37 1.21
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1) Because the neural network is based more on statistics
than a physical model, it is suitable for modeling the
multi-parameter FRF process. The BPNN training algo-
rithm was thus used to predict the two defects as the
objective functions.

2) To increase the learning rate of the conventional BPNN
and prevent instability and oscillation of the network, a
momentum sentence was added to the Storm Descending
(SD) algorithm.

3) Among the activation functions of the hidden layer nodes,
the sigmoid function was selected as the function of the

hidden layer nodes owing to its lower MSE and MSEmin

values.
4) The network prediction capabilities were confirmed by

network prediction error analysis, and the BP network
prediction results were found to be in good agreement
with those of numerical simulation.

5) In the use of NSGAII to optimize the input parame-
ters for minimization of the objective functions with
respect to the target bend angle, the best results were
chosen from the optimal Pareto front collection. The
choice was based on ranked selection, the optimal

Table 12 Optimal values of the
design parameters and the
obtained values of the objective
functions of the longitudinal bow
and wrinkling for different target
bend angles in FRF without
leveling roll

Row Target bend angle
(degree)

Thickness
(mm)

Yield strength
(MPa)

Blank
shape

Longitudinal
bow (mm)

Wrinkling
(mm)

1 15 0.9 851 cc 0.59 0.39

2 16 0.6 650 cc 0.32 0.36

3 17 0.7 570 cc 0.65 0.41

4 18 0.5 452 cc 0.30 0.44

5 19 0.8 851 tr 0.61 0.76

6 20 0.5 385 cc 0.35 1.02

7 21 1 450 cc 0.81 0.66

8 22 0.6 425 cc 0.37 0.58

9 23 0.9 215 tr 1.17 1.03

10 24 0.5 625 cv 2.10 1.81

11 25 0.7 305 cc 0.75 1.17

12 26 0.8 380 tr 2.4 1.51

13 27 1 404 cc 0.86 0.92

14 28 0.6 190 tr 3.38 1.97

15 29 0.6 214 cc 1.25 1.48

16 30 0.8 851 cc 0.97 0.99

Fig. 13 Distributions of the
design parameters with respect to
their population index: a sheet
thickness, b yield strength, and c
blank shape
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values of the design parameters, and the minimum
values of the objective functions of the longitudinal
bow and wrinkling for FRF with and without leveling
roll.

6) The distributions of all the parameters and their scattering
over their allowable variation ranges showed that the
sheet thickness had the greatest effect on the minimization
of the two objective functions, followed by the yield
strength and blank shape, respectively.
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