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Abstract
Stability prediction with both high computational accuracy and speed is still a challenging issue and has been attracting signif-
icant attention from the academia and industry. This study presents a Legendre-Chebyshev-based stability analysis method
(LCM) for milling operations. According to the cutting state, it divides the system period of milling model into the free and
the forced vibration time periods. By introducing appropriate transformation, the latter time interval is further discretized
nonuniformly into the Chebyshev-Gauss-Lobatto points, which has explicit expression. Then, the state term over the discrete
time points is approximated with the Legendre expansion, and its corresponding derivative is acquired via a novel and efficient
algorithm. Thereafter, Floquet matrix within the system period of milling model can be determined for predicting the system
stability via the known Floquet theory. Finally, we validate the effectiveness of the LCMby employing the single and two degrees
of freedom (DOF) milling operations andmaking detailed comparisons with the recent representative algorithms, which indicates
that the presented Legendre-Chebyshev-based method has both high prediction accuracy and speed.
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1 Introduction

High-speed milling has made great progress in the modern
manufacturing industry promoted by the ever-increasing de-
mand for high-performance machining [1–3]. However, it has
been greatly restricted because of the frequent occurrence of a
kind of harmful and also unavoidable violent vibration,
known as chatter [4]. Due to the relatively low mechanical
impedance, it can appear in almost all machining processes
and has detrimental impacts on both machining quality and
efficiency [5–8]. As presented and validated in literature, it
can be induced by four different mechanisms, and the

regenerative mechanism can explain most of the milling in-
stability behaviors. To avoid harmful effects of this nasty un-
stable vibration, scholars have attempted to model and predict
or identify and control the milling instability behavior [3, 4,
9–12]. To achieve high-performance milling, accurate and ef-
ficient stability analysis for this undesirable instability and
selecting proper machining parameters via stability bound-
aries are crucial for chatter avoidance and productivity
improvement.

So far, researchers have proposed many methods to predict
chatter stability. The first kind of methods, known as numer-
ical methods, utilize numerical algorithms to solve the dynam-
ic equation of the system, so as to acquire the stability char-
acteristics by analyzing whether the amplitude is divergent
[13–18]. For instance, a time-domain numerical simulation
model considering both twist drill motion and torsional-axial
coupling vibration was established in [18]. To obtain the time
response of axial and torsional vibration, the authors adopted
numerical algorithm to solve the dynamic equation of drilling
operations. Although the numerical methods have strong ver-
satility, their huge cost of calculation makes it difficult to meet
the actual requirements. Fortunately, the latter two (analytical
and semi-analytical ones) provide an alternative to obtaining
the stability boundaries conveniently [19–27].

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00170-020-05040-3) contains supplementary
material, which is available to authorized users.

* Jianfeng Tao
jftao@sjtu.edu.cn

Chengjin Qin
qinchengjin@sjtu.edu.cn

1 State Key Laboratory ofMechanical System andVibration, School of
Mechanical Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

https://doi.org/10.1007/s00170-020-05040-3

/Published online: 14 February 2020

The International Journal of Advanced Manufacturing Technology (2020) 107:247–258

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-05040-3&domain=pdf
https://doi.org/10.1007/s00170-020-05040-3
mailto:jftao@sjtu.edu.cn


The analytic methods approximate the system periodic co-
efficient term by utilizing the Fourier series expansion, which
transforms the delay differential equations into another do-
main representation. The famous zeroth-order approximation
method based on Fourier transform was proposed in [19, 20],
which was first employed in milling and has extremely high
calculation speed. However, the zeroth-order approximation
method cannot obtain high precision for stability problems
under some conditions, such as milling stability prediction
under small radial depth of cut conditions. Later, the research
team from Altintas continued to make efforts to improve this
method [21]. The semi-analytic methods are another kind of
widely recognized algorithms, which obtain the Floquet ma-
trix within the system period of milling model by numerically
approximating the original delay differential equations. For
instance, Butcher et al. [23, 24] proposed two stability analysis
methods. Introduced in [25–27], the SDMs have good appli-
cability for different machining conditions and low complex-
ity of algorithm but suffer relatively low calculation speed.
After that, these methods continue to develop with ever in-
creasingly faster calculation speed and better convergence ac-
curacy. To further improve the computational efficiency of
SDM without accuracy loss, Dong et al. [28, 29] proposed a
fast reconstructed prediction method. To efficiently and accu-
rately predicting the milling stability, the 2nd SDM was rec-
ommended based on the Newton interpolation polynomials in
[30]. From another point of view, the full-discretization meth-
od (FDM) was developed in [31]. FDMs achieve high calcu-
lation speed and do not sacrifice any numerical accuracy.
Recently, enhanced FDMs were recommended by Sun [32],
Ozoegwu [33, 34], Tang [35], and Yan [36], which employed
higher interpolation or approximate methods. However, the
computational speed decreases with the increase of algorithm
complexity for these methods. With the aid of holistic-
interpolation scheme, Qin et al. [37, 38] developed two
holistic-discretization methods (HDM and PCHDM). It was
shown that the PCHDM achieved higher both accuracy and
efficiency than the updated FDMs of Tang [35] and Yan [36].
Olvera et al. [39] introduced the homotopy-based stability
analysis algorithm. Also, the Chebyshev wavelets based
method was recommended in [40]. The known numerical in-
tegration algorithm was proposed by Ding et al. [41, 42]. The
complete discretization scheme (CDM) was recommended by
[43], in which numerical method was utilized. To further in-
crease the calculation efficiency and accuracy, Li et al. [44]
developed an updated CDM. Ding et al. [45] proposed a semi-
analytical wavelet-based method by utilizing compactly sup-
ported Daubechies scaling functions. As for the case of mul-
tiple time delays, Lu et al. [46] proposed the spline-based
approach. From the point of view of numerical differentiation,
two novel methods for the high-speed milling stability analy-
sis were introduced in [47, 48]. Based on linear multistep
methods, Qin et al. [49, 50] developed the Adams-Moulton-

based methods (AMM and EAMM). Inspired by predictor-
corrector scheme, Qin et al. [51] presented the ASM for im-
proving calculation accuracy and speed. In depth analysis
found that the ASM could save more computing time than
the PCHDM, while its approximation order is similar with
that of the PCHDM.

It can be seen from the above literature that the current
semi-analytical methods are still difficult to balance the calcu-
lation accuracy and efficiency and researchers are still work-
ing to improve its convergence speed while reducing its com-
putational cost. Inspired by the research on the optimal control
problems [52], we propose a Legendre-Chebyshev-based al-
gorithm for accurate and efficient stability prediction. To be-
gin with, the forced vibration interval is discretized
nonuniformly into Chebyshev-Gauss-Lobatto points by intro-
ducing appropriate variable transformation. The Chebyshev-
Gauss-Lobatto points can be obtained analytically, which is
quite beneficial to the calculation simplicity and efficiency.
The Legendre expansion with spectral convergence accuracy
is utilized for approximating the state term over discrete time
points, and its corresponding derivative is obtained by a novel
and fast algorithm. In the end, the Floquet matrix over the
system period of milling model can be acquired to compute
the stability boundaries. The rest of this study is organized as
follows. Section 2 presents Legendre-Chebyshev-based algo-
rithm (LCM). Section 3 validates the convergence rate and
calculation speed of LCM, and Sect. 4 gives the conclusions
of this work.

2 Milling model
and Legendre-Chebyshev-based method

It is known that the milling dynamics model is a prerequisite
for stability analysis. According to the Refs. [6, 9, 26], appear-
ance of the most instability for milling processes behaviors
can be attributed to the regenerative mechanism. Taking two
DOF milling system as an example, it can be mathematically
modeled by DDEs as follows:

MΓ tð Þ
��

þCΓ tð Þ
�

þKΓ tð Þ ¼ F tð Þ
¼ −apG tð Þ Γ tð Þ−Γ t−Tð Þ½ � ð1Þ

in which Γ(t) is the tool displacement vector, whileM,C, and
K are modal related matrices. T denotes system period of
milling model. Define Ω as spindle speed (rpm) and N as
the tool teeth number; then T is given by T = 60/(NΩ).
Additionally, ap represents the depth of cut, and G(t) repre-
sents coefficient matrix satisfying G(t) =G(t + T).

According to geometric relationship of cutting force, G(t)
for the two DOF milling can be deduced as follows:
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gxx tð Þ ¼ ∑
N

i¼1
Ktcos ϕi tð Þð Þ þ Knsin ϕi tð Þð Þ½ �g ϕi tð Þð Þsin ϕi tð Þð Þ

gxy tð Þ ¼ ∑
N

i¼1
Ktcos ϕi tð Þð Þ þ Knsin ϕi tð Þð Þ½ �g ϕi tð Þð Þcos ϕi tð Þð Þ

gxy tð Þ ¼ ∑
N

i¼1
−Ktsin ϕi tð Þð Þ þ Kncos ϕi tð Þð Þ½ �g ϕ j tð Þ

� �
sin ϕi tð Þð Þ

gxy tð Þ ¼ ∑
N

i¼1
−Ktsin ϕi tð Þð Þ þ Kncos ϕi tð Þð Þ½ �g ϕi tð Þð Þcos ϕi tð Þð Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

where Kn and Kt denote coefficients related to workpiece ma-
terial and tool. According to the cutting state, the value of
g(ϕi(t)) with input ϕi(t) = (2πΩ/60)t + 2π (i-1)/N equals to 1
or 0, namely,

g ϕi tð Þð Þ ¼ 1; ϕst < ϕi tð Þ < ϕex
0; otherwise

�
ð3Þ

in which according to the type of milling operations and the
value of radial immersion ratio a/D, start and exit immersion
angles are calculated by

ϕst ¼ arccos 2a=D−1ð Þ;ϕex ¼ π down−milling
ϕst ¼ 0;ϕex ¼ arccos 1−2a=Dð Þ up−milling

�
ð4Þ

To acquire Floquet matrix for stability analysis, we need to
re-represent the milling dynamics model as the state-space
form. Hence, matrix transformation is introduced by Θ tð Þ ¼
MΓ tð Þ� þCΓ tð Þ=2 andx(t) = [Γ(t),Θ(t)]T. Specifically, by
utilizing this transformation, the milling dynamics model,
i.e., Eq. (1), is reformulated as follows:

x tð Þ
�

¼ Sc þ S tð Þð Þx tð Þ þ R tð Þx t−Tð Þ ð5Þ
in which

Sc ¼ −M−1C=2 M−1

CM−1C=4−K −CM−1=2

� �
; S tð Þ ¼ −R tð Þ ¼ −ap

0 0
G tð Þ 0

� �

ð6Þ

In theory, since thematrices S(t) andR(t) in the above state-
space equation are directly related to value of G(t), the dy-
namic process was determined whether experiences free or
forced vibration by its elements. In terms of milling opera-
tions, if the milling tool is in cutting state, G(t) has nonzero
variables. For such case, the milling operations experiences
forced vibration according to the state equation. On the other
hand, while the milling tool is not in cutting state, the time-
periodic matrix G(t) degenerates into the zero matrix. Now, it
will experience a simple form of vibration, namely, free
vibration.

Taking above analysis into account, we divide Τ of G(t),
i.e., the system period of milling model, into two subintervals.
The first interval is corresponding to whenmilling cutter is out
of cutting state, namely, the free vibration interval denoted by
Tr, while another interval is corresponding to when milling
cutter is just in cutting state, namely, the forced vibration

interval denoted by To = T − Tr. To avoid the Runge effect in
high-order interpolation and simplify the calculation process
for high computational efficiency, the discrete time points
employed to discretize the interval To are the Chebyshev-
Gauss-Lobatto points that has explicit expression, namely,

t j ¼ −cos j
π
m

� �
; j ¼ 0;⋯;m ð7Þ

To transform the forced vibration time interval [Tr, T] into
the standard interval [− 1, 1], we introduce the variable
transformationη = [2t − (2Tr + To)]/To, η ∈ [−1, 1]. Then one
can obtaint ¼ 1

2 Toηþ 1
2 2Tr þ Toð Þ; t∈ Tr; T½ �. Hence, Eq.

(5) can be equivalently expressed as

2

To
x ηð Þ

�
¼ Sc þ S ηð Þð Þx ηð Þ þ R ηð Þx η−

2T
To

� �
ð8Þ

Then, to obtain high approximation accuracy, the state term
x(t) over the discrete time points is approximated with the
Legendre expansion of spectral convergence, and its corre-
sponding derivative is acquired via a novel and fast algorithm.
To begin with, the continuous state x(t) is accurately approx-
imated by Legendre polynomials Lk(t), for k = 0,. .., m:

x tð Þ≈ ∑
m

k¼0
akLk tð Þ ð9Þ

where ak, for k = 0,. .., m, are Legendre coefficients to be
determined.

To obtain these unknown coefficients ak, for k = 0,. .., m,
substitute the discrete time points into Eq. (9), and one can
obtain

a0
a1
⋮
am

0
BB@

1
CCA ¼

L0 t0ð Þ L1 t0ð Þ ⋯ Lm t0ð Þ
L0 t1ð Þ L1 t1ð Þ ⋯ Lm t1ð Þ
⋮ ⋮ ⋱ ⋮

L0 tmð Þ L1 tmð Þ ⋯ Lm tmð Þ

0
BB@

1
CCA

−1 x t0ð Þ
x t1ð Þ
⋮

x tmð Þ

0
BB@

1
CCA ¼ L−1

x t0ð Þ
x t1ð Þ
⋮

x tmð Þ

0
BB@

1
CCA

ð10Þ

It is worth noting that the constant matrix L can be easily
acquired by utilizing the following recursive formulas:

L0 tð Þ ¼ 1
L1 tð Þ ¼ t
nþ 1ð ÞLnþ1 tð Þ ¼ 2nþ 1ð ÞtLn tð Þ−nLn−1 tð Þ; n ¼ 1; 2;⋯

8<
:

ð11Þ

On the other hand, to acquire the derivative term, i.e.,x tð Þ�,
we find the coefficients dk that satisfy the following relation-
ship.

x tð Þ
�

¼ ∑
m

k¼0
ak Lk tð Þ

�
¼ ∑

m

k¼0
dkLk tð Þ ð12Þ

Following the Ref. [53], the coefficients dk can be obtained
with the following transformation:
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d0
d1
⋮
dm

0
BB@

1
CCA ¼ Q

a0
a1
⋮
am

0
BB@

1
CCA ð13Þ

where Q can be deduced as

Q≔ Qhk½ �≔ 2hþ 1 0≤h; k ≤m−1; k ¼ hþ 1; hþ 3; hþ 5;⋯
0 otherwise

�
ð14Þ

On this basis, the derivative of x(tj) can be obtained as

x t j
� ��

¼ ∑
m

k¼0
dkLk t j

� � ¼ L0 t j
� �

; L1 t j
� �

;⋯; Lm t j
� �� �

Q

a0
a1
⋮
am

0
BB@

1
CCA ð15Þ

Then, one can further obtain

x t0ð Þ
�

x t1ð Þ
�

⋮
x tmð Þ

�

0
BBB@

1
CCCA ¼ LQ

a0
a1
⋮
am

0
BB@

1
CCA ð16Þ

Substitute Eq. (10) into Eq. (16), and one can obtain

x t0ð Þ
�

x t1ð Þ
�

⋮
x tmð Þ

�

0
BBB@

1
CCCA ¼ LQL−1

x t0ð Þ
x t1ð Þ
⋮

x tmð Þ

0
BB@

1
CCA ð17Þ

With the aid of Kronecker product, the vector form for Eq.
(17) is deduced as

x t0ð Þ
�

x t1ð Þ
�

⋮
x tmð Þ

�

0
BBB@

1
CCCA ¼ LQL−1� �

⊗In�n

x t0ð Þ
x t1ð Þ
⋮

x tmð Þ

0
BB@

1
CCA ¼ H

x t0ð Þ
x t1ð Þ
⋮

x tmð Þ

0
BB@

1
CCA ð18Þ

where ⊗ represents the Kronecker product, while n denotes
dimension for x(t).

On the other hand, over tj, 0 ≤ j ≥m, Eq. (8) needs to satisfy

2

To
x t j
� ��

¼ Sc þ S t j
� �� �

x t j
� �þ R t j

� �
x t j−

2T
To

� �
ð19Þ

However, over interval [0, Tr], the solution of milling dy-
namic equation has an explicit from. Therefore, x(t) at the first
time point t0 of the forced vibration time period can be obtain-
ed directly by

x t0ð Þ ¼ eScT rx tm−
2T
To

� �
ð20Þ

Utilizing [In × n, 0n × n, …, 0n × n] to replace first n
rows of H, a new constant matrix Hs can be obtained.
Combining Eqs. (18)~(20), one will acquire a discrete
map as follows:

U

x t0ð Þ
x t1ð Þ
⋮

x tmð Þ

0
BB@

1
CCA ¼ W

x t0−
2T
To

� �

x t1−
2T
To

� �
⋮

x tm−
2T
To

� �

0
BBBBBBBB@

1
CCCCCCCCA

ð21Þ

where

U ¼ 2

To
Hs þ ap

0 0 ⋯ 0
0 G t1ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ G tmð Þ

0
BB@

1
CCA ¼ 2

To
Hs þ apV

ð22Þ

W ¼
0 0 ⋯ eScTr

0 R t1ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ R tmð Þ

0
BB@

1
CCA ¼ apVþ

0 0 ⋯ eScTr

0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

0
BB@

1
CCA
ð23Þ

Then, the transition matrix Ψ via Chebyshev-Legendre-
based algorithm is obtained by

Ψ ¼ U−1W ð24Þ

Eventually, by exploring the value of spectral radius ofΨ,
i.e., κ(Ψ) = max (|λ(Ψ)|), one can gain stability characteristics
via Floquet theory.

It should be noted that the matrix U can be easily obtained
by multiplying the depth of cut ap by a constant matrixV (i.e.,
apV) when sweeping the depth of cuts and multiplying the
spindle speed related term 2/T0 by a constant matrix Hs (i.e.,
2/T0Hs) when sweeping the spindle speeds. Consequently,W
is acquired directly by simply employing [0, 0, …, eScT r ] to
replace first n rows of apV. Besides, Eq. (24) shows that con-
structing Ψ is fulfilled by simply one matrix multiplication.
Therefore, benefiting from the explicit form of nonuniform
discrete points and the way of constructing Ψ, the presented
Chebyshev-Legendre-based algorithm should obtain high cal-
culation speed.

3 Algorithm validation and milling stability
prediction

In this section, algorithm validation of LCM is conducted with
the same computational conditions and same program
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structure. Twomilling models in Ref. [26] are employed when
making comparisons with 2nd SDM and ASM. In general,
conventional milling process and rough milling process adopt
large radial immersions, in which the tool spends considerable
large part of system period machining workpiece [6].
However, for highly interrupted milling operations (e.g., fin-
ish milling operations on flexible components), the radial im-
mersion can be very low, in which milling cutter just takes a
little part of system period to machine workpiece [13]. For
such cases, it shows high intermittence in milling force,
resulting in high-frequency components [9]. Hence, two dif-
ferent cases need to be explored and analyzed comprehensive-
ly for algorithm validation. Additionally, for completeness,
the stability diagrams are predicted utilizing 2nd SDM,
ASM, and LCM as well.

3.1 One DOF milling operation

As presented in Refs. [26, 51], the milling dynamic model of
one DOF system is formulated as

mt x tð Þ
��

þ2mtζωn x tð Þ
�

þmtωn
2x tð Þ ¼ −apgxx tð Þ x tð Þ−x t−Tð Þ½ � ð25Þ

in which gxx(t) is deduced in Eq. (4) and equals to the coeffi-
cient matrix G(t). Meanwhile, mt, ωn, and ζ are the system
modal parameters. With the aid of the transformation present-
ed in previous part, the above equation could be re-expressed
as

x tð Þ
�

¼ Sc þ S tð Þð Þx tð Þ þ R tð Þx t−Tð Þ ð26Þ
with

Sc ¼ −ζωn 1=mt

mtζ
2ωn

2−mtωn
2 −ζωn

� �
; S tð Þ ¼ −R tð Þ ¼ −ap

0 0
gxx tð Þ 0

� �

ð27Þ

For ease of comparison, we use identical one DOF system
parameters from [26] by: N = 2, Kn = 2 × 10

8 N/m2, Kt = 6 ×
108 N/m2, mt= 0.03993 kg, ωn = 922 × 2π rad/s, ζ= 0.011, and
down milling. As we all know, accuracy of semi-analytical algo-
rithms could be presented intuitively through convergence rate
curve. Accordingly, to validate proposed Chebyshev-Legendre-
based algorithm, we will construct the diagrams of the conver-
gence rate. It should be pointed out that the approximation order
for ASM has been analyzed and proved to be greater thanO(τ4),
where τ denotes discrete step [51]. Simultaneously, the 2nd SDM
is found to be O(τ3). Mathematically, the Legendre expansion is
exponentially convergent, depending on the degree of the
Legendre polynomials. Since time intervals m is consistent with
the degree of the Legendre polynomials in the proposed method,
it should gain better convergence rate than 2nd SDM and ASM.
Figure 1 presents comparisons among 2nd SDM, ASM, and
LCM with a/D = 1.0 and two different spindle speeds. The

reference value calculated utilizing LCM with time intervals
m = 600 is denoted as |λ0| in Fig. 1. And the approximate ones
written as |λ| are calculated utilizing 2nd SDM, ASM, and LCM.
For completeness of comparison, various depths of cut ap are
adopted. Besides, wewill employ logarithmic coordinates, which
facilitates observation and comparison of results. As we can see,
the approximate value |λ| predicted utilizing LCM converges to
reference |λ0| much faster than those predicted utilizing the other
two algorithms. Consequently, the LCM obtains much higher
accuracy than 2nd SDM and ASM.

To avoid chatter and increase productivity, high-
performance stability analysis and choosing appropriate cut-
ting parameters are of vital importance. However, computa-
tional accuracy and calculation speed are generally limited to
each other. Hence, for the completeness of algorithm verifica-
tion, the stability lobes of these models are also constructed
with 2nd SDM, ASM, and LCM. The domain of parameter
combinations are selected as follows: ap ∈ [0, 10]mm and the
Ω ∈ [5, 25]krpm. Computing time for 2nd SDM, ASM, and
LCM and stability lobes over a 250 × 150 sized grid with
a/D = 1.0 are illustrated in Fig. 2. The reference stability limits
with red line in Fig. 2 are calculated utilizing LCM with time
intervals m = 600. Meanwhile, m for 2nd SDM, ASM, and
LCM are selected as 30 and 40, respectively. Based on Fig.
2, the accuracy for lobes predicted utilizing LCM is better than
those utilizing 2nd SDM and ASM with identical computing
parameters. Hence, the results validate that the LCM achieves
better computing accuracy than 2nd SDM and ASM.
Simultaneously, LCM obtains faster calculation speed than
2nd SDMandASM. Specifically, LCM could save computing
time by almost 76~82% when comparing with 2nd SDM and
by approximately 46~60%when comparing with ASM. Then,
we select a/D as 0.6, and Fig. 3 presents the computing time of
these methods and corresponding stability lobs. Now, m are
set as 12 and 20. Figure 3 indicates that LCM obtains higher
computing accuracy and speed than other two algorithms with
a/D = 0.6. When comparing with 2nd SDM and ASM, LCM
could save computing time by approximately 82~89% and
68~71%, respectively.

3.2 Two DOF milling operation

As presented in Refs. [26, 51], the milling model for two DOF
case is formulated as

mt 0
0 mt

	 

x tð Þ
��

y tð Þ
��

" #
þ 2ζωnmt 0

0 2ζωnmt

	 

x tð Þ
�

y tð Þ
�

" #
þ ωn

2mt 0
0 ωn

2mt

	 

x tð Þ
y tð Þ

	 


¼ −ap
gxx tð Þ gxy tð Þ
gyx tð Þ gyy tð Þ

	 

x tð Þ
y tð Þ

	 

− x t−Tð Þ

y t−Tð Þ
	 
� �

ð28Þ

By utilizing same matrix transformation, Eq. (28) could be
re-expressed as
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x tð Þ
�

¼ Sc þ S tð Þð Þx tð Þ þ R tð Þx t−Tð Þ ð29Þ
in which

Sc ¼
−ζωn 0 1=mt 0
0 −ζωn 0 1=mt

ζ2−1
� �

ωn
2mt 0 −ζωn 0

0 ζ2−1
� �

ωn
2mt 0 −ζωn

0
BB@

1
CCA ð30Þ

S tð Þ ¼ −R tð Þ ¼ −ap

0 0 0 0
0 0 0 0

gxx tð Þ gxy tð Þ 0 0
gyx tð Þ gyy tð Þ 0 0

0
BB@

1
CCA ð31Þ

Figure 4 illustrates the computing time for 2nd SDM,
ASM, and LCM and stability lobes of the two DOF milling
with a/D = 1.0 and 0.6 calculated by these methods. The sta-
bility lobes are also draw on a 250 × 150 sized grid, whilem is
set as 30. Reference stability lobes with red line in Fig. 4 are

Fig. 1 Comparisons among 2nd SDM, ASM, and LCM with a/D = 1.0 and spindle speed Ω = 7000 rpm, 9000 rpm
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gained utilizing LCM with time intervals m = 600 as well. For
ease of comparison, we also adopt identical two DOF system
parameters from [26]. Besides, the domain of cutting param-
eter combinations is set as follows: ap ∈ [0, 10]mm and the
Ω ∈ [5, 25]krpm. Based on Fig. 4, lobes predicted utilizing
LCM reveal better agreement with reference lobes when com-
paring with 2nd SDM and ASM under same computational
parameters. Consequently, it validates that LCM achieves bet-
ter computing accuracy than 2nd SDM and ASM.Meanwhile,

calculation speed for LCM is faster than 2nd SDM and ASM.
Compared with 2nd SDM and ASM, it can save about
52~56% and 29% computational time, respectively. Then,
we select a/D as 0.06, and select m as as 10 and 20, respec-
tively. Results are shown in Fig. 5, which indicates that LCM
obtains higher computing accuracy and faster computing
speed than the other two algorithms with a/D = 0.06. When
comparing with 2nd SDM and ASM, now it can save about
58~78% and 39~57% computational time, respectively.

Fig. 2 Computing time for 2nd SDM, ASM, and LCM and stability lobes of the single-DOF milling with the a/D = 1.0 calculated by these algorithms
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4 Conclusion

In this study, it develops a Legendre-Chebyshev-based al-
gorithm for improving accuracy of milling stability analy-
sis and at the same time reducing the calculation time. The
milling dynamics model, i.e., DDEs, is re-represented as
the state-space equation utilizing specific transformation,

and the period is divided into two subintervals based on
cutting state of milling dynamic system. After that, we
discretize forced vibration interval nonuniformly into the
Chebyshev-Gauss-Lobatto points by introducing appropri-
ate variable transformation. Finally, to acquire Floquet ma-
trix over the system period of milling model, we employ
the Legendre expansion with spectral accuracy to match

Fig. 3 Computing time for 2nd SDM, ASM, and LCM and stability lobes of the single-DOF milling with the a/D = 0.6 calculated by these algorithms
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the state term over nonuniform time points and obtain its
corresponding derivative by a novel and fast algorithm.

To validate the convergence rate, calculation efficien-
cy, and versatility of LCM, two benchmark models are
employed, and comprehensive comparisons with recent
2nd SDM and ASM are conducted. It verifies that pro-
posed LCM obtains higher computing accuracy and

faster speed than 2nd SDM and ASM and can obtain
accurate and fast stability lobes prediction. For the one
and the two DOFs milling models, the computational
time can be saved by almost 76~89% and 52~78% when
compared with the 2nd SDM, respectively. Meanwhile,
when comparing with ASM, LCM could save computing
time by about 46~71% and 29~57% for the two

Fig. 4 Computing time for 2nd SDM, ASM, and LCM and stability lobes for two DOF milling with a/D = 1.0 and 0.6 calculated by these algorithms
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benchmark milling examples, respectively. Consequently,
it shows good application prospects in real manufactur-
ing and can be used by engineers and technicians to
determine optimal chatter-free milling parameters.
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