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Abstract
The geometrical error of the formed part is one of the most significant limitations that restricts the widespread application of
incremental sheet forming (ISF) in aerospace industry. The geometry of ISF parts is dependent upon the tool path, so its correction
can improve the part precision. Previous research has utilized model predictive control approach to achieve this, but the method was
restricted to simple convex shapes. In this study, the tool path and the formed shape were parameterized and the analytical models of
geometry responses relative to tool perturbations were proposed. Then, a model predictive control algorithmwas developed, aiming
at reducing the geometrical errors of the parts with complex non-convex shapes in the ISF process. Experimental validation of the
developed control algorithmwas carried out by forming a complex shape by single-point incremental forming. The results show that
the developed control algorithm greatly reduced the geometrical error in the closed-loop process.
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Abbreviations
Subscripts
h Notation is related to horizontal module of the control

algorithm

v Notation is related to vertical module of the control algorithm

k Notation is related to kth step of the ISF process

ρ Notation is related to ρth step in the prediction horizon

i Notation is related to ith tool path point in a tool path
contour

τ Notation is related to τth horizontal geometry representa-
tion point

η Notation is related to ηth vertical geometry representation
point

Superscripts
∗ Optimization of the related notation
Accents
b Predicted value of the related variable
¯ Nominal value of the related variable
Variables
w Reference state of a geometry representation point

y Measured state of a geometry representation point
uv Tool step-depth between neighboring steps
uh Tool step-over between neighboring steps
c Tool path contour
z Tool path depth
m Total number of sampling points on a tool path contour
r Radius of the round end of the tool
α Wall angle of target shape
p Total number of prediction horizon
n Total number of steps in an ISF process
G Total number of vertical geometry representation points
S Total number of horizontal geometry representation points
nh Unit normal vector of a tool path contour
J Cost of an optimization problem
λ Weighting factor in the cost function
Ω Boundary of inequality constraint of the cost function
I Identity matrix
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1 Introduction

Incremental sheet forming (ISF) is an emerging flexible
manufacturing technology. A great advantage of ISF com-
pared to traditional sheet forming methods, such as stamping,
is that a part-specific die is not necessary, especially for the
single-point ISF, leading to significant savings in cost and
time for the die making [1]. In the ISF process, a flat sheet
can be formed into a part with a specific shape through con-
tinued accumulation of localized deformation caused by the
movement of a tool following a pre-designed path [1, 2]. The
target shape of the part can be altered at any time by simply
changing the tool path. This unique feature greatly increases
the flexibility of sheet forming, which enables ISF to be a
promising technology for rapid small-batch and customized
production [3, 4].

Despite this advantage of ISF over conventional sheet
manufacturing technologies, there are unfortunately several
significant limitations which currently prevent the widespread
industrial application of ISF [3, 5, 6]. The main reason is that
standard implementations of ISF cannot meet the part geomet-
rical accuracy requirements for aerospace manufacturing in-
dustries [1, 7, 8]. The geometrical error between the formed
and the target shape of the part are primarily due to the sheet
springback [9]. Springback refers to the shape change of the
formed part when the tool is released or the part is unclamped,
which is a significant problem for all sheet manufacturing
technologies [1, 10]. Furthermore, the bulging of the sheet in
the bottom area and the bending of the sheet at the edges are
also noticeable sources of the geometrical error [10, 11].

Many researchers have contributed to the improvement of
the geometrical precision of ISF parts. As the part geometry is
to a large extent determined by the paths of the tool move-
ment, in the previous researches, three paradigms have been
used to modify the tool paths: (1) Experimental observations-
based approaches. The geometric accuracy was improved by
modification of the CAD model from which the tool path was
planned [12], changing of tool path parameters such as step-
depth and scallop height [13, 14], selecting the tool path pa-
rameters via multi-objective optimization [15], and proposing
a quadratic spiral tool path generation strategy [16]. However,
these ad hoc approaches are suitable only for simple shapes
and difficult to be generalized to other shapes. (2) Iterative
forming of the whole parts by experiment or simulation. The
tool paths were optimized after each forming iteration to
achieve better geometric precision based on the measurements
of the geometric deviations of the formed parts and the CAD
models of the target parts, and iterations are halted when the
geometric accuracy met the pre-determined requirements.
Multiple iterative tool path alteration approaches have been
considered including direct error feedback [17], iterative
learning control [18, 19], and fast Fourier and wavelet
transform–based feedback [9]. These methods are more

generic and systematic than the empirical approaches; howev-
er, a common limitation shared by these approaches is that
multiple parts need to be formed until the optimized tool path
is determined. (3) Online tool path adjustment based on in-
process shape feedback. In this approach, process of forming
the shape is split into the forming of a sequence of contours.
Intermediate shapes are measured after each of the contours
are formed. Based on these measurements, the remaining tool
path can be adjusted during the ISF processes by several ap-
proaches such as proportional control [20], impulse response
model–based optimal control [21], and model predictive con-
trol (MPC) [1, 7, 22]. This type of tool path correction ap-
proaches enables real-time reductions of geometrical errors
due to inappropriate tool paths or possible system
disturbances.

The model predictive control method has recently drawn
the attention of researchers as a possible online ISF tool path
control approach. In MPC, a prediction model is used to pre-
dict the system response under a specific system state and
inputs, and the control sequence driving the system to a de-
sired state can be computed online by solving mathematical
optimization problems, satisfying the system and/or input con-
straints [23, 24]. MPC usually works in a receding horizon
manner. More specifically, at each sampling step, the control
sequence is only solved in a finite horizon and only the first
action in the control sequence will be executed by the plant. At
the next sampling step, the control sequence will be solved
repeatedly with the current state feedback [23, 25]. Hao and
Duncan [22] confirmed the feasibility ofMPC in ISF tool path
control for the first time. Prior to the closed-loop ISF process,
an open-loop process of forming the same part was conducted
to determine the impulse response of geometry to step-depth
perturbation which was used to develop a geometry prediction
model. Then, a MPC control framework was formulated and
validated on forming a truncated cone and a truncated pyramid
[22]. Instead of using the experiment-based prediction model,
Lu et al. [1] proposed a geometry-based prediction model to
predict the response of the geometry to step-depth, and thus
the pre-forming process in the work of Hao and Duncan et al.
[22] was no longer not required. The MPC control framework
was established and utilized in correcting the step-depths in
closed-loop processes of forming a truncated cone and a trun-
cated pyramid. Later, Lu et al. [7] for the first time proposed a
MPC control framework which contained two parallel MPC
controllers, i.e., the vertical controller and the horizontal con-
troller. The vertical controller was the same as that in their
previous work [1], while the horizontal controller was newly
built aiming at compensating the geometrical errors on the
side walls of the part.

Although the existing MPC control framework showed
effectiveness in the case studies with single-point ISF [7], it
has significant limitations that narrows down its applicable
cases to parts with simple convex shapes and makes its
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application in forming more complex non-convex parts diffi-
cult. Firstly, the tool path contour was parameterized in a polar
coordinates system and the corrections were then restricted in
radial directions for all the points. This parametrization ap-
proach is only valid for convex shapes with horizontal con-
tours that are close to circles, as shown in Fig. 1a. However,
when the tangent of the contour is away from perpendicular to
the radial direction, this method becomes ineffective, as
shown in Fig. 1b and c, since corrections in the radial direction
(as opposed to normal direction) may end up being tangent to
the contour (i.e., normal to the direction of the error).
Therefore, aiming at forming more complex parts drives the

demand for the development of a new contour parameteriza-
tion method. Secondly, the measured geometry was sampled
in a number of vertical sections passing the origin of the polar
coordinates system. In the horizontal module, the scaling fac-
tors of the radial coordinates of the tool path points at each
sampling section were optimized, and the scaling factors of
the rest tool path points were calculated through linear inter-
polation based on nominal radial coordinates. The prerequisite
of this radial-based interpolation method is that between each
section, the nominal radial coordinates of the tool path points
vary monotonically. This interpolation approach applied to
simple convex shapes only and may have limited capability

Fig. 1 The existing polar-based parameterization approach [7] is effective
on a a convex part with circular horizontal contour, but ineffective on b a
convex part with non-circular horizontal contour and c a non-convex part

(representative figure, not to scale) because the radial direction differs
from the error direction
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when applying to non-convex shapes. Additionally, in the
existing MPC framework [7], the horizontal and vertical con-
trol modules are uncoupled and worked in parallel without
sharing the optimization results. Actually, the step-depth and
the step-over have coupled effects on the geometry, and the
existing uncoupled control framework may result in poor per-
formance when the part becomes complex. Thus, a new MPC
framework that couples the two modules is expected to be
proposed.

In this work, the MPC control algorithm developed by Lu
et al. [7] was improved and generalized to form complex parts
by single-point ISF. Firstly, parameterization approaches of
the tool path and the formed shape are presented.
Furthermore, prediction models for horizontal and vertical
geometry responses relative to tool perturbations are pro-
posed. Then, an MPC control algorithm is developed with
the horizontal and vertical modules coupled in a sequential
manner. The optimizations are mapped to quadratic program-
ming (QP) problems. To test the feasibility and performance
of the developed control framework, a “dog bone”–shaped
part which had a non-convex shape and varying curvatures
is formed by single-point ISF.

2 Parameterization of the tool path
and the formed shape

In this section, the parameterization of the tool path and the
formed shape is presented, which will be applied in ISF

process modeling (Section 3) and MPC control algorithm de-
velopment (Section 4).

2.1 Parameterization of tool path

In most cases, as shown in Fig. 2, the ISF tool path is com-
posed of a series of points in three-dimensional space, referred
to as tool path points. In this work, when the controller is
activated, the closed-loop tool path is parameterized by hori-
zontal contours using periodic and parametric spline represen-
tation [26, 27] c and vertical depths z. With this parameteriza-
tion, the initial tool path contour can be evenly sampled intom
tool path points by spline interpolation. This ensures the uni-
form distribution of the tool path points and the corresponding
tool path points in each contour share the same normal.

The ISF process performs effectively in discrete time, dur-
ing which the tool usually moves clockwise or counterclock-
wise, following a tool path contour ck in the horizontal plane
with a fixed depth zk to complete an intermediate step k and
then steps down to an intermediate step k + 1, until the final
step n, as is shown in Fig. 2. In this process, the geometry
response relative to the tool perturbation is localized to the end
of the tool. By the accumulation of the localized deformation,
global deformation can be achieved. Since the movement of
the machine tool used in this work is restricted into the vertical
and horizontal directions only, between the two neighboring
steps k and k + 1, themovement of the tool is decomposed into
a vertical step-depth uv, k + 1 and a horizontal step-over uh, k + 1

respectively. The direction of the step-depth is fixed to the

Fig. 2 Schematic diagram of single-point ISF processes
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vertical direction, and thus uv, k + 1 is a vector of scalars.
Whereas the directions of horizontal movement of all the tool
path points are different, although they are in the same hori-
zontal plane, uv, k + 1 is a vector of vectors. The two vectors are
expressed as

uh;kþ1¼ uh;kþ1;1 uh;kþ1;2 ⋯ uh;kþ1;m

� � ð1Þ

uv;kþ1¼ uv;kþ1;1 uv;kþ1;2 ⋯ uv;kþ1;m½ � ð2Þ

As is pointed out above, in each step of ISF process, the
tool path contours are at fixed depths, and thus

uv;kþ1;1¼uv;kþ1;2¼…¼uv;kþ1;m≔uv;kþ1 ð3Þ

Fig. 3 Schematic diagram of the formed and the target shape (representative figure, not to scale)

Fig. 4 Comparison between the
directions of the optimized step-
overs in the polar-based [7] and
the new contour-based
parameterization approach
(representative data, not to scale)
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Therefore, the relations of the tool path contours between
the neighboring steps can be expressed as

ckþ1 ¼ ckþuh;kþ1 ð4Þ

Fig. 5 Critical locations on the
edge of a “dog bone”–shaped part
and the comparison between the
vertical sections in the polar-
based [7] and the contour-based
reference frame

Fig. 6 Schematic diagram of a critical section
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zkþ1 ¼ zk þ uv;kþ1: ð5Þ

2.2 Parameterization of the formed shape

The geometric error between the formed and the target
shape of the part by single-point ISF is illustrated in
Fig. 3. To facilitate further analyses, in this work, the
target shape was virtually divided into four zones, i.e.,
edge, wall, conjunction, and base, as shown in Fig. 3.
In Fig. 3, α is the wall angle, r is the radius of the tool,
and w is the depth of the target shape. The edge zone is
the area of the sheet near the edges of the target shape.
Wang et al. [28] and Lu et al. [1] both reported that the
geometrical error in the edge zone is mainly caused by
sheet bending and for single-point ISF cannot be com-
pensated through feedback control without support from
underneath the sheet. For this reason, the shapes in the
edge zones were not considered in their studies [1, 28]
and this study. The base and the wall zones consist of

the majority of the area of the part, and thus compen-
sation for the error in the base and the wall zone is the
focus of this research. The conjunction zone is the tran-
sient area between the wall and the base zone.

For any point on the formed shape, the geometrical error is
the distance to its nearest neighboring point on the target
shape. As shown in Fig. 3, the geometrical error can be
decoupled into the horizontal geometric error and the vertical
geometric error. The horizontal geometric error is the major
concern in the wall zone of which the geometry is mainly
affected by the horizontal tool path contour ck. The geometry
of the base zone and the inside half of the conjunction zone is
determined by the depth of the tool path contour zk, and the
vertical geometric error is the focus of this research. In the
closed-loop ISF process, at each intermediate step, uh and uv
can be optimized to reduce the horizontal and the vertical
geometrical error respectively, leading to the improvement
of final part precision. To this end, the formed shape is param-
eterized in the horizontal and vertical directions for the process
modeling in the next section.

Fig. 7 Illustration of the
association of the critical sections
to tool path points (representative
figure, not to scale)

Fig. 8 Block diagram of the developed control algorithm
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2.2.1 Horizontal parameterization

In the optimization of uh, both the values and directions of
step-overs for all the tool path points should be determined. In
each contour, there are positive correlations between the num-
ber of tool path points and the size and the complexity of the
target shape. Optimizing the values and directions of the step-
overs for all the tool path points is practically infeasible, since
the space of the possible step-overs is enormous [21]. To re-
duce the complexity of the optimization of uh to meet the
computational time requirement of the online MPC controller,
Lu et al. [7] parameterized the tool path contour with polar
coordinates system, and they set the directions of the step-
overs of all the tool path points as their radial directions. In
this way, the dimensionality of uh was reduced to a vector of
scalars, which make the on-line control of uh feasible.
However, as discussed in Section 1, this polar-based parame-
terization becomes less effective as the complexity of the tar-
get shape increases and is invalid for non-convex shapes.
Therefore, a more generic contour-based parameterization ap-
proach is proposed in this work.

The unit normal vectors nhfor all the closed-loop tool path
points were calculated. In the optimization process of uh, the
direction of the optimized step-over was set as the normal
direction of each tool path point. Thus,

uh;i¼uh;inh;i ∀i ¼ 1; 2;⋯;m ð6Þ
where the subscript i represents that the variable is related to
ith tool path point in a tool path contour. Figure 4 shows the
comparison between the directions of the optimized step-
overs in the polar-based parameterization of [7] and the new
contour-based parameterization approach. Therefore, for each
tool path point, the optimization of the vector uh, i was sim-
plified to the optimization of the scalar uh, i.

An algorithm has been developed to detect the locations on
the edge contour of the target shape, referred to as critical
locations, where the curvature changes signs or is discontinu-
ous. For the shape with constant slope, the algorithm only
needs to be performed once, since the features of the horizon-
tal contours of the shape at different depths are the same. The
longitudinal section of the target shape at each critical location
that passes its normal is referred to as a critical section. With
the contour-based local coordinate systems taking the critical
locations as the origins, the formed shapes of each intermedi-
ate step in each critical section are measured, and the step-
overs in each critical section will be optimized. Figure 5
shows the critical locations on the edge of a “dog bone”–
shaped part, and the comparison between the vertical sections
at the critical locations in the polar-based [7] and the contour-
based reference frame. Figure 6 shows the schematic diagram
of a critical section.

To meet the computational time requirement of the control-
ler, the optimization of the step-overs is performed indepen-
dently in these critical sections on the formed shape. In each
critical section, one point on the wall, referred to as a horizon-
tal geometry representation point, is chosen as a representative
of the wall. As is shown in Fig. 6, in the contour-based local
coordinate system, the intersection between the horizontal line
with a depth of wv + r(1 − cosα) and the measured shape is the
horizontal geometry representation point. This point on the
partially formed shape is identified in each intermediate step
throughout the ISF process. The value of the geometry repre-
sentation point on the n-axis, i.e., the horizontal distance from
the geometry representation point to the edge, is the measured
state of the geometry representation point yh. The value of the

Fig. 9 The CAD model of the target shape

Table 2 Parameters of
the MPC Parameter Value

Ωh1 − 0.5
Ωh2 0

Ωv1 − 1.0
Ωv1 1.0

λh 0.7

λv 0.2

Table 1 Processing parameters

Sheet type Aluminum 7075

Sheet thickness 0.063 in.

Sheet size 290 × 290 mm

Tool radius (round) 20 mm

Shape wall angle (constant) 50 deg

Shape depth 30 mm

Nominal step-depth (absolute value) 2 mm

Total steps 15
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target shape in the same critical section at the same depth is the
reference state of the geometry representation point wh. It is
obvious that driving the horizontal geometry representation
points in all the critical section to their references leads to
the reduction of the horizontal geometrical errors over the
entire shape.

However, there is no guarantee that for each critical sec-
tion, there is a tool path point in it; thus, an approach to
associate the calculation results in critical sections to the
tool path points is proposed. As the tool path points are
usually dense enough, the optimal values of step-overs

calculated in each critical section are respectively assigned
to the tool path points which are the nearest neighboring
points to each of the corresponding critical locations on
the edge of the shape. The step-overs of the unassigned tool
path points can be approximated by linear interpolation
based on the nominal spline length between the tool path
points and two neighboring assigned tool path points. Since
the initial tool path was evenly sampled, i.e., the distance
between each pair of neighboring tool path points is con-
stant, the interpolation process was performed based on the
index of the tool path points, as illustrated in Fig. 7.

Fig. 10 Outputs of the control framework in the controlled steps of the
ISF process: a step-depths of all tests, b step-overs of MPC-0 in section
A, c step-overs of MPC-0 in section C, d step-overs of MPC-0 in section

F, e step-overs ofMPC-1 in sectionA, f step-overs ofMPC-1 in sectionC,
and g step-overs of MPC-1 in section F
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2.2.2 Vertical parameterization

The formed and the target shape are registered into the
same Cartesian frame of reference. An equally spaced grid
representation in the horizontal plane is projected onto the
surface of the formed shape. As the vertical geometric
error is mainly seen in the surfaces of the part that are
horizontal, i.e., the base zone and the inner half of the
conjunction zone, the projection points on the formed
shape in these zones are selected as the vertical geometry
representation points. The measured state of each geome-
try representation point is its z coordinates, while the ref-
erence state is the target depth of the concerning step.

3 Modeling of ISF process

In the single-point ISF process, the part is formed from a flat
sheet. In the initial period, i.e., first few steps, global defor-
mation is dominating and the shape of the wall cannot be
formed to the full extent [21, 29]. After the initial period, the
response of the shape is localized to the end of the tool, and
the development of an analytical model of the shape re-
sponses relative to the tool perturbation can become feasible
[21]. Due to its high non-linearity, an ideal ISF prediction
modelbykþ1 ¼ f yk ; ckþ1; zkþ1ð Þ is non-linear. To simplify the
optimization problem, the model was decoupled as the hor-
izontal predictionmodelbyh;kþ1 ¼ h yh;k ; uh

� �
and the vertical

Fig. 10 (continued)
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prediction model byv;kþ1 ¼ v yv;k ; uv
� �

. The horizontal model

predicts the response of the horizontal geometry represen-
tation points relative to uh, while the vertical model predicts
the response of the vertical geometry representation points
relative to uv.

Allwood et al. [21] proposed that based on experi-
ence, it is very difficult to create a perfect non-linear
geometry prediction model, and optimizing with the
non-linear model is practically infeasible due to long
computation time. Following [7, 22], to meet the com-
putational time requirement of the MPC controller, the
horizontal and vertical models are linearized to this gen-
eral form

byd;kþ1;Θ ¼ ad;Θyd;k;Θ þ bd; kþ1;Θud;kþ1;Θ ∀k ¼ 1; 2; 3;⋯; n−1½ � ð7Þ

In Eq. (7), the subscript d represents the spatial direc-
tion which the equation is related to, and d can be h
and v which represents for the horizontal and vertical
directions respectively. The subscript Θ represents that
the variable is related to the Θth geometry representa-
tion point in either horizontal or vertical direction. n is
the number of total steps in the ISF process.

Assuming that the process is additive, i.e., the geometry
change is independent on the previous geometry, in both hor-
izontal and vertical models, ad, Θ can be determined as 1.
Thus, Eq. (7) can be further simplified as

Fig. 10 (continued)
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byd;kþ1;Θ ¼ yd;k;Θ þ bd; kþ1;Θud;kþ1;Θ ∀k

¼ 1; 2; 3;⋯; n−1½ � ð8Þ

bd, k + 1, Θ is the linear response of the geometry represen-
tation point relative to the spatial perturbation of the tool. This
model assumes that the geometry of the formed part follows
the tool path, and the springback of the sheet in the ISF pro-
cess is handled through the feedback. Therefore, in the hori-
zontal model, the linear response can be approximated by

bh; kþ1;τ ¼
byh;kþ1;τ−yh;k;τ

uh;kþ1;τ
≈
wh;kþ1;τ−wh;k;τ

uh; kþ1;τ

¼ 1 ∀k

¼ 1; 2; 3;⋯; n−1½ �;∀τ ¼ 1; 2; 3;⋯; S½ � ð9Þ

where the subscript τ represents the variable is related to the
τth horizontal geometry representation point; S is the total
number of horizontal geometry representation points; uh rep-
resent for the nominal step-over;wh is the reference state of the
horizontal geometry representation points which can be ob-
tained from the CAD model of the target shape. Similarly, in
the vertical model, the linear response can be approximated as

bv; kþ1;η ¼
byv;kþ1;η−yv;k;η

uv;kþ1
≈
wv;kþ1;η−wv;k;η

uv;kþ1

¼ 1 ∀k

¼ 1; 2; 3;⋯;N−1½ �;∀η ¼ 1; 2; 3;⋯;G½ � ð10Þ

where the subscript η represents the variable is related to the
ηth vertical geometry representation point; G is the total num-
ber of vertical geometry representation points; uv represent for

the nominal step-depth; wv is the reference state of the vertical
geometry representation points.

For all the steps in the MPC prediction horizon, the above
linear model can be built as the matrix equation

bY kþ1 ¼ Y k þ BU kþ1 ð11Þ

The detailed matrix building procedure can be found in [7].

4 Model predictive control algorithm

In an ISF process, the tool path contour is the input and the
formed shape or partially formed shape is the output of the
each forming step. Due to the computational complexity, the
step-depth and step-over between each tool path contour and
the positions of the geometry representation points are equiv-
alently the input and output of this MPC control algorithm.
MPC is performed after each step in a finite prediction horizon
based on the feedback of the current shape. The goal of MPC
is to minimize the difference, mathematically described by the

ℓ2-norm (‖·‖2), between the predicted shape bY and the refer-
ence shape W in the future steps.

As the prediction model is decoupled as the horizontal
and the vertical model, in this MPC control algorithm, two
control modules are developed, aiming at respectively op-
timizing step-over uh and step-depth uv. However, as the
step-over uh and step-depth uv has coupled effects on the
formed shape, to avoid possible opposing effects from two
uncoupled modules and to achieve a better performance of
the control algorithm, the two modules are coupled in a
sequential manner in this work. More specifically, the

Fig. 10 (continued)
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horizontal module optimizes the step-over uh first, and then
the optimized step-over u*h are sent to the vertical module.
This means, for the vertical module, the positions to step
down are determined, and then the optimized step-depths
u*v which match the optimized step-overs can be solved.
Therefore, the optimal tool path of next step can be obtain-
ed

z*kþ1 ¼ zk þ u*v;kþ1 ð12Þ

c*kþ1;i ¼ ck;i þ u*h;kþ1;inh;i ∀i ¼ 1; 2;⋯;m ð13Þ

Figure 8 illustrates the block diagram of this control algo-
rithm. The developments of the horizontal and vertical control
module are presented respectively below.

In the horizontal control module, numerical optimization is
performed to solve the optimal step-over in each critical sec-
tion respectively. The optimization problem in the section τ
can be mathematically expressed as

minJ h;τ ¼ bY h;kþp;τ−Wh;kþp;τ

���
���
2
þ λh Uh;kþp;τ−Uh;kþp;τ

���
���
2

subject to Ωh1≤uh;kþρ;τ−uh;kþρ;τ ≤Ωh2 ∀ρ ¼ 1; 2;⋯; p

ð14Þ

Fig. 11 Comparisons of the target and the formed parts in normal vertical section A at the intermediate steps of a 5, b 8, and c 12 and the final step of d 15
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Similarly, the optimization problem of the vertical control
module can be mathematically expressed as:

minJ v ¼ bY v;kþp−Wv;kþp

���
���
2
þ λv Uv;kþp−Uv;kþp

���
���
2

subject to Ωv1≤uv;kþρ−uv;kþρ≤Ωv2 ∀ρ ¼ 1; 2;⋯; p

ð15Þ
where λh and λv are non-negative weighting factors. In
the cost functions, Eqs. (14) and (15), the first item
quantifies the deviations between the predicted and tar-
get state and the second item represents the variations
of the outputs from their nominal values. Following

previous work [7], Eqs. (14) and (15) can be solved
by mapping to quadratic programming (QP) problems.

5 Experimental verification

The performance of the control algorithm in forming the part
with a non-convex shape by single-point ISF is assessed ex-
perimentally. A “dog bone”–shaped part, with non-convex
horizontal contour and varying curvature, was selected as
the benchmark in this work. The CAD model of the part is
shown in Fig. 9 in which the forming areas on the sheet is
marked in yellow. The detailed processing parameters are

Fig. 11 (continued)
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listed in Table 1. For comparison, the experiments were con-
ducted with the existing control algorithm (MPC-0), the de-
veloped control algorithm in this work (MPC-1), and the con-
trol algorithm disabled (open-loop).

The experiments were conducted on an Amino
computer-numerical-control (CNC) machine that can per-
form single-point and multi-point ISF processes. Z-level
milling tool paths with constant step-depths were pre-
generated by CAM with the surface milling module, and
then the milling tool paths were further processed by an in-
house program to be adapted to the single-point ISF pro-
cess. To avoid the sheets being pushed to one side, for all
the tests carried out in this work, the directions of the move-
ment of the tool alternate between anticlockwise and

clockwise. Backplates were placed under the sheets to pro-
vide additional supports to the non-forming areas of the
sheets. Lubrication oil was used to decrease the friction
between the end of the tool and the sheets. The geometry
of the formed shapes and the intermediate shapes were
measured by a Creaform HanyScan 300 3D scanner. The
programming platform of the control algorithm was Python
3.6, and the package for solving the QP optimization was
cvxopt [30]. The program was executed on a Windows 10
PC with a CPU of Intel Core i5-8400 and a RAM of 16GB.

In the open-loop experiments, all the intermediate steps
were formed consecutively, and the final shapes were
scanned. In the closed-loop experiments, due to the limi-
tations of the equipment, the ISF process had to be

Fig. 12 Comparisons of the target and the formed parts in normal vertical section C at the intermediate steps of a 5, b 8, and c 12 and the final step of d 15
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temporarily paused at each intermediate step so that the
measurement can by conducted by the 3D scanner. After
the completion of one step, the tool was released, and the
currently formed shape was scanned. Then, the tool
moved back to the same position in which it was released
for scanning to start the next step. The formed shapes of
all the steps were scanned as clouds of points. The work
coordinate system of CNC machine was set when plan-
ning the initial tool path with the CAD model of the target
shape by CAM. For both the open-loop and the closed-
loop experiments, all the scanned clouds of points were
registered to the work coordinate system of CNC ma-
chine. The registration process consisted of two steps:
(a) coarse registration—the cloud of points was manually

registered to the CNC work coordinate system using the
VXelements™ software [31]; (b) fine registration—the
cloud of points was then registered to the CNC work
coordinate system by an in-house plane-based Iterative
Closest Points (ICP) algorithm [32, 33].

Following existing works [1, 7], in MPC-0, the vertical
geometry representation points were selected from the origin
to the top edge in a cross-section profile on the x-axis of the
CNC work coordinate system. The horizontal geometry rep-
resentation points were selected from the radial sampling sec-
tions at the same critical points on the edge as used in the
newly developed algorithm, which is described in
Section 2.1 and illustrated in Fig. 5. The prediction models
in MPC-0 can be found in [1, 7].

Fig. 12 (continued)
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As discussed in Section 3, the prediction model can
only become valid after the first few steps in which the
transition area is formed from the flat surface to the slop-
ing wall and the shape of the wall cannot be formed to the
full extent [21, 29]. Due to this limitation, in both closed-
loop experiments, for steps 1–5, the ISF process was per-
formed with the open-loop tool path. The controller was
activated after the completion of step 5. In the following
few steps from step 6, the vertical error on the base is
large, which leads to large variance of the optimal step-
depth to the nominal value. The vertical controller can
reduce the vertical error rapidly, but it can cause large
wall angle change. Hence, the horizontal controller was
only enabled after the vertical error was significantly

reduced. Therefore, the vertical module of the controller
activated after step 5, while the horizontal controller acti-
vated after step 8. The control framework worked in the
receding horizon manner. Considering the computational
complexity, in both closed-loop experiments, the predic-
tion horizon was 3 steps and was reduced when the final
step was approaching. The other parameters of the control
framework are list in Table 2.

6 Results and discussions

Both the open-loop and closed-loop experiments were con-
ducted for the assessment of the performance of the control

Fig. 13 Comparisons of the target and the formed parts in normal vertical section F at the intermediate steps of a 5, b 8, and c 12 and the final step of d 15
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algorithm. In the open-loop experiments, the initial tool path
was executed by the CNC machine, with constant nominal
step-depths and the step-overs. In the closed-loop experiment,
after being activated, the vertical module and the horizontal
module of developed algorithm responded quickly to take
control of the step-depths and the step-overs. Figure 10 shows
the output, i.e., the step-depths and the step-overs, of the con-
trol algorithm during the closed-loop process.

Figures 11, 12, and 13 show the vertical sections of the part
at the intermediate steps and the final step. The sections shown
in Figs. 11, 12, and 13 pass three different critical locations
shown in Fig. 5 and demonstrate the geometrical errors in the
different areas on the part which represent different geometri-
cal features of concave curve, convex curve, and the transition

between the concave and the convex curves, respectively. The
reduction of the geometrical error at different locations can be
clearly observed in the section views, which was the contri-
bution of the optimizations of the step-depths and the step-
overs as shown in Fig. 10. As the vertical control module
activated after step 5, the vertical geometrical error was re-
duced rapidly and tended to be stabilized after step 8. The
horizontal control module was enabled after step 8, and in
general, the horizontal geometrical error was reduced in the
following steps.

To more clearly illustrate the geometrical error reduction
achieved by the developed control algorithm, the global abso-
lute error distribution maps of the parts formed by the open-
loop and the closed-loop processes are presented in Fig. 14. In

Fig. 13 (continued)
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different zones on the part, i.e., edge, wall, conjunction, and
base, statistical analyses of the global absolute error of the
measured points were performed, and the results are listed in
Tables 3, 4, 5, and 6 respectively. For the edge zone, there was
no improvement of accuracy in both closed-loop processes.
Hao and Duncan [28] and Lu et al. [1] both pointed out that
due to lack of support from underneath, the geometric error

cannot be reduced by closed-loop control approach in single-
point ISF process, and the results in this work confirms their
conclusions.

In the base zone, the maximum errors were reduced from
1.84 mm (open-loop) to 0.50 mm (MPC-0) and 0.28 mm
(MPC-1) respectively. Both algorithms greatly reduced the geo-
metric error; however, the present MPC-1 algorithm achieved a

Fig. 14 Geometrical error distribution maps of the finally formed shapes with (a) controller disabled, (b) MPC-0, and (c) MPC-1

Table 3 Statistical analyses of the global absolute error in edge zone

Statistical indicator Open-loop process MPC-0 MPC-1

Max value (mm) 2.45 2.56 2.49

Min value (mm) 0.01 0.01 0.02

Average value (mm) 0.72 0.75 0.79

Standard deviation (mm) 0.52 0.56 0.57

Table 4 Statistical analyses of the global absolute error in wall zone

Statistical indicator Open-loop process MPC-0 MPC-1

Max value (mm) 1.73 2.58 1.03

Min value (mm) 0.01 0.01 0.01

Average value (mm) 1.27 0.51 0.31

Standard deviation (mm) 0.35 0.33 0.21
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lower maximum error by 44% compared to the previous MPC-
0, which indicates that predictive model in MPC-1 can more
accurately predict the geometric response relative to step-depth.
In the wall zone, the maximum errors achieved in the tests were
1.73 mm (open-loop), 2.58 mm (MPC-0), and 1.03 mm (MPC-
1), and the present MPC-1 had a lower maximum error by 60%
compared to the previous MPC-0. In the conjunction zone, the
maximum errors obtained in three tests were 1.65 mm (open-
loop), 4.13 mm (MPC-0), and 1.06 mm (MPC-1), respectively,
and the present MPC-1 achieved a lower maximum error by
74% compared to the previous MPC-0. It can be seen from
Figs. 11 and 12 that in sections A and C, since the radial direc-
tion and the normal direction were identical, the measured pro-
file of the part formed with the previous MPC-0 was similar to
that with the present MPC-1. However, in sections where the
radial direction is away from coincidence with the normal di-
rection, such as section F, the difference between the measured
profiles of the part formed by the previous and the presentMPC
algorithm became noticeable, as shown in Fig. 13. It can be
noticed from Fig. 14 that with MPC-0, the geometric error of
the formed part between sections B and C and sections C and D
is higher than 2 mm. The reason was twofold. Firstly, the radial
direction is not the direction of the springback on the wall of the
part, and the springback cannot be effectively compensated by
moving every tool path point along the radial direction. More
importantly, the scaling factors of the tool path points lay be-
tween the sampled sections were calculated through radial-
based interpolation method. This method become ineffective
if the nominal radial coordinate of the unassigned point is out
of the range of the radial coordinates of the two corresponding
end points. For instance, the scaling factor of the 20th tool path
point with a radial coordinate of 56.5624 was interpolated as
0.9857. As the springback on the wall was always toward in-
side, a scaling factor larger than 1.0 could enlarge the tool path

contour to compensate the springback. However, a scaling fac-
tor smaller than 1.0 could shrink the contour. The experiment
results demonstrate that although the existing control algorithm
(MPC-0) performed effectively on forming simple shapes with
single-point ISF in previous studies [7], it was not applicable to
non-convex shapes. In contrast, the developed control algo-
rithm (MPC-1) achieved a desired performance.

7 Conclusion

This work proposed and tested a general ISF tool path and
geometry parameterization approach for non-convex
shapes. With the step-depth and step-over between each
forming step and the positions of the geometry representa-
tion points being the input and output, horizontal and ver-
tical geometry prediction models were proposed, based on
the assumption that the ISF process is additive and the
geometry follows the tool path. An MPC control algorithm
was developed with the geometry prediction model and
quadratic programming optimizer, which includes the hor-
izontal and the vertical modules that coupled in a sequen-
tial manner to optimize the tool paths, so as to achieve a
lowest global geometrical error of the part.

To experimentally test the developed control algorithm, a
“dog bone”–shaped part with non-convex horizontal contour
and varying curvature was formed by single-point ISF. Both
the open-loop process (with controller disabled) and the
closed-loop process (with previous MPC-0 and present
MPC-1) were conducted for comparison. The results show
that in the base zone, the maximum errors were 1.84 mm
(open-loop), 0.50 mm (MPC-0), and 0.28 mm (MPC-1) re-
spectively; in the wall zone, the maximum errors were
1.73 mm (open-loop), 2.58 mm (MPC-0), and 1.03 mm
(MPC-1) respectively; in the conjunction zone, the maximum
errors were 1.65 mm (open-loop), 4.13 mm (MPC-0), and
1.06 mm (MPC-1) respectively. Compared to the previous
MPC-0, the present MPC-1 reduced the maximum errors by
44%, 60%, and 74% in the base, wall, and conjunction zones
respectively. This proved that the present control algorithm
had a satisfactory performance in forming non-convex shapes,
while the previous algorithm was not applicable.

The geometry response in the prediction model in this
algorithm is approximated as constant for the entire shape.
This may limit the performance of this algorithm when the
target shape becomes more complex, since for different fea-
tures on the part, such as flat surface, varying-sloped side
wall, and constant-sloped side wall, the geometry response
relative to tool perturbation may vary. Future work will fo-
cus on developing feature-based geometry prediction model
to further adapt this MPC algorithm to processing more
complex shapes by ISF.

Table 5 Statistical analyses of the global absolute error in conjunction
zone

Statistical indicator Open-loop process MPC-0 MPC-1

Max value (mm) 1.65 4.13 1.06

Min value (mm) 0.50 0.00 0.00

Average value (mm) 1.25 0.64 0.31

Standard deviation (mm) 0.21 0.81 0.23

Table 6 Statistical analyses of the global absolute error in base zone

Statistical indicator Open-loop process MPC-0 MPC-1

Max value (mm) 1.84 0.50 0.28

Min value (mm) 1.37 0.02 0.01

Average value (mm) 1.68 0.36 0.15

Standard deviation (mm) 0.08 0.08 0.05
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