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Amethod for the prediction of cutting force for 5-axis ball-end
milling of workpieces with curved surfaces

DazhenWang1 · Junxue Ren1 ·Weijun Tian2

Abstract
In existing researches, only the milling tests in the state of single-tooth engagement can be used to identify cutting force
coefficients. So, when the average cutting force–based calibration is performed for a 4-fluted cutter, several slots must be
machined and the cutting parameters must be properly selected to ensure single-tooth engagement. To reduce the consumed
time of calibration tests, we present the new identification expressions of the cutting force coefficient for the 4-fluted ball-end
mill based on the average cutting force obtained by the slotting tests with double-tooth engagement. Meanwhile, a three-
orthogonal dexel–based model is presented to calculate the cutter-workpiece engagement. Also, the researches show that
cutting element position and spindle speed have significant effects on cutting force coefficients; however, there is no research
that has built a fitting model of cutting force coefficients simultaneously related to this two factors. To accurately predict
cutting forces for different cutting conditions, the influences of these two factors on cutting force coefficients are studied.
Then, a fitting model of the cutting force coefficient related to this two factors is presented. After, to verify the accuracy of
the proposed method, milling tests are performed on both the rectangular workpiece and curved surface. The results show
that the proposed model can predict the cutting force for different cutting parameters with the relative error less than 15%.

Keywords Cutter-workpiece engagement · Cutting force coefficients · Three-orthogonal dexel · Cutting element position ·
Spindle speed

1 Introduction

Five-axis milling has been widely used in machining
complex structural parts, and one of the most important
parameters during milling processes is the cutting force.
It is the basis for judging the machining vibration, tool
wear, and surface integrity of machined parts; also it is an
important criterion for selecting cutting parameters. The key
steps for predicting the cutting force of five-axis milling
are accurately determining cutter-workpiece engagements
(CWEs) and cutting force coefficients.
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During the milling of parts with sculptured surfaces, the
CWE region varies along the tool path, and it is difficult
to find an analytical expression for this region. So, solid
and discrete modelling methods are the commonly used
methods to extract CWEs. Solid modelling–based methods
[1–3] use the exact models of the tool and workpiece
geometries to extract CWE maps. The advantage of these
methods is that the results have high accuracy. However, due
to the growing size of data structures during simulations,
the calculation efficiency of these methods is limited.
To improve the calculation efficiency, several discrete
modelling-based methods have been proposed, and the most
used method is the Z-map method. In the conventional
Z-map method [4], the workpiece is represented by the
intersection points of the Z direction vectors (ZDV) with the
upper surface of the part, but only one intersection of the
part with a ZDV is allowed. To overcome this shortcoming,
an extended Z-map approach [5] was proposed. In this
method, for one ZDV, multiple intersections and gaps
between the intersection points can be stored by a linked list
data structure. To obtain the contact patch more accurately
at lower resolutions, Boz et al. [6] modelled the part by
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discrete vectors in three orthogonal directions. In this paper,
a method based on three-orthogonal dexel is presented to
calculate CWEs.

The cutting force coefficient is another important part
of the mechanical cutting force model. It can be identified
by orthogonal cutting tests or milling tests. Budak et al.
[7] constructed a data base of shear stress, shear angle, and
friction angle from a series of orthogonal cutting tests. Then,
they used it to calculate the cutting force coefficients of
the flat end mill. After, Lee et al. [8] extended this method
to the ball-end mill. Although the data base can be used
for cutters with different geometries, the hypotheses made
by the method affect the accuracy of the results, especially
in the case of tools with complex geometry and finishing
milling processes. In these cases, the milling test is much
more suitable for the identification. And, the measured
average cutting force per revolution or the instantaneous
cutting force can be used for the identification in an inverse
way.

When the average cutting force is used to calculate the
coefficient, a set of milling tests at different feed rates
need to be performed. Then, the average cutting force is
expressed as a linear form of feed rates, and the coefficients
are obtained by equating the analytical expressions of
the average cutting force to their measured counterparts.
Gradišek et al. [9] presented the expressions of shear- and
edge-specific coefficients for a general helical end mill from
milling tests at an arbitrary radial immersion. Cao et al.
[10] regarded the position of the cutting element on the
ball-end mill edge as the only factor that affects the cutting
force coefficients. Then, they presented the cutting force
coefficients for different tool inclination angles. Gao et al.
[11] adopted a cubic polynomial of the slice elevation to fit
the cutting force coefficients. Grossi et al. [12] identified
the cutting force coefficients of end mill in the entire speed
range by a spindle speed ramp-up test. Dikshit et al. [13]
studied the influence of cutting speeds on cutting force
coefficients in ball-end milling.

To reduce the number of tests, some methods based
on the instantaneous cutting force have been proposed.
Wan et al. [14] described cutting force coefficients as
the exponential functions of the instantaneous uncut chip
thickness. Also, Guo et al. [15] proposed a cutting force
coefficient model relative to instantaneous uncut chip
thickness and axial position angle. Tukora et al. [16]
determined the cutting force coefficients by a single
measuring test without restrictions of the cutting geometry.
Grossi et al. [17] studied the influence of spindle speeds
on cutting force coefficient by means of a genetic
algorithm. Wang et al. [18] described the shear-specific
coefficients as the polynomial functions of elevation,
axial immersion angle, and local radius along the tool
axis. They found that the selection of variables had a

significant effect on the predictive ability of the polynomial
function.

From [9–18], it can be seen that only the milling tests
in the state of single-tooth engagement can be used to
identify cutting force coefficients. And, the research objects
of most researches are the cutters with two flutes. However,
in the actual machining processes, the commonly used
tools are the cutters with four flutes. If the calibration is
performed for a 4-fluted ball-end mill based on the average
force, some slots must be machined and the machining
parameter must be properly selected to ensure single-tooth
engagement. This consumes more milling tests and time.
To reduce the costs of tests, in this paper, we present the
new identification expressions of cutting force coefficients
for the 4-fluted ball-end cutter based on the average cutting
forces obtained by the slot milling tests with double-tooth
engagement.

The studies [12, 13, 17] show that the spindle speed
has an important influence on cutting force coefficients;
however, they have not established a fitting model of the
cutting force coefficients related to the spindle speed. Also,
the researches [9–11, 13, 15, 18] show that cutting force
coefficients vary significantly with the cutting element
position. This is because the helix angle of the cutting
edge lies on the spherical part that varies along the cutter
axis, and the changes of cutting edge radius causes the
changes of cutting speed along the cutter axis. Both the
helix angle and cutting speed affect the cutting mechanics,
so the cutting force coefficients change appreciably along
the cutter axis. To improve the simulation accuracy, in this
paper, the spindle speed and the cutting element position
will be involved in the fitting model of the cutting force
coefficients.

This paper proposes a method to predict cutting force
for the case when only the spherical part of the 4-fluted
ball-end mill engages with the workpiece, and the paper is
organized as follows. In Section 2, the mechanistic force
model for ball-end milling is built. In Section 3, the CWE
is calculated by the three-orthogonal dexel–based method.
In Section 4, the new identification expressions of cutting
force coefficients for a 4-fluted ball-end cutter are proposed.
In Section 5, the influences of cutting element position and
spindle speed on cutting force coefficients are studied, and
a fitting model of cutting force coefficients related to this
two factors is proposed; then, the accuracy of the proposed
method is verified by tests performed on both rectangular
workpiece and workpiece with curved surface.

2Mechanistic milling forcemodel

To determine the local cutting edge geometry of a ball-end
mill, a tool coordinate system XT − YT − ZT is defined at
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Fig. 1 Geometry and tool coordinate system for a ball-end cutter

the tool tip as shown in Fig. 1. The location of point M is
defined by a vector, written as:

r(θi, z) = R(z)(i sin θi + j cos θi) + kz (1)

where R(z) represents the local radius and θi is the radial
immersion angle of point M , written as:

θi(θ, z) = θ + (i − 1)φp − ϕ(z) (2)

where θ denotes the immersion angle of the reference edge
(i = 1) at z = 0, φp is the tooth spacing angle, and ϕ(z)

represents the radial lag angle caused by helix angle.
To calculate the cutting force by the infinitesimal cutting

force model, the cutter is divided into differential slices
along tool axis with the height �z, for the j th slice z =
j�z. For the j th slice of the ith tooth, the differential
tangential (dFt ), radial (dFr ), and axial (dFa) cutting forces
acting on the differential cutting edge segment can be
written as:
⎧
⎨

⎩

dFi,j,t (θ) = Kteds + Ktchi,j (θ)db

dFi,j,r (θ) = Kreds + Krchi,j (θ)db

dFi,j,a(θ) = Kaeds + Kachi,j (θ)db

(3)

where K∗c and K∗e (∗ = t, r, a) represent the shear-specific
coefficients and edge-specific coefficients, respectively;
db = dz/sin κ is chip width; the edge length of the slice
element can be derived from Eq. 1 as:

ds =
√

(R(z)ϕ′(z))2 + (R′(z))2 + 1 dz (4)

Fig. 2 Illustration of lead and
tilt angles

The instantaneous undeformed chip thickness hi,j (θ) for
ball-end milling can be expressed as [19]:

hi,j (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

(ft sin θi,j sin κ(z) cos σ − ft cos κ(z) sin σ)

×gi,j (θ), (upward milling)

(ft sin θi,j sin κ(z) cos σ + ft cos κ(z) sin σ)

×gi,j (θ), (downward milling)

(5)

where ft denotes feed per tooth, σ is the feed inclination
angle measured with respect to the horizontal feed direction,
κ(z) is the axial immersion angle, and gi,j (θ) is a window
function that indicates whether the slice element is in or out
of cut.

The components of the cutting force along XT , YT ,
and ZT directions can be obtained from Eq. 3 by a
transformation.
[

dFi,j,x(θ)
dFi,j,y(θ)
dFi,j,z(θ)

]

=
[ − cos θi,j − sin κ sin θi,j − cos κ sin θi,j

sin θi,j − sin κ cos θi,j − cos κ cos θi,j
0 cos κ − sin κ

]

×
[

dFi,j,t (θ)
dFi,j,r (θ)
dFi,j,a(θ)

]

(6)

Then, the cutting forces Fs(θ) (s = x, y, z) acting on the
cutter can be obtained by summing the cutting forces acting
on all slice elements and all cutting edges.

The above calculations are performed in the local
Cartesian tool coordinate frame (TCF); however, the TCF is
usually not consistent with the workpiece coordinate frame
(WCF) in five-axis milling, and it changes with the variation
of tool orientation which defined by lead and tilt angles.
In this paper, the lead angle and tilt angle are defined as
the rotation angles of the tool axis about the ZW axis and
XW axis, respectively, as shown in Fig. 2, and they can be
calculated as follows:

Lead = atan2(i,

√

j2 + k2), Tilt = atan2(k, j) (7)

where i, j, and k are the components of tool orientation
vector with respect to WCF.

A table-type dynamometer will be used in the experi-
ments, and the coordinate frame of the dynamometer is con-
sistent with WCF. To compare the analytical cutting forces

2025Int J Adv Manuf Technol (2020) 107:2023–2039



with the measured values, the analytical cutting forces in
TCF must be transformed into WCF. The transformation can
be expressed as:

⎡

⎣
FW

x (t)

FW
y (t)

FW
z (t)

⎤

⎦ = W
T R

⎡

⎣
Fx(t)

Fy(t)

Fz(t)

⎤

⎦ (8)

where FW
s (s = x, y, z) represents the cutting forces in

WCF and W
T R is the rotation matrix from TCF to WCF,

which can be expressed as W
T R = (e2, e3, e1), where e2,

e3, and e1 represent the unit vectors of XT , YT , and ZT

respectively—they will be calculated in Section 3.1.
From the above equations, it can be seen that the keys to

calculate cutting forces in ball-end milling are determining
the CWE and cutting force coefficients.

3 Cutter workpiece engagement of ball-end
milling

Several steps should be done to obtain CWE maps for
ball-end milling, as shown in Fig. 3. The first step is
the generation of tool swept volume, then the in-process
workpiece is obtained by the Boolean operations between
the initial workpiece and the tool swept volume. After, the
contact patch surface between the tool and the in-process
workpiece is obtained. Finally, the contact surface is divided

into discrete slices along the tool axis, and the boundary
points of these slices are converted into start and exist angles
with respect to the +Y axis of the TCF.

3.1 Generation of swept volume

Since our attention is concentrated on the finishing and
semi-finishing milling processes, therefore, the calculations
of CWE are focused on point milling strategy, and the swept
volume will be computed only for the spherical part of
the ball-end mill. For this part, the surface is generated by

rotating a generatrix r(u) :
{

y = y(u)

z = z(u)
around the ZT axis,

and the parametric form for the revolution surface can be
expressed as:

S(u, ψ) = [y(u) cos ψ, y(u) sin ψ, z(u)] (9)

According to the general rigid body motion theory, a
moving surface caused by motions of a cutter can be
expressed as:

F(u, ψ; t) = R(t)S(u, ψ) + p(t) (10)

where R(t) ∈ SO(3) is a rotation matrix and p(t) ∈ R3 is a
translation vector.

For the given t and u, the key factor to obtain the
envelope surface is the calculation of ψ which corresponds
to the point on both the moving surface and swept envelope

Fig. 3 Processes of obtaining CWE for ball-end milling
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surface. The value of ψ can be obtained by solving the
following equation [20]:

a cos ψ + b sin ψ = c (11)

where:
⎧
⎪⎪⎨

⎪⎪⎩

a
�= vx(t)z

′(u) + ωy(t)(y(u)y′(u) + z(u)z′(u))

b
�= vy(t)z

′(u) − ωx(t)(y(u)y′(u) + z(u)z′(u))

c
�= vz(t)y

′(u)

(12)

If |c/√a2 + b2| ≤ 1, ψ can be resolved by Eq. 11 as
follows:

ψ =

⎧
⎪⎪⎨

⎪⎪⎩

sin−1
(

c√
a2+b2

)

− φ

π − sin−1
(

c√
a2+b2

)

−φ

, (u, t) ∈ [u0, u1]×[t0, t1]

(13)

where sin φ = a√
a2+b2

, cos φ = b√
a2+b2

. For the given

generatrix r(u), the values of y(u), y′(u), z(u), and z′(u)

can be calculated. Now, the keys to calculate ψ are the
calculations of angular velocity ω(t) and linear velocity v(t)
of the cutter, and they can be obtained as follows [21]:

ω(t) =
⎡

⎣
ωx(t)

ωy(t)

ωz(t)

⎤

⎦ ,RT R′ =
⎡

⎣
0 −ωz(t) ωy(t)

ωz(t) 0 −ωx(t)

−ωy(t) ωx(t) 0

⎤

⎦

(14)

v(t) = [
vx(t) vy(t) vz(t)

]T = RT (t)p′(t) (15)

Next, the calculations of rotation matrix R(t), translation
vector p(t), and R′(t), p′(t) are performed. To calculate
the rotation matrix, the tool frame at any cutting position
must be defined. Assuming A1 and A2 are the unit tool
axis vectors at two adjacent cutter locations, then, the unit
tool axis vector A (Fig. 4) at any position between the
two adjacent cutter locations can be obtained by quaternion
interpolation of the vectors A1 and A2, as follows:

A = sin ((1 − t0)α)

sin α
A1 + sin(t0α)

sin α
A2 (16)

where t0 is the position variable and t0 ∈ [0, 1], α is the
angle between vectors A1 and A2, and α = cos−1〈A1,A2〉.
When the value of α is very small and the value of sin α is
close to 0, then, the linear interpolation method is adopted
to calculate vector A, as follows:

A = ((1 − t0)A1 + t0A2)

|(1 − t0)A1 + t0A2| (17)

The moving frame (e2, e3, e1) of the ball-end cutter can
be defined as follows:
⎧
⎨

⎩

e1 = A
e3 = A × Vc/|A × Vc|
e2 = e3 × e1

,A × Vc 	= 0 (18)

where Vc is the feed direction of the tool which can be
obtained as follows:

Vc = (x2 − x1, y2 − y1, z2 − z1)
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
(19)

where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the
tool tip at two adjacent cutter position points. The value of
A1, A2, (x1, y1, z1), and (x2, y2, z2) can be obtained from
cutter location (CL) files. Then, the moving frame at any
cutting position can be obtained.

Assuming that the frames of positions 1 and 2 are e1 :
(e1

2, e
1
3, e

1
1) and e2 : (e2

2, e
2
3, e

2
1), respectively, after, we

define the matrices M1 = [e1
2 e1

3 e1
1], M2 = [e2

2 e2
3 e2

1], and
the transformation matrix R from frame e1 to frame e2 is
defined as:

R = M−1
2 M1 (20)

For the rotation matrix R with components rij , the
equivalent angle � and equivalent axis k are given by the
expressions [22]:

� = cos−1
(

r11 + r22 + r33 − 1

2

)

(21)

k = 1

2 sin �

⎡

⎣
r32 − r23

r13 − r31

r21 − r12

⎤

⎦ (22)

Fig. 4 Illustration of tool axis
vectors
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The skew symmetric matrix S(k) that corresponds to vector
k = (kx, ky, kz) is defined as:

S(k) =
⎡

⎣
0 −kz ky

kz 0 −kx

−ky kx 0

⎤

⎦ (23)

Then, the derivative of the rotation matrix R(t) can be
calculated as follows:

R′(t) = S(k)R(t) (24)

And the derivative of the translation vector p(t) can be
calculated as follows:

p′(t) = fVc (25)

where f is the feed rate.
The angular and linear velocity of cutter can be obtained

according to Eqs. 14 and 15, and the values of ψ can be
calculated by Eqs. 11–13. Note that ψ is a function of the
parameters u and t . Then, by substituting Eq. 13 into Eq.
10, the parametric expression of the swept envelope surface
can be obtained, and the generated swept volume is shown
in Fig. 3.

3.2 Three-orthogonal dexel–based representation

In the extended Z-map approach [5], for one Z direction
vector (ZDV), multiple intersections and gap elements
between the intersection points (Fig. 5a) can be stored
using a linked list data structure. The three-orthogonal
dexel approach is similar to the extended Z-map approach;
however, the depth buffer is applied in three orthogonal
directions. The three-orthogonal dexel representation of the
ball end part is shown in Fig. 5b.

Axis-aligned bounding boxes (AABBs) are used to
reduce the size of data and improve computational
efficiency. After the AABBs of workpiece and tool are
obtained respectively, the interior space of each AABB is
divided by a set of evenly distributed parallel line segments
with the same grid spacing. To perform Boolean operations,

the line segments which represent the workpiece must be
on the same lines with the line segments which represent
the tool. However, there may be some gaps between them,
as shown in Fig. 6a, so some adjustments must be done,
and the AABB of workpiece is selected as a reference. For
example, in the Z direction, the recalculated z coordinates
of the AABB of tool can be obtained as follows:

zC1 = zA + floor

(
zC − zA

zgs

)

zgs (26)

zD1 = zA + ceil

(
zD − zA

zgs

)

zgs (27)

where zA is the z coordinate of point A; zC and zC1 are
the z coordinates of point C before and after recalculated,
respectively; zD and zD1 are the z coordinates of point D

before and after recalculated, respectively; zgs is the grid
spacing in the Z direction; and the floor and ceil are the
functions that map a real number to the greatest preceding or
the least succeeding integer, respectively. The recalculated
AABB of tool is shown in Fig. 6b.

In order to represent the workpiece and tool by the
three-orthogonal dexel–based approach, two C++ classes
are defined as follows:
class RayXYZ

{public :
int RayMark;
bool InterF lag;
double RayStartP oint[3];
vector < double > Height

}
class OrthogonalT riDexel

{public :
double AABB lim[6];
double GridSpacingXYZ[3];
int NumGridXYZ[3];
vector < vector < RayXYZ >> RayGroup;

}

Fig. 5 a Representation for the
extended Z-map approach. b
Three-orthogonal dexel
representation of ball end part
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Fig. 6 a, b Adjustment of
AABB of tool

The class “RayXYZ” is defined to store the dexel data;
it is the data structure of dexel which used in this paper.
The member “RayMark” is used to indicate the direction
of dexel, and when it is equal to 0, 1, and 2 respectively,
the direction of dexel is parallel to Z axis, X axis, and
Y axis, respectively. The value of “InterFlag” indicates
whether the dexel ray intersects with the workpiece or
tool, when intersections exist the value is “true”, if no
intersection exists, the value is “false.” The member
“RayStartPoint” is used to store the coordinates of the start
point of the ray. The vector “Height” is used to store the
heights between the intersections and start point. Multiple
heights from the smallest to the largest can be stored in
the vector, and the gap between every two intersection
points can be obtained by the difference between every
two heights, such as “Height [1]−Height [0]” and
“Height [3]−Height [2]”.

The class “OrthogonalTriDexel” is defined to store the
data of three-orthogonal dexel representation for workpiece
or tool. The array “AABB lim [6]” is used to store the
coordinates of the AABB, the minimum x, y, and z

coordinates of the AABB are stored in the first, third,
and fifth elements of the array, respectively; the maximum
x, y, and z coordinates of the AABB are stored in the
second, fourth, and sixth elements of the array, respectively.
The array “GridSpacingXYZ [3]” is used to store the grid
spacings in the X, Y , and Z directions; the grid spacings
of workpiece and tool are equal in the same direction.
The array “NumGridXYZ [3]” is used to store the number
of grids in the X, Y , and Z directions. The member
“RayGroup” is used to store the dexel data of the workpiece
or tool.

After the intersections between the line segments and
workpiece, tool, and tool swept volume are respectively
obtained by the function UF MODL trace a ray, the three-
orthogonal dexel data of workpiece, tool, and tool swept
volume can be stored by the class “OrthogonalTriDexel”,

respectively. Then, the dexels of the in-process workpiece
can be obtained by Boolean operations between the three-
orthogonal dexel data of the workpiece and tool swept
volume, as shown in Fig. 7a. And, the intersection part
between the tool and workpiece can be obtained by Boolean
operations between the three-orthogonal dexel data of the
workpiece and tool, as shown in Fig. 7b.

Fig. 7 Three-orthogonal dexel representations of a in-process work-
piece and b intersection part between tool and workpiece
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3.3 Computation of engagement domain

Once the three-orthogonal dexels of the intersection part
have been obtained, the contact surface between the tool
and workpiece can be represented by the endpoints of the
dexels, which are located on the spherical surface of the
ball-end mill, as shown in Fig. 3. Then, the 3D point set
is projected to a plane perpendicular to the cutter axis. The
closed boundary of the contact patch is obtained by the
shape reconstruction of the data points via α-shapes [23].
Then, the engagement zone can be represented by the closed
polygon, as shown in Fig. 8.

To calculate the start and exit angles of each slice
element of the cutter, the circle that corresponds to the
middle of each slice element is projected to the same plane
which is vertical to the cutter axis. Then, the intersections
between each circle and all line segments of the polygon are
calculated. After, the intersection points must be converted
into start and exit angles that are required for the force
prediction model. For the intersection point A (Fig. 8), the
radial immersion angle θ which is measured from the +YT

axis can be obtained as follows:

If < OA, e2 >= cos−1
(

[OA, e2]

|OA| |e2|
)

≤ π

2
(28a)

T hen, θ = cos−1
(

[OA, e3]

|OA| |e3|
)

(28b)

If

⎧
⎨

⎩

< OA, e2 >= cos−1
(

[OA,e2]
|OA||e2|

)
> π

2

< OA, e3 >= cos−1
(

[OA,e3]
|OA||e3|

)
> π

2

(29a)

T hen, θ = 2π − cos−1
(

[OA, e3]
|OA| |e3|

)

(29b)

Fig. 8 Projected view of the engagement domain along the cutter axis

If

⎧
⎨

⎩

< OA, e2 >= cos−1
(

[OA,e2]
|OA||e2|

)
> π

2

< OA, e3 >= cos−1
(

[OA,e3]
|OA||e3|

)
< π

2

(30a)

T hen, θ = − cos−1
(

[OA, e3]
|OA| |e3|

)

(30b)

where e2 and e3 are the unit vectors of XT and YT axes
respectively; < OA, ei > (i = 2, 3) is the angle between
the vectors OA and ei ; cos−1 is the inverse cosine function;
[OA, ei] (i = 2, 3) is the dot product of the vectors OA and
ei ; and | • | is the magnitude of vectors. The obtained start
and exit angles are shown in Fig. 3.

4 New identification expressions of cutting
force coefficients

For the given cutting conditions, the cutting force coeffi-
cients can be determined by equating the measured forces
with the corresponding analytical expressions. The average
cutting force can be expressed as:

F̄xyz = 1

�θ

∫ θex

θst

∫ z2

z1

dFxyz(θ, z)dθ (31)

where �θ = θex − θst , θst and θex denote the start and
exit radial immersion angles, respectively. The analytical
calculation can be simplified by assuming the average
cutting force per tooth period to be independent of helix
angle, so that β0 = 0 can be set.

When a ball-end cutter with four uniformly spaced flutes
is used for slot milling tests, there are two teeth engaged
with workpiece simultaneously (Fig. 9). If the tooth i is
taken as a reference, when 0 < θi < π/2, the teeth i and
i + 1 are engaged with workpiece; when π/2 < θi < π , the
teeth i −1 and i are engaged with workpiece. For horizontal
milling, the feed inclination angle α = 0, according to

Fig. 9 Illustration of cutter-workpiece engagement
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Eqs. 3, 5, and 6, the elemental cutting forces acting on the
j th slice of the ith tooth can be expressed as:

⎡

⎣
dFi,j,x(θ)

dFi,j,y(θ)

dFi,j,z(θ)

⎤

⎦ = ft

2

⎡

⎣
−Ktc sin 2θi,j −2Krcsin2θi,j −2Kacsin2θi,j

2Ktcsin2θi,j −Krc sin 2θi,j −Kac sin 2θi,j

0 −2Kac sin θi,j 2Krc sin θi,j

⎤

⎦ ×
⎡

⎣
dz

sin κdz

cos κdz

⎤

⎦

+
⎡

⎣
−Kte cos θi,j −Kre sin θi,j −Kae sin θi,j

Kte sin θi,j −Kre cos θi,j −Kae cos θi,j

0 −Kae Kre

⎤

⎦ ×
⎡

⎣
ds

sin κds

cos κds

⎤

⎦

(32)

When 0 < θi < π
2 , the elemental cutting forces acting on

the j th slice of the (i + 1)th tooth can be expressed as:

⎡

⎣
dF(i+1),j,x,(θ)

dF(i+1),j,y(θ)

dF(i+1),j,z(θ)

⎤

⎦ = ft

2

⎡

⎣
Ktc sin 2θi,j −2Krccos2θi,j −2Kaccos2θi,j

2Ktccos2θi,j Krc sin 2θi,j Kac sin 2θi,j

0 −2Kac cos θi,j 2Krc cos θi,j

⎤

⎦ ×
⎡

⎣
dz

sin κdz

cos κdz

⎤

⎦

+
⎡

⎣
Kte sin θi,j −Kre cos θi,j −Kae cos θi,j

Kte cos θi,j Kre sin θi,j Kae sin θi,j

0 −Kae Kre

⎤

⎦ ×
⎡

⎣
ds

sin κds

cos κds

⎤

⎦

(33)

The elemental cutting forces acting on the j th slice of cutter
can be expressed as:

⎡

⎣
dFi,j,x(θ) + dF(i+1),j,x(θ)

dFi,j,y(θ) + dF(i+1),j,y(θ)

dFi,j,z(θ) + dF(i+1),j,z(θ)

⎤

⎦ = ft

2

⎡

⎣
0 −2Krc −2Kac

2Ktc 0 0
0 −2Kac(sin θi,j + cos θi,j ) 2Krc(sin θi,j + cos θi,j )

⎤

⎦ ×
⎡

⎣
dz

sin κdz

cos κdz

⎤

⎦

+
⎡

⎣
Kte(sin θi,j − cos θi,j ) −Kre(sin θi,j + cos θi,j ) −Kae(sin θi,j + cos θi,j )

Kte(sin θi,j + cos θi,j ) Kre(sin θi,j − cos θi,j ) Kae(sin θi,j − cos θi,j )

0 −2Kae 2Kre

⎤

⎦ ×
⎡

⎣
ds

sin κds

cos κds

⎤

⎦

(34)

As the helix angle β0 = 0, the instantaneous cutting forces
acting on the tool can be expressed as:

⎡

⎣
F1,x(θ)

F1,y(θ)

F1,z(θ)

⎤

⎦ = ft

⎡

⎣
0 −Krc −Kac

Ktc 0 0
0 −Kac(sin θi + cos θi) Krc(sin θi + cos θi)

⎤

⎦ ×
⎡

⎣
A1

A2

A3

⎤

⎦

+
⎡

⎣
Kte(sin θi − cos θi) −Kre(sin θi + cos θi) −Kae(sin θi + cos θi)

Kte(sin θi + cos θi) Kre(sin θi − cos θi) Kae(sin θi − cos θi)

0 −2Kae 2Kre

⎤

⎦ ×
⎡

⎣
B1

B2

B3

⎤

⎦

(35)

where A1 = ∫ z2
z1 dz, A2 = ∫ z2

z1 sin κ(z)dz, A3 =
∫ z2
z1 cos κ(z)dz, B1 = ∫ z2

z1 ds(z), B2 = ∫ z2
z1 sin κ(z)ds(z),

B3 = ∫ z2
z1 cos κ(z)ds(z). Similarly, when π

2 < θi < π ,

the instantaneous cutting forces acting on the tool can be
expressed as:

⎡

⎣
F2,x(θ)

F2,y(θ)

F2,z(θ)

⎤

⎦ = ft

⎡

⎣
0 −Krc −Kac

Ktc 0 0
0 Kac(cos θi − sin θi) Krc(sin θi − cos θi)

⎤

⎦ ×
⎡

⎣
A1

A2

A3

⎤

⎦

+
⎡

⎣
−Kte(sin θi + cos θi) Kre(cos θi − sin θi) Kae(cos θi − sin θi)

Kte(sin θi − cos θi) −Kre(sin θi + cos θi) −Kae(sin θi + cos θi)

0 −2Kae 2Kre

⎤

⎦ ×
⎡

⎣
B1

B2

B3

⎤

⎦

(36)
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After, the instantaneous cutting forces are averaged over the
radial immersion angle yielding:

F̄xyz = 1

�θ

[∫ θlim

θst

F1,xyz +
∫ θex

θlim

F2,xyz

]

(37)

Submitting (35) and (36) into (37):

F̄xyz = ft

�θ

⎡

⎣
0 −(C1 + C4)A2 −(C1 + C4)A3

(C1 + C4)A1 0 0
0 (C2 − C6)A3 −(C2 − C6)A2

⎤

⎦ ×
⎡

⎣
Ktc

Krc

Kac

⎤

⎦

+ 1

�θ

⎡

⎣
−(C3 + C5)B1 −(C2 − C6)B2 −(C2 − C6)B3

(C2 − C6)B1 −(C3 + C5)B2 −(C3 + C5)B3

0 2(C1 + C4)B3 −2(C1 + C4)B2

⎤

⎦ ×
⎡

⎣
Kte

Kre

Kae

⎤

⎦

(38)

where C1 = θi |θlim
θst

, C2 = (sin θi − cos θi)|θlim
θst

,

C3 = (cos θi + sin θi)|θlim
θst

, C4 = θi |θex

θlim
, C5 =

(sin θi − cos θi)|θex

θlim
, C6 = (cos θi + sin θi)|θex

θlim
. In this

paper, θst = 0, θlim = π
2 , θex = π . Expressing (38) as a

linear function of ft :

F̄s = F̄scft + F̄se, (s = x, y, z) (39)

After tests are performed at a series of feeds ft , a linear
regression of the measured average values about feeds can
be obtained. Then, F̄sc and F̄se correspond respectively to
the slopes and intercepts of the straight lines. Equating the

measured and analytical average cutting forces, then, the
cutting force coefficients can be expressed as:

Ktc = F̄yc

(C1 + C4)A1
�θ (40a)

Krc = (C1 + C4)A3F̄zc − (C2 − C6)A2F̄xc

(C1 + C4)(C2 − C6)(A
2
2 + A2

3)
�θ (40b)

Kac = − (C2 − C6)A3F̄xc + (C1 + C4)A2F̄zc

(C1 + C4)(C2 − C6)(A
2
2 + A2

3)
�θ (40c)

Kte = (C2 − C6)F̄ye − (C3 + C5)F̄xe
[
(C2 − C6)

2 + (C3 + C5)
2] B1

�θ (40d)

Kre =
[
(C2 − C6)

2 + (C3 + C5)
2] B3F̄ze − 2(C1 + C4)(C3 + C5)B2F̄ye − 2(C1 + C4)(C2 − C6)B2F̄xe

2(C1 + C4)
[
(C2 − C6)

2 + (C3 + C5)
2] (B2

2 + B2
3 )

�θ (40e)

Kae = −2(C1 + C4)(C2 − C6)B3F̄xe + 2(C1 + C4)(C3 + C5)B3F̄ye + [
(C2 − C6)

2 + (C3 + C5)
2] B2F̄ze

2(C1 + C4)
[
(C2 − C6)

2 + (C3 + C5)
2] (B2

2 + B2
3 )

�θ (40f)

It can be seen that the tangential shear-specific coeffi-
cient Ktc is only influenced by the force in Y direction.

5 Experiments and simulations

5.1 Milling tests

To calculate cutting force coefficients by the identification
expressions proposed in Section 4, a series of slot milling
tests were performed on the workpiece made of titanium
alloy TC4 with dimensions of 150 mm × 70 mm × 60
mm (Fig. 10a) to get the average cutting forces which are
needed by the identification expressions. Then, to verify
the accuracy of the proposed method, tests were conducted
on both the rectangular workpiece and the workpiece with
curved surface. The dimensions of the workpiece with
curved surface are shown in Fig. 10b. The rectangular

workpiece was machined on a three-axis CNC machine with
a maximum spindle speed of 10,000 rpm, the curved surface
was machined on a five-axis CNC machine along curve 6,
curve 12, and curve 18, as shown in Fig. 10b, where 6,
12, and 18 represent the distances from the cutting position
to the upper surface of the workpiece along the height
direction, and the unit is in millimeters.

The ball-end mills with 4 flutes, an 8-mm diameter, and
a 40◦ nominal helical angle were used in the tests. During
the machining processes, the cutting forces were measured
by a three-component cutting force dynamometer (Kistler
9255B); the dynamometer was fixed to the machine tool;
and the workpieces were fixed to the dynamometer by the
fixtures. A charge amplifier (Kistler Type 5010), a signal
analyzer (DT9837B), and the data acquisition software were
used to record the cutting forces, and the sampling rate was
10,000 Hz. The tests were conducted without any lubricant,
and just air was used as the coolant.
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Fig. 10 Experimental workpieces. a Rectangular workpiece. b Workpiece with curved surface

To study the influences of cutting element position
and spindle speed on cutting force coefficient, the cutting
parameters for the slot milling tests are presented in
Table 1. For the certain spindle speed and cutting depth,
full immersion experiments were repeated at each feed rate.
To analyze the accuracy of the proposed model, according
to the cutting parameters selected by the calibration tests,
the cutting parameters for validation tests are shown in
Tables 2 and 3. For each set of cutting parameters presented
in Table 2, a horizontal milling test was performed. For the
three set of cutting parameters presented in Table 3, milling
tests were performed along curve 6, curve 12, and curve 18,
respectively.

5.2 Analysis of cutting force coefficients

To calculate the cutting force coefficients for the j th slice
element, the cutting forces generated by the j th slice
element were extracted from the measured cutting forces
by the subtraction process described in [24]. Then, the
cutting force coefficients for the cutting parameters shown
in Table 1 were calculated by the identification expressions
proposed in Section 4.

The cutting force coefficients calculated by the tests
performed at 3000 rpm were used to study the influence of
the cutting element position on cutting force coefficients.
The calculated results are shown in Fig. 11, and it can
be seen that with the increase of cutting depth, the values
of Ktc and Krc first decrease, then, their values gradually
increase towards the end of the arc zone, while Kac

increases gradually throughout the arc zone. The cutting
force coefficients at the tool tip are higher; this due to the
fact that the cutting speed at the tool tip zone is zero and

causes significant ploughing forces [25]. Meanwhile, the
edge-specific coefficients exhibit little variations with the
increase of cutting depth. The cutting force coefficients can
be fitted by a 4th-order polynomial about cutting element
position, and the fitting results are shown in Fig. 11.

The cutting force coefficients calculated by the tests
performed at ap = 1 mm were used to study the influence
of the spindle speed on cutting force coefficients. It is clear
that the cutting force coefficients first increase and then
decrease with the increase of spindle speed, as shown in
Fig. 12. This is because with the increase of spindle speed,
a built-up edge on the tool may be produced, so the cutting
force increases. However, as the continuous increase of
spindle speed, the generated cutting heat increases, then,
the built-up edge gradually decreases until it disappears;
also, the generated cutting heat may lead to thermal
softening of the workpiece material. The effects of these
two aspects lead to a reduction of the cutting force as
well as the cutting force coefficients. Compared with the
cutting force coefficient for 5000 rpm, the cutting force
coefficients for 6000 rpm are higher; this results from the
increased vibration of the machining system. The cutting
force coefficients can be fitted by a cubic polynomial
about spindle speed n, and the fitting results are shown
in Fig. 12.

Based on the influences of the cutting element position
and spindle speed on the cutting force coefficients as
discussed previously, the fitting model of the cutting force
coefficient with respect to the cutting element position z and
the spindle speed n can be written as:

Kx = W0 + W1z + W2z
2 + W3z

3 + W4z
4 + W5n

+W6n
2 + W7n

3, (x = tc, rc, ac, te, re, ae)
(40g)

Table 1 Cutting parameters
applied in the calibration tests n (rev/min) ap (mm) ft (mm/tooth)

2000–6000 interval 1000 0.25–2.25 interval 0.25 0.0025–0.01 interval 0.0025
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Table 2 Cutting parameters of
validation tests for milling the
rectangular workpiece

n (rpm) ap (mm) ae (mm) ft (mm/tooth)

3000 2 1 0.015

4500 1.5 1 0.015

6500 1 1 0.01

Table 3 Cutting parameters of
validation tests for milling the
workpiece with curved surface

n (rpm) a (mm) ft (mm/tooth) Lead (◦) Tilt (◦)

3000 0.25 0.015 10 5

4500 0.25 0.01 15 5

6500 0.25 0.01 20 5

Fig. 11 Influence of cutting element position on cutting force coefficients at n = 3000 rpm. a Shear-specific coefficients. b Edge-specific
coefficients

Fig. 12 Influence of spindle speed on cutting force coefficients at ap = 1 mm. a Shear-specific coefficients. b Edge-specific coefficients
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Table 4 The fitted polynomial coefficients of Ktc, Krc, Kac, Kte, Kre, and Kae

Coefficients W0 W1 W2 W3 W4 W5 W6 W7

Ktc 2806.58 −5234.37 4254.6 −1494.65 191.41 0.67 −1.57 × 10−4 1.22 × 10−8

Krc 1645.38 −4189.23 4025.75 −1634.1 237.468 0.46 −1.04 × 10−4 7.82 × 10−9

Kac −1361.96 3679.93 −3872.36 1710.31 −267.88 0.29 −6.92 × 10−5 5.32 × 10−9

Kte −12.02 −14.5 19.06 −10.17 1.87 0.018 −4.42 × 10−6 3.55 × 10−10

Kre 1.3 −1.7 −7.9 6.4 −1.26 2.87 × 10−3 −7.11 × 10−7 5.73 × 10−11

Kae −2.91 4.41 −8.41 3.99 −0.54 4.14 × 10−3 −1.02 × 10−6 8.05 × 10−11

Fig. 13 Fitting surfaces of cutting force coefficients with respect to cutting element position and spindle speed. a Ktc. b Kte. c Krc. d Kre. e Kac.
f Kae
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The values of W0, W1, W2, W3, W4, W5, W6, and W7

were calculated by nonlinear fitting of the cutting force
coefficients calculated by the measured average forces. The
results are shown in Table 4; then, the model was used to
calculate cutting force coefficients for the validation tests.
Meanwhile, the fitting surfaces of cutting force coefficients
with respect to the cutting element position and spindle
speed are shown in Fig. 13, and the red circles represent the
values calculated by tests.

5.3 Simulation analysis

In order to verify the accuracy of the proposed method, the
simulated cutting forces obtained by the proposed method
should be compared with the measured values. Meanwhile,
the coefficients of the fitting model proposed in [9] were
calculated by the cutting force coefficients for n = 3000
rpm, then the fitting model were used to calculate the cutting
force coefficients for the validation tests, and the calculated
cutting forces were compared with the measured results.
Due to the tool runout during milling processes, the cutting
forces generated by each tooth are different, in this paper,
the influence of tool runout is eliminated by averaging the
cutting forces generated by all teeth.

For the verification tests performed on rectangular
workpiece with the cutting parameter presented in Table 2,
as horizontal milling was adopted to machine the workpiece,
so the CWE at each cutter location is same as well as the
cutting force. The simulated and measured results of the
tests performed on the rectangular workpiece are shown in
Fig. 14. The blue solid curves denote the measured signals,
the green dotted lines denote the values calculated by the
model which has not considered the influence of spindle
speed [9], while the red dash-dotted lines indicate the values
obtained by the model proposed in this paper. It can be seen
that when the spindle speed is 3000 rpm, the cutting forces
calculated by the fitting model proposed in [9] can achieve
a good calculation accuracy. If not, the simulation results
obtained by the model proposed in this paper are more
accurate than the results obtained by the model proposed in
[9]. This is because the fitting model proposed in [9] did
not consider the influence of the spindle speed on cutting
force coefficients, and the coefficients of the fitting model
were calculated by the cutting force coefficients obtained by
the tests performed at 3000 rpm. So, when the fitting model
proposed in [9] is used to calculate cutting forces for the
tests performed at 4500 rpm and 6500 rpm, the calculation
errors are high.

For the milling processes along curve 6, curve 12, and
curve 18 (Fig. 10b) with the cutting parameter presented in
Table 3, as the curved surface workpiece used in this paper is
a thin-walled part, vibration will occur during the machining
of both sides of the workpiece. However, the proposed

Fig. 14 Comparison of measured and predicted cutting forces for
milling rectangular workpiece with the parameters presented in
Table 2. a n = 3000 rpm. b n = 4500 rpm. c n = 6500 rpm

model is suitable for stable machining, so the cutter location
that belongs to stable machining should be selected as the
simulation cutter location. According to the test results, the
points k at the middle of curve 6, curve 12, and curve 18
were selected as the cutter locations to calculate cutting
force by the method proposed in this paper. For the selected
cutting position point k, the start and exist immersion angles
calculated by the method presented in Section 3 are shown
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in Fig. 15, and the simulated and measured cutting forces
are shown in Fig. 16. It is evident that the shape and size of
the cutting forces along the X, Y , and Z directions change
obviously with the changes of the tool orientation. The
reason is that as lead angle increases, the CWE changes
from the tool tip zone toward the end of the arc zone, so
the differential cutting edge segments which are involved
in the cutting and their corresponding immersion angles are

Fig. 15 Start and exist immersion angles at the selected cutting
position point k for milling workpiece with curved surface. a Lead =
10◦. tilt = 5◦. b Lead = 15◦, tilt = 5◦. c Lead = 20◦, tilt = 5◦

Fig. 16 Comparison of measured and predicted cutting forces for
milling workpiece with curved surface with the parameters presented
in Table 3. a n = 3000 rpm; lead = 10◦, tilt = 5◦. b n = 4500 rpm; lead
= 15◦, tilt = 5◦. c n = 6500 rpm; lead = 20◦, tilt = 5◦

changed (Fig. 15), and the cutting force coefficients for each
differential cutting edge segment are different.

It can be found that compared with the tests performed at
3000 rpm and 4500 rpm, the relative errors of the simulation
results for the tests performed at 6500 rpm are higher.
This results from the fact that the measured forces for the
tests performed at 6500 rpm are altered by high-frequency
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Table 5 Comparison of the result of this paper with existing literatures

Reference 3/5-axis milling Tool Workpiece Maximum error

Gao G. et al. [11] 3-axis 4-fluted bull-nose mill Rectangular workpiece 20%

Grossi N. [12] 3-axis 2-fluted end mill Rectangular workpiece 10%

Guo M.L. et al. [15] 5-axis 4-fluted ball-end mill Rectangular workpiece 20%

Tuysuz O. et al. [25] 5-axis 2-fluted ball-end mill Workpiece with free form 18%

Lamikiz A. et al. [26] 3-axis 2-fluted ball-end mill Workpiece with slope face 15%

This paper 5-axis 4-fluted ball-end mill Workpiece with curved surface 15%

oscillations; also, 6500 rpm is out of the range of spindle
speed selected by the calibration tests, so the fitting errors
of cutting force coefficients are more higher. Apart from the
influences of tool runout and vibrations, the predicted force
is in good agreement with that of the test results, and when
the measured cutting force is regarded as a standard, the
relative errors are less than 15%.

The prediction results of existing literatures are presented
in Table 5. It can be seen that in the existing literatures,
the maximum relative errors of the simulation results are
between 10 and 20%. As the maximum error of the model
proposed in this paper is about 15%, the proposed method
is effective and accurate.

The direction of cutting force affects the oriented
receptance between cutting force and resultant vibration.
Also, the CWEs and cutting force coefficients are two
important factors for constructing stability lobe diagrams.
The results of this paper will be used to optimize tool
orientation to suppress machining vibration during five-axis
milling of thin-walled parts.

6 Conclusions

In this paper, a method was proposed to predict the
cutting force for 5-axis ball-end milling of the workpiece
with curved surface. Firstly, a three-orthogonal dexel–
based method was presented to calculate CWEs. Then, to
reduce the costs of calibration tests, we presented the new
identification expressions of cutting force coefficients for a
4-fluted ball-end cutter based on the average forces obtained
by the slot milling tests with double-tooth engagement.
After, the proposed identification expressions were used
to calculate the cutting force coefficients for different
cutting parameters. Then, the influences of the cutting
element position and spindle speed on the cutting force
coefficients were studied. The results show that the cutting
force coefficients are higher at the tool tip zone, and they
change significantly with the increase of cutting depth.
And the cutting force coefficients first increase and then
decrease with the increase of spindle speed. Then, a fitting
model of the cutting force coefficient with respect to the

cutting element position and spindle speed was presented;
the coefficients of the fitting model were obtained by
nonlinear fitting of the calculated cutting force coefficients.
After, the proposed method was verified by tests performed
on both rectangular workpiece and curved surface with
different cutting parameters. The results show that the
proposed method can accurately predict the cutting forces
for different cutting parameters, and the maximum relative
error of the simulation results is about 15%. The results
of this paper present a basis for suppressing chatter during
five-axis milling of thin-walled parts.
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