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Abstract
An approach to analyzing three-dimensional vertical rolling is presented on the basis of energy method. The double parabola
function model is applied to describe dog bone shape in the deformed region between the vertical rolls. The DSF (dual stream
function) method is utilized to obtain three-dimensional velocity and strain rate fields. The values of dog bone shape dimensions
and roll force are obtained when the total power functional achieves minimum, which is received according to double parabola
model, velocity field, and the first variational principle. The validity of the proposed approach is discussed by
contradistinguishing the present predictions with other models’ results and measured data in a hot strip plant in miscellaneous
rolling conditions. Moreover, the impacts of different rolling conditions on the dog bone shape and stress state coefficient are
researched, respectively.
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Nomenclature
W0, WE Half of the initial and final slab width

at entrance and exit
ΔW Half of the reduction, ΔW=W0−WE

Wx Half of the width in deformation zone.
ΔWx Half of the width reduction in

deformation zone, ΔWx =W0−Wx

h0 Half of the initial slab thickness at entrance
hI, hII, hIII Half of slab thickness in zone I, II and III
hbx Peak height of dog bone,

hbx = h0 + 2βh0ΔWx/Ax

hrx Edge height of dog bone, hrx = h0 + βh0ΔWx/Ax

R Radius of work roll
l Projected length of roll slab contact arc
v0 Inlet velocity of slab
vR Roll speed
θ Bite angle, θ= sin−1(l/R)
α Contact angle
A,β Undetermined parameters
Ax Width parameter
U Flow volume per second
ϕ, ψ Stream functions
vx, vy, vz Components of velocity vector
U Flow volume per second, U = 3v0h0A0

J∗ Total power
Wi Internal plastic deformation power
Wf Friction power
Ws Shear power
σs Material yield stress
k Yield shear stress, k ¼ σs=

ffiffiffi
3

p
m Friction factor
J*min Minimum value of total power
M Roll torque
F Roll force
nσ Stress state coefficient
χ Arm factor
x, y, z The directions of length, thickness, and width
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1 Introduction

Due to the needs for energy and resource conservation, tradi-
tional slabs are now replaced by continuous casting slabs. The
number of mold sizes needs to be restricted for the purpose of
efficient operation of the continuous casting equipment, and
then width control is mostly carried out by vertical rolling.
Plastic deformation is principally restricted in a small edge
zone, so the dog bone shape is generated [1] after vertical
rolling. To forecast the dimension of dog bone shape and
vertical roll force requirement would help automate the pro-
cess [2].

The earlier experience formulas to express the charac-
teristic parameters of dog bone were researched by
Shibahara et al. [3], Okado et al. [4], and Tazoe et al. [5]
using physical experiments of lead. Ginzburg et al. [6]
conducted experiments and established the dog bone
height model by modifying Tazoe’s model. The model of
dog bone characteristic parameters was built by Xiong
et al. [7, 8] on the basis of physical experiments in a
laboratorial rolling mill. However, the shape at the exit is
only expressed after vertical rolling in these formulas, and
the theoretical studies are relatively few. Yun et al. [9]
proposed a mathematical model of the dog bone which
contains exponential function, power function, and some
unknown parameters. Unfortunately, the parameters of
dog bone shape and rolling force were gained by matching
FEM simulation’s data. The dog bone shape of double
parabola function model and two-dimensional velocity
fields on the basis of the plane strain deformation were
established in our previous study [1]. But, the values of
dog bone are larger than others’ researches on account of
ignoring the variation of velocity in rolling direction.

The axial spread during ring rolling of plain rings was
researched by Lugora et al. [10] utilizing DSF based on
Hill’s [11] general method of analysis. The metal deforma-
tion including extrusion, forging, piercing, and rolling
were researched by Nagpal [12] using DSF method. A
mathematical model using DSF method was proposed by
Hwang et al. [13] to predict the roll torque and initial ve-
locity of the product during planetenshra¨gwalzwerk
rolling processes. Metal flow in upsetting of polygonal
blocks which expressed as exponential function and kine-
matically admissible velocity field was derived by Aksakal
et al. [14]. Sezek et al. [15] introduced DSF to analyze
three-dimensional process of cold rolling. However, the
dual stream functions proposed by above researchers are
hardly applied to solve vertical rolling process.

A new three-dimensional admissible velocity field is built
with DSF method according to the double parabola model for
vertical rolling. The calculated shape and force parameters are

verified, and the change mechanism of stress state coefficient
in various conditions is discussed.

2 Double parabola function dog bone shape
model

As demonstrated in Fig. 1, the dog bone shape of double
parabola function model was established in our previous study
[1]. The mathematical expressions of half thickness h(x,z) in
three zones are as follows:

Zone I: (0 < z <WE − 3A); half thickness hI = hI(x, z) is

hI ¼ h0 ð1Þ

Zone II: (WE − 3A < z <Wx − 2Ax); half thickness hII =
hII(x, z) is

hII ¼ h0 þ βh0ΔWx

A3
x

z−Wx þ 3Axð Þ2 ð2Þ

Zone III: (Wx − 2Ax < z <Wx); half thickness hIII = hIII(x, z)
is

hIII ¼ h0 þ 2βh0ΔWx

Ax
−
βh0ΔWx

A3
x

z−Wx þ Axð Þ2 ð3Þ

where Wx is half of the width, Wx ¼ RþWE−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− l−xð Þ2

q
;

Ax is the width parameter, Ax = (Wx −WE + 3A)/3. A and β are
undetermined parameters, which can be got by energy method
in various production conditions.

3 Three-dimensional velocity and strain rate
fields

Plane strain was assumed in our previous study [1], and
the value of β was obtained based on this assumption and
incompressibility condition. Due to this assumption that
ignored the variation of velocity in rolling direction, the
vertical rolling was treated as two-dimensional deforma-
tion, and metal flow in rolling direction was neglected; in
other words, the pressed metal in the direction of width
were all translated into the metal raised in the direction of
thickness. And then, the shape of dog bone was larger
than that in actual conditions. The values of A and β are
simultaneously obtained using DSF and energy methods
in this study.
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The energy method is an analysis approach to
predicting plate dimensions and load requirements in plas-
tic deformation considering conditions which have to be
met by the velocity field. Two stream functions ϕ and ψ
can denote the velocity components for an incompressible
body on the basis of DSF method [16]. The velocity field
in three dimension is

vx ¼ ∂ϕ
∂y

∂ψ
∂z

−
∂ϕ
∂z

∂ψ
∂y

vy ¼ ∂ϕ
∂z

∂ψ
∂x

−
∂ϕ
∂x

∂ψ
∂z

vz ¼ ∂ϕ
∂x

∂ψ
∂y

−
∂ϕ
∂y

∂ψ
∂x

ð4Þ

where the stream surfaces of ϕ and ψ are given, while
ϕ=constant and ψ=constant, and the intersection of ϕ
and ψ is streamline.

Zone I is rigid zone; no metal flow occurs in this zone.
Metal flow in the x–z plane of zones II and III is related to
the (x, z) coordinate location of metal and presented by metal
flow stream function ϕ

ϕ ¼ −
U z−WE þ 3Að Þ

3Ax
ð5Þ

Metal flow in the x–y plane of zone II is related to the (x, y)
coordinate location of metal and presented by metal flow
stream function ψII:

ψII ¼
y
hII

ð6Þ

Similarity, metal flow stream function ψIII of x–y plane in
zone III is

ψIII ¼
y
hIII

ð7Þ

Placing Eqs. (5) and (6) into Eq. (4) receives the velocity
field of zone II as follows:

vxII ¼ U
3AxhII

vyII ¼ −
Uy
3Ax

∂
∂x

1

hII

� �

þ U z−WE þ 3Að Þy
3

∂
∂x

1

Ax

� �
∂
∂z

1

hII

� �
vzII

¼ −
U z−WE þ 3Að Þ

3hII

∂
∂x

1

Ax

� �
ð8Þ

Fig. 1 Double parabola dog bone in vertical rolling
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The strain rate field of zone II is

ε
:
xII ¼ ∂vxII

∂x
¼ −

U

3Axh2II

∂hII
∂x

−
UA

0
x

3A2
xhII

ε
:
yII ¼ ∂vyII

∂y
¼ U

3Axh2II

∂hII
∂x

þ U z−WE þ 3Að ÞA0
x

3A2
xh

2
II

∂hII
∂z

ε
:
zII ¼ ∂vzII

∂z
¼ UA

0
x

3A2
xhII

−
U z−WE þ 3Að ÞA0

x

3A2
xh

2
II

∂hII
∂z

ε
:
xyII ¼ 1

2

∂vxII
∂y

þ ∂vyII
∂x

� �
¼ Uy

6A2
xh

3
II

AxhII
∂2hII
∂x2

−A
0
xhII

∂hII
∂x

−2Ax
∂hII
∂x

� �2
(

þ

z−WE þ 3Að Þ hII A
0
x
∂2hII
∂z∂x

þ A″
x
∂hII
∂z

� �
−2A

0
x

A
0
xhII
Ax

þ ∂hII
∂x

 !
∂hII
∂z

" #)

ε
:
xzII ¼ 1

2

∂vxII
∂z

þ ∂vzII
∂x

� �
¼ U

6Axh2II
−
∂hII
∂z

þ z−WE þ 3Að Þ A″
xhII
Ax

−
A

0
x

A2
x

2A
0
xhII þ Ax

∂hII
∂x

� �" #( )

ε
:
yzII ¼ 1

2

∂vyII
∂z

þ ∂vzII
∂y

� �

¼ Uy

6Axh3II
hII

∂2hII
∂x∂z

−2
∂hII
∂x

∂hII
∂z

þ A
0
x

Ax
hII

∂hII
∂z

þ z−WE þ 3Að Þ hII
∂2hII
∂z2

−2
∂hII
∂z

� �2
" #( )* +

ð9Þ

where A
0
x ¼ dWx=dx ¼ W

0
x=3 and A″

x ¼ dA
0
x=dx. Placing

Eqs. (5) and (7) into Eq. (4), the velocity field is given directly
in the plastic zone III:

vxIII ¼ U
3AxhIII

vyIII ¼ −
Uy
3Ax

∂
∂x

1

hIII

� �
þ U z−WE þ 3Að Þy

3

∂
∂x

1

Ax

� �
∂
∂z

1

hIII

� �

vzIII ¼ −
U z−WE þ 3Að Þ

3hIII

∂
∂x

1

Ax

� � ð10Þ

The strain rate field of zone III is

ε
:
xIII ¼ ∂vxIII

∂x
¼ −

U

3Axh2III

∂hIII
∂x

−
UA

0
x

3A2
xhIII

ε
:
yIII ¼ ∂vyIII

∂y
¼ U

3Axh2III

∂hIII
∂x

þ U z−WE þ 3Að ÞA0
x

3A2
xh

2
III

∂hIII
∂z

ε
:
zIII ¼ ∂vzIII

∂z
¼ UA

0
x

3A2
xhIII

−
U z−WE þ 3Að ÞA0

x

3A2
xh

2
III

∂hIII
∂z

ε
:
xyIII ¼ 1

2

∂vxIII
∂y

þ ∂vyIII
∂x

� �
¼ Uy

6A2
xh

3
III

AxhIII
∂2hIII
∂x2

−A
0
xhIII

∂hIII
∂x

−2Ax
∂hIII
∂x

� �2
(

þ

z−WE þ 3Að Þ hIII A
0
x
∂2hIII
∂z∂x

þ A″
x
∂hIII
∂z

� �
−2A

0
x

A
0
xhIII
Ax

þ ∂hIII
∂x

 !
∂hIII
∂z

" #)

ε
:
xzIII ¼ 1

2

∂vxIII
∂z

þ ∂vzIII
∂x

� �
¼ U

6Axh2III
−
∂hIII
∂z

þ z−WE þ 3Að Þ A″hIII
Ax

−
A

0
x

A2
x

2A
0
xhIII þ Ax

∂hIII
∂x

� �" #( )

ε
:
yzIII ¼ 1

2

∂vyIII
∂z

þ ∂vzIII
∂y

� �

¼ Uy

6Axh3III
hIII

∂2hIII
∂x∂z

−2
∂hIII
∂x

∂hIII
∂z

þ A
0
x

Ax
hIII

∂hIII
∂z

þ z−WE þ 3Að Þ hIII
∂2hIII
∂z2

−2
∂hIII
∂z

� �2
" #( )* +

ð11Þ
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Based on Eqs. (8) and (10),

vyI
��
x ¼ 0
y ¼ 0

¼ vyII
��
x ¼ 0
y ¼ 0

¼ vyIII
��
x ¼ 0
y ¼ 0

¼ 0;

vyI
��
x ¼ l
y ¼ 0

¼ vyII
��
x ¼ l
y ¼ 0

¼ vyIII
��
x ¼ l
y ¼ 0

¼ 0,

vyI
��
x ¼ l
y ¼ h

¼ vyI
��
x ¼ l
y ¼ h

¼ vyIII
��
x ¼ l
y ¼ h

¼ 0,

vyI
��
z¼WE−3A

¼ vyII
��
z¼WE−3A

¼ 0;

vzIjz¼WE−3A ¼ vzIIjz¼WE−3A ¼ 0; vxIIjz¼Wx−2Ax
¼ vxIIIjz¼Wx−2Ax

,

vyII
��
z¼Wx−2Ax

¼ vyIII
��
z¼Wx−2Ax

, vzIIjz¼Wx−2Ax
¼ vzIIIjz¼Wx−2Ax

,

vzIII=vxIIIjz¼Wx
¼ 3A

0
x ¼ W

0
x. The boundary conditions are sat-

isfied in Eqs. (8) and (10). Based on Eqs. (9) and (11), ε̇xII
þε̇yII þ ε̇zII ¼ 0 and ε̇xIII þ ε̇yIII þ ε̇zIII ¼ 0, so they are kine-
matically admissible velocity and strain rate fields [17].

4 Mathematical model establishment

The vertical rolls are assumed as rigid, and slab is supposed as

a rigid plastic material. The internal plastic deformation W
:
i

based on Mises yield criterion in bite zone is

W
:
i ¼ ∫Vσε

:
dV ¼ 4∫l0∫

Wx−2Ax

Wx−3Ax
∫hII0 σs ε

:
IIdydzdx

þ 4∫l0∫
Wx

Wx−2Ax
∫hII0 σs ε

:
IIIdydzdx ð12Þ

The effective strain rate ε
:
II and ε

:
III are

ε
:
II ¼

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
:2
xII þ ε

:2
yII þ ε

:2
zII þ 2ε

:2
xyII þ 2ε

:2
xzII þ 2ε

:2
yzII

q
ð13Þ

ε
:
III ¼

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
:2
xIII þ ε

:2
yIII þ ε

:2
zIII þ 2ε

:2
xyIII þ 2ε

:2
xzIII þ 2ε

:2
yzIII

q
ð14Þ

In Eqs. (8) and (10), the velocity discontinuity exists at

entrance section. The shear power W
:
s is

W
:
s ¼ ∫SkjΔvsjdS

¼ 4k∫W0−2A0

W0−3A0
∫h00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyII
��
x¼0

� �2
þ vzIIjx¼0

� 	2r
dydz

þ 4k∫W0

W0−2A0
∫h00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyIII
��
x¼0

� �2
þ vzIIIjx¼0

� 	2r
dydz ð15Þ

The friction force produces on contact surface between slab
and vertical roll, and the velocity discontinuity in tangential
direction is

Δvt ¼ vR−vxIII=cosα ð16Þ

The velocity discontinuity is

Δv f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyIII
��
z¼Wx

� �2
þ Δvtjz¼Wx

� �2r
ð17Þ

The velocity discontinuity Δvf of Eq. (17) and friction

stress τ f ¼ mk ¼ mσs=
ffiffiffi
3

p
are in the same direction invari-

ably on contact surface. The friction power Ẇ f [18] is

W˙ f ¼ 4∫l0∫
hrx
0 jτ f ‖Δv f jcos Δv f ; τ f

� 	
ds ¼ 4∫l0∫

hrx
0 τ f jΔv f jds

¼ 4mk∫l0∫
hrx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyIII
��
z¼Wx

� �2
þ Δvtjz¼Wx

� �2r
dydx
cosα

ð18Þ

Fig. 2 Flowchart of the calculation
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According to the first variational principle of rigid plastic,
substituting Eqs. (12), (15), and (18) into J* ¼ Ẇi þ Ẇs þ
Ẇ f gets the solution of total power function

J* ¼ 4

ffiffiffi
2

3

r
σs∫

l
0∫
Wx−2Ax

Wx−3Ax
∫hII0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
:2
xII þ ε

:2
yII þ ε

:2
zII þ 2ε

:2
xyII þ 2ε

:2
xzII þ 2ε

:2
yzII

q
dydzdxþ 4

�
ffiffiffi
2

3

r
σs∫

l
0∫
Wx

Wx−2Ax
∫hIII0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
:2
xIII þ ε

:2
yIII þ ε

:2
zIII þ 2ε

:2
xyIII þ 2ε

:2
xzIII þ 2ε

:2
yzIII

q
dydzdx

þ 4k∫W0−2A0

W0−3A0
∫h00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyII
��
x¼0

� �2
þ vzIIjx¼0

� 	2r
dydzþ 4k∫W0

W0−2A0
∫h00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyIII
��
x¼0

� �2
þ vzIIIjx¼0

� 	2r
dydz

þ 4mk∫l0∫
hrx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyIII
��
z¼Wx

� �2
þ Δvtjz¼Wx

� �2r
dydx
cosα

ð19Þ

The optimal values of A and β are acquired, while J∗ attains
the minimum value J*min [19, 20]. The calculation procedure is
shown in Fig. 2. Substituting optimal values of A and β into
Eqs. (1)–(3) and Eq. (19) attains the results of dog bone shape
and total power’s minimum J*min, respectively. Then, the cor-
responding values of force parameters of roll force F, roll
torque M, and stress state coefficient nσ can be achieved sep-
arately as [21]

M ¼ RJ*min

2νR
; F ¼ M

χl
; nσ ¼ F

4hlk
ð20Þ

5 Results and discussions

The ratio of peak height to width hb/W0 in dog bone shape is
received under different engineering strain ΔW/W0, initial
thickness h0, and roll radius R. The contrasts among present

double parabola model’s results, the data collected from
Xiong’s [7] and Ginzburg’s [6] models, and Ref. [1] model’s
results are shown in Figs. 3–5. Comparing the calculated re-
sults, the deviation between present model and Xiong’s model
is within 0.72%. The deflection between present model and
Ginzburg’s model is less than 1.0%, and deviation between
present model and Ref. [1]’s model is within 1.8%. Because
the metal flow in rolling direction is considered in present
model, the dog bone’s peak height is smaller than Ref [1]’s
model.

Figure 3 reflects the dog bone’s peak height increases ob-
viously when the engineering strain increases. This is because
the area of contact arc increases, while ΔW increases. The
flow resistance of deformed metal increases in rolling direc-
tion, and then the deformation goes to the center of slab width.
In Fig. 4, the changes of hbwith diverse initial thickness h0 are
shown. The contact surface of roll slab and volume of de-
formed metal increase, while the initial thickness increases.
So the value of hb increases as h0 increases. Figure 5 demon-
strates the influence of roll radius R on the value of hb. The

Fig. 3 Influence ofΔW/W0 on hb/W0 Fig. 4 Influence of h0 on hb/W0
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peak height of dog bone decreases with the increasing of roll
radius R.

The values of roll force F calculated by present double
parabola model under different rolling conditions agree well
with predictions from Yun’s model [9] and measured values,
as found in Figs. 6 and 7. Compared with Yun’s predicted
values, the double parabola model’s results are closer to the
measured values, and the former deviation is within 7%, and
the latter is within 6%. The validity and precision of the pres-
ent model are proven.

Figure 8 shows the proportions of plastic deformation, fric-
tion, and shear powers in different engineering strainΔW/W0.
The plastic deformation power is larger than the friction and
shear powers, which also illustrates, in vertical rolling, that the
contact area of roll slab is small. The friction power decreases
and shear power increases slightly while the engineering strain
increase, but the change of plastic deformation proportion is
not obvious.

The stress state coefficient nσ reflects the effect of slab size,
contact area of roll slab, friction, the shape of tool, etc. on roll

force. The influences of engineering strain ΔW/W0, friction
factor m, vertical roll radius R, and slab thickness h0 on stress
state coefficient are shown in Figs. 9 and 10 based on Eq. (20).
The stress state coefficient increases nonlinearly as the engi-
neering strain, friction factor, or vertical roll radius increases,
while the stress state coefficient increases linearly as slab
thickness increases. The impacts of engineering strain and
friction factor on stress state coefficient are more obvious than
slab thickness and vertical roll radius. In addition, the smaller
engineering strain, the larger influence of friction factor on
stress state coefficient.

6 Conclusions

A successful approach is proposed to investigate three-
dimensional vertical rolling based on DSF and energy meth-
od. Three-dimensional velocity field is established on the ba-
sis of double parabola dog bone model and DSF method.

Fig. 8 Proportion of Ẇ i, Ẇ f , and Ẇs in J *min

Fig. 7 Roll force comparison between present double parabola model
and measured value

Fig. 6 Roll force contrast between present and Yun’s models

Fig. 5 Influence of R on hb/W0
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Therefore, dog bone parameters and required roll force pre-
dictions, which are very important in actual production, are
attained when total power reaches minimum. A comprehen-
sive examination of this present method is performed by con-
trasting the present model’s values with data in previous re-
searches and measured values. The peak height of dog bone

shape gets large when initial thickness or engineering strain
increases but decreases while roll radius increases. The stress
state coefficient augments when engineering strain, slab thick-
ness, vertical roll radius, or friction factor augments. And the
influences of engineering strain and friction factor on stress
state coefficient are more obvious.

Fig. 10 Influence of vertical roll
radius and slab thickness on stress
state coefficient

Fig. 9 Influence of engineering
strain and friction factor on stress
state coefficient
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