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Abstract
Error compensation is one of effective and economical means to improve the machining accuracy of machine tools. The
measurement accuracy of kinematic errors has great impact on the accuracy of machine tool error modeling. Some measurement
errors are inevitably generated due to the distortion of the slide table and the limit of local measuring stroke. To solve these
problems, an improved machine tool volumetric error compensation method is proposed in this paper, based on linear and
squareness error correction method. The linear errors, including position errors and straightness errors, are corrected by consid-
ering the distance effect between optical mirror groups and the surface of worktable. The squareness errors are corrected through
modifying local squareness errors measured with double ball bar to global squareness errors, with the aid of straightness errors
measured with multi-laser calibrator. Then volumetric errors are obtained based on multi-body system theory, and volumetric
diagonal errors are measured with laser interferometer. It is illustrated that the bidirectional systematic deviation of positioning of
four volumetric diagonals reduced about 81.3%, 35.2%, 29.2%, and 4.5% respectively by using this improved machine tool
volumetric error compensation method, and it is of obvious advantages in contrast with traditional compensation method with
direct measurement data. The improved error compensation method proposed in this paper has universal applicability and has
great significance on machine tool accuracy improvement.
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Nomenclature
LSECM Linear and squareness error correction method
DMM Direct measurement method
MLC Multi-laser calibrator
PSD Position sensitive detector
δx(X) Positioning error of X axis
δy(Y) Positioning error of Y axis
δz(Z) Positioning error of Z axis

δy(X) Straightness error of X axis in Y direction
δz(X) Straightness error of X axis in Z direction
δx(Y) Straightness error of Y axis in X direction
δz(Y) Straightness error of Y axis in X direction
δx(Z) Straightness error of Z axis in X direction
δy(Z) Straightness error of Z axis in Y direction
εx(X) Roll error of X axis
εy(X) Pitch error of X axis
εz(X) Yaw error of X axis
εy(Y) Roll error of X axis
εx(Y) Pitch error of Y axis
εz(Y) Yaw error of Y axis
εz(Z) Roll error of Z axis
εx(Z) Pitch error of Z axis
εy(Z) Yaw error of Z axis
αxy XYplane squareness error
βyz YZ plane squareness error
γxz XZ plane squareness error
Δex Volumetric error in X direction
Δey Volumetric error in Y direction
Δez Volumetric error in Z direction
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Lpiw−o Distance from worktable to interference mirror in
i-th error measurement

rm Length of squareness measuring rod
gβmn Pragmatic squareness error of MN plane
lβq;p

mn The measured squareness error of MN plane be-
tween measuring position q and p

1 Introduction

The improvement of machine tools’ accuracy is of great im-
portance for modern precision manufacturing process [1, 2].
The error modeling and compensation is widely used to im-
prove the machine tool accuracy due to its economy and con-
venience. Multi-body theory system, screw theory, and vector
chain expression are the main error modeling methods which
have been widely used [3–5]. But the measurement accuracy
of kinematic errors will directly affect the effects of error com-
pensation. Therefore, rapid and accurate measurement of ki-
nematic errors is significant for machine tool error compensa-
tion. Various approaches have been presented to improve the
error modeling methods to increase the machine tool error
compensation accuracy.

Machine tool error compensation is to establish the error
transfer model and offset the error that causes the deviation
between the tool tip and the workpiece. The determination of
appropriate error parameters can directly affect the accuracy of
the error model, which will deal with the certain hierarchy of
geometric errors, kinematic errors, and volumetric errors.
Ekinci et al. [6] proposed the methodology based on the der-
ivation of tool position error and experimentally verified the
relationships between straightness and angular kinematic er-
rors. Ekinci et al. [7] further established an improved analyt-
ical model in which the internal mechanisms causing motion
errors are considered, and the relationship between the motion
errors of the axis’ carriage and the guideways’ geometric er-
rors are investigated. Majda [8] presented an analytical meth-
od to investigate the effects of geometric errors on joint kine-
matic errors. Zhang et al. [9] presented a novel model of the
hydrostatic guideways motion errors, and the effects of geo-
metric errors of guide rails on motion errors are studied.
Generally, it is clear that using the kinematic error is easier
and more accurate than using geometric errors to establish the
volumetric error model.

The optic methods are extensively used to measure the
kinematic errors of machine tools and the error compensation
strategies are established based on the measured errors
[10–13]. Aguado et al. [14] discussed different error identifi-
cation methods and presented an error identification strategy
in volumetric error compensation of machine tools based on
laser tracker measurements. Ezedine et al. [15] proposed a
novel method for error calibration and compensation of a
compact extra-small CNC bridge machine tool. Linares et al.

[16] proposed a novel error measurement and compensation
strategy based on a tracking interferometer and the
multilateration method. Xiang et al. [17] measured the kine-
matic errors of a multi-axis spiral bevel gears milling machine,
and volumetric error prediction and compensation models are
gained by the forward and inverse kinematics modeling via
the screw theory. Givi et al. [18] discussed the relevance of the
volumetric error and the machined feature, and the corre-
sponding optimized error compensation are subsequently pro-
posed. Zhou et al. [19] investigated the geometric modeling
and compensation of machine tools, and homogenous trans-
formation and differential motion matrix using multi-body
theory were used to enhance the machine tool accuracy. Fu
et al. [20] presented one novel model of squareness errors
using the D-H matrix to improve the accuracy of integrated
geometric errors of the machine tools. Khan et al. [21] mea-
sured the kinematic errors, and an efficient recursive compen-
sation methodology was used to remove the machine tool
errors. Vahebi et al. [22] categorized the linear axis in two
different extruding type, and sliding type with different error
models and corresponding error compensation strategies are
proposed. Wu et al. [23] proposed an iterative compensation
method to improve the machining accuracy of a non-
orthogonal five-axis machine tool, and nine-line method was
used to obtain the geometric errors. Zha et al. [24] presented
an approach tomodel and compensate the vertical straightness
error of gantry type open hydrostatic guideways. Zhong et al.
[25] presented an improved volumetric compensation method
based on a squareness error identification method. Mostafa
et al. [26, 27] considered the Abbe effects in homogeneous
transformation matrix–based models and proposed an im-
proved kinematic error model.

The volumetric error models and error compensation
methods abovementioned have been investigated by some
scholars in order to improve the machine tool volumetric ac-
curacy. However, due to the distortion of the slide table, there
exists some ambiguity in the identification of positioning and
straightness errors, which may lead to some inaccuracy of
volumetric error compensation. Furthermore, the measure-
ment of the squareness error is usually performed only within
the local stroke range of two measuring axes, which results in
some differences between the global squareness values and
the measurement results. The forward error modeling needs
accurate kinematic errors as input; however, the measurement
errors of linear and squareness errors caused by aforemen-
tioned reasons have not been considered in the previous error
models. Therefore, different error measuring tests may obtain
different linear and squareness error results, especially for the
machine tool with large size worktable and long stroke
guideways.

In order to solve these problems, a novel solution for de-
creasing the measurement errors of linear and squareness
error measurement is proposed in this paper. The aim is to
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obtain the contribution of linear and squareness errors in
machine tool volumetric error transfer and enhance the accu-
racy of volumetric error compensation. For linear errors, the
decreasing of the measurement errors is based on a multi-
laser calibrator (MLC) and corresponding error correction
calculation. The peculiarity of the MLC is that it can obtain
six kinematic errors of a translational axis at the same time. In
this way, the effects of the distortion of the slide table on
measured kinematic errors are equivalent, thereby the cor-
rection of linear errors can be implemented. For squareness
errors, the correlation between the measured local square-
ness errors and global squareness errors is theoretically ana-
lyzed and the corresponding error correction method is pre-
sented. The squareness errors are corrected through modify-
ing local squareness errors measured with double ball bar to
global squareness errors, with the aid of straightness errors
measured with MLC. Finally, some experiments are com-
pleted to verify the error correction methods in JIG630 pre-
cision machine tool.

The remains of this paper are organized as follows. The
methodology of the improved error compensation method,
including volumetric error modeling, mechanism of measure-
ment error, and the corresponding error correction method, is
proposed in Section 2. In Section 3, the 18 errors of three axes
are experimentally measured, corrected, and validated.
Furthermore, the squareness errors are measured with a dou-
ble ball bar with different bar lengths. And the correction from
local squareness errors to global squareness errors is investi-
gated. In Section 4, the effects of linear and squareness error
correction method (LSECM) is validated in a machine tool
volumetric error compensation. Four compensated volumetric
diagonal errors with LSECM and direct measurement method
(DMM) are measured and compared. Finally, conclusions are
presented in Section 5.

2 The methodology of the improved error
compensation

In order to decrease the measurement errors of kinematic er-
rors of machine tools, an improved error compensation meth-
od is proposed in this paper. Not only the mechanism of the
measurement errors is theoretically analyzed but also the val-
idating experiments are carried out. For clarity, the flow-
process diagram of improved error compensation method is
given in Fig. 1. Detailed process of the improved error com-
pensation based on LSECM is described as follows:

1. Volumetric error modeling. The machine tool structure
and the corresponding spatial error expressions are given.

2. Mechanism analysis of measurement errors. The mecha-
nism of measurement errors of linear and squareness

errors is analyzed in detail and the error correctionmethod
is proposed then.

3. 21 error measurement. The 18 kinematic errors of three
axes and the squareness errors are measured with
Renishaw MLC and double ball bar respectively.

4. Volumetric diagonal error measurement. The volumetric
diagonal errors without error compensation are measured
with Renishaw XL-80 laser interferometer to validate the
volumetric error modeling method.

5. The error correction of linear and squareness errors. The
linear and squareness errors are corrected based on the
proposed error correction method and the corresponding
verification experiments are taken then.

6. Uncertainty analysis. The uncertainty of the kinematic
errors is analyzed with Monte Carlo method and the
influence of random measurement error on the stan-
dard deviation of each identified error motion is
analyzed.

7. Volumetric diagonal errors with different compensation
methods. The volumetric error compensation data is
calculated with LSECM and DMM and the volumetric
diagonal errors are measured subsequently to evaluate
the effects of measurement errors on volumetric
accuracy.

8. Data comparison and analysis. The comparison between
calculated and experimental results is carried out and sys-
tematic analysis is taken then.

Start

Volumetric error 
modeling

21 errors measurement

Mechanism analysis of 
measurement errors

End

Linear and squareness 
errors correction

Data comparison and 
analysis

Volumetric diagonal 
errors measurement 

Volumetric diagonal errors 
measurement with different 
error compensation methods

Uncertainty analysis

Fig. 1 Flow-process diagram of error compensation based on LSECM
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2.1 Volumetric error modeling

For the machine tool with the topology as shown in Fig. 2, the
error transfer chain can be divided into two chains, from bed to
workpiece and from bed to tooltip. The relative displacement
between tooltip and workpiece in the machine tool can be
regarded as the vector stacking of its linear and angular dis-
placement in the reference coordinate system. The multi-body
system theory is used to model the mapping relationship be-
tween 21 errors and volumetric errors. According to the pre-
vious researches [28–30], the spatial errorsΔe in X, Y, and Z
directions can be formulated as follows:

Δex ¼ δx Xð Þ þ δx Yð Þ−δx Zð Þ−Y αxy þ εz Xð Þ� �

þz34 εy Xð Þ þ εy Yð Þ� �þ Zεy Zð Þ þ γxzz01−εz Xð Þy23
þεy Zð Þz01− γxz þ εy Zð Þ� �

z02 þ z23 þ z34ð Þ þ εz Zð Þ
Y þ y02 þ y23 þ y34ð Þ þ ztool εy Xð Þ−βxz þ εy Yð Þ−εy Zð Þ� �

ð1Þ

Δey ¼ δy Xð Þ þ δy Yð Þ−δy Zð Þ þ εz Zð Þx01 þ βyz þ εx Zð Þ� �

z02 þ z23 þ z34ð Þ−εz Zð Þ X þ x02ð Þ−z34 εx Xð Þ þ εx Yð Þð Þ
−Zεx Zð Þ−βyzz01−z01εx Zð Þ
þztool βyz þ εx Zð Þ−εx Yð Þ−εx Xð Þ� �

ð2Þ

Δez ¼ δz Xð Þ þ δz Yð Þ−δz Zð Þ− γxz þ εy Zð Þ� �
x01

− βyz þ εx Zð Þ� �
Y þ y02 þ y23ð Þ þ εx Xð Þ Y þ y23ð Þ−ytool

βyz þ εx Zð Þ−εx Xð Þ−εx Yð Þ� �þ X þ x02ð Þ γxz þ εy Zð Þ� �

ð3Þ

2.2 Mechanism and correction of the measurement
errors of linear errors

2.2.1 The mechanism of the measurement errors of linear
errors

The laser interferometer is one of the widely used instruments
to measure the kinematic errors of translational axis. The ac-
curacy of the measured machine tool kinematic errors has
direct and significant effects on machine tool volumetric error
compensation. Therefore, accurate measurement of each error
component and the data extraction analysis are critical for
error compensation. Taking Z axis as an example, due to the
existing of the machining error and assembling error, the slide
table will distort while moving along the guideways. For a
general interferometer, it is time-consuming work to obtain
all six kinematic errors of a translational axis since six times
optic collimations are necessary. And more importantly, the
installation places of the interference mirror inevitably variate
in each measurement setting and may lead to some unexpect-
ed errors. The illustration of the measurement error mecha-
nism of linear errors is shown in Fig. 3. The measured errors
by the interferometer include two parts: (1) kinematic errors in
the slide table, (2) interferential measurement error caused by
the distortion of the worktable. The measured positioning and
straightness errors can be formulated as following equations:

δz Zð Þmea ¼ δz Zð Þwt þΔδz Zð Þ

¼ δz Zð Þwt þ Lp1w−osin εx Zð Þp1
� �

ð4Þ

δx Zð Þmea ¼ δx Zð Þwt þΔδx Zð Þ

¼ δx Zð Þwt þ Lp2w−osin εz Zð Þp2
� �

ð5Þ

δy Zð Þmea ¼ δy Zð Þwt þΔδy Zð Þ1 þΔδy Zð Þ2
¼ δy Zð Þwt−Lp3w−o 2−cos εx Zð Þp3

� �
−cos εz Zð Þp3

� �h i ð6Þ

where δz(Z)mea, δx(Z)mea, and δy(Z)mea are the measured posi-
tioning and straightness errors, and δz(Z)wt, δx(Z)wt, and δy(Z)wt
are the pragmatic kinematic errors in worktable surface plane.

Due to the slide table distortion and the variation of the
installation positions of the interference mirror in 6 kinematic
error measurement, the angular errors of the mounting rod of
the interference mirror are different in each kinematic error
measurement. Therefore, the ambiguity of the workbench ki-
nematic errors is hard to be eliminated through mathematical
calculation.

Vertical 
ColumnSlide table

Bed

Worktable

Z-axis guideway

X-axis guideway

Y-axis guideway

Spindle box

Z

Y

XO

0 - Bed
1 - Workbench
2 - Vertical Column
3 - Slide table
4 - Spindle box

Fig. 2 Machine tool structure and coordinates
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2.2.2 The linear error correction method

The linear measurement error through the implementation of
the error correction method is addressed in this paper. The
linear error correction method is constructed by a novel
MLC and the corresponding mathematical calculation. For a
95% confidence level, the accuracy of the MLC in position-
ing, straightness, and angular error measurement are ±
0.5 ppm, ± 0.01A ± 2 μm, and ± 0.006B ± (0.5 μrad +
0.1M μrad), where A is the display straightness error, B is
the display angular error, and M is the measurement length.

For the purpose of minimizing the effects of random error
on kinematic error measurement, the six errors of an axis
should be measured at least five times. The MLC is shown
in Fig. 4, four laser beams are generated by a laser launcher
and received by the receiver. Three laser beams are used to
detect the yaw and pitch errors. The yaw error can be calcu-
lated from the deviations between lasers 1 and 2 and the pitch
error can be obtained from the differences between lasers 2
and 3. The positioning, vertical and horizontal straightness
errors at the position of beam 4 are obtained by the combina-
tion of beams 1, 2, and 3. In addition, the roll error are mea-
sured by the deviation of laser beam 4 on the position sensitive
detector. Part of the straightness beam is split onto a separate
roll detector and the roll error is measured optically.

TheMLC can detect six errors of a translational axis simul-
taneously in a single setup. In this way, compared with the
general interferometer, the time of a translational axis kine-
matic error measurement can reduce at least five sixths. Since
the six errors of a translational axis are measured

simultaneously, the ambiguity of the measurement kinematic
errors can be eliminated by mathematical calculation and the
kinematic errors of the slide table can be formulated as fol-
lows:

δz Zð Þwt ¼ δz Zð Þmea−Δδz Zð Þ
¼ δz Zð Þmea−Lw−osin εx Zð Þmea

� � ð7Þ
δx Zð Þwt ¼ δx Zð Þmea−Δδx Zð Þ

¼ δx Zð Þmea−Lw−osin εz Zð Þmea
� � ð8Þ

δy Zð Þwt ¼ δy Zð Þmea−Δδy Zð Þ1−Δδy Zð Þ2
¼ δy Zð Þmea þ Lw−o 2−cos εx Zð Þmea

� �
−cos εz Zð Þmea

� �� � ð9Þ

2.3 Mechanism and the correction
of the measurement errors of squareness errors

2.3.1 The mechanism of the measurement errors
of squareness errors

Squareness error is an important part of a machine tool kine-
matic errors which can significantly affect the machine tool
volumetric accuracy. Double ball bar is one of the most widely
used instruments to measure squareness as shown in Fig. 5.
The double ball bar can detect the squareness errors of XY,
YZ, and XZ planes through the machine movements along
path 1, path 2, and path 3. It is recommended to use measuring
rod as long as possible to avoid the effect of local squareness.
Unfortunately, it is barely possible for the double ball bar to

Fig. 3 Schematic diagram of measurement error generating of linear errors
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accurately measure the global squareness unless the length of
measuring rod rm is equal as half of the measured guideway
stroke.

Generally, the double ball bar can only measure the local
squareness error of two axes. The mechanism of the measure-
ment error between local and global squareness error is

depicted in Fig. 6. For the case 1, when the worktable moves
along measuring stroke 1, the slide table moves along mea-
suring stroke 3, the measured local squareness error is record-

ed aslβ1;3
yz . However, for the case 2, that worktable moves

along measuring stroke 2 and the slide table moves along
measuring stroke 4, the measured local squareness error is
lβ2;4

yz . According to Fig. 5, the measured local squareness error
lβ1;3

yz exceeds 90° but lβ1;3
yz is less than 90°, which leads to

some ambiguity of the angel between Y and Z axes.
Furthermore, both squareness errors obtained in two measure-
ments cannot present the actual global squareness.

2.3.2 The local squareness error correction method

In order to correct the local squareness error to global square-
ness error, the global squareness error correction method is
presented in this subsection.

For the case 1, that the worktable moves within measure-
ment stroke 1 and slide table moves within measurement

stroke 3, the measured local squareness error is lβ1;3
yz .

Observing the geometric correlations in Fig. 5, for the trian-
gles ΔBJK and ΔEKL, the angles in two triangles satisfy the
following equations:

l β1;3
yz þ θ0 þ θ1 ¼ πgβyz þ θ0 þ θ2 ¼ π

n
ð10Þ

Lw-o

Horizontal Straightness error

Vertical Straightness error

Laser beam projected 

onto the receivier

Calibrated 

area on PSD

Laser datum 

position

1

2

3

4

LauncherReceiver

Launcher

Receiver

Fig. 4 Measuring principle of multi-laser calibrator

rm
Double ball bar

Measurement radius

Measuring workspace

Path 1

Path 2

Path 3

Y

X

Z

Fig. 5 Measuring paths of squareness error with double ball bar
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Eliminating θ' from Eq. (10) and the global squareness gβyz
can be expressed as:

gβyz ¼ lβ1;3
yz þ θ1−θ2 ð11Þ

Similarly, in the case 2 of shorter measurement strokes,
when the worktable moves within measurement stroke 2 and
slide table moves within measurement stroke 4, the measured

local squareness error islβ2;4
yz . Obviously, the measured local

squareness error lβ2;4
yz . is larger than

lβ1;3
yz ., but the pragmatic

global squareness errors of two axes in two measurements are

consistent. According to the angular correlations in triangles
ΔDMN andΔNRG, the following equations can be obtained:

l β2;4
yz þ θ00 þ θ3 ¼ πgβyz þ θ00 þ θ4 ¼ π

n
ð12Þ

Eliminating θ ' ' from Eq. (12) and the global squareness
gβyz can be expressed as:

gβyz ¼ lβ2;4
yz þ θ3−θ4 ð13Þ

Finally, the angles θ1, θ2, θ3, and θ4 can be calculated by the
straightness errors of Z and Y axes as follows:

Fig. 6 The mechanism of the
measurement error of squareness
error

Fig. 7 The kinematic error
measurement experiment with
XM60 MLC and XL80
Interferometer
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θ1 ¼ δy Zð ÞA−δy Zð ÞB
� �

=2rm
θ2 ¼ δz Yð ÞF−δz Yð ÞE

� �
=2rm

θ3 ¼ δy Zð ÞC−δy Zð ÞD
� �

=2rm
θ4 ¼ δz Yð ÞH−δz Yð ÞG

� �
=2rm

8>><
>>:

ð14Þ

Thus, though the measured local squareness errors are
different in two cases, theoretically, the calculated global
squareness errors are consistent. But, considering the

effects of the random errors, the longer radius of the dou-
ble ball bar is recommended to detect the squareness.

3 The validation of the linear and squareness
error correction methods

To eliminate the effects of the ambient temperature fluctuat-
ing, all experiments were carried out in a thermostatic

Fig. 8 The measurement results
of linear errors with different
instruments. a Positioning error of
Z axis. b Straightness error of Z
axis

(a) X axis (b) Y axis

(c) Z axis
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including corrected linear errors.
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laboratory with a constant temperature of 20 ± 0.5 °C. The
stroke of X axis is 1000 mm and the other two axes are
900 mm, positive directions of the angular error and the
squareness error are based on the right-hand rule.

3.1 The corrected linear errors

The kinematic errors of the Z axis are measured with the
Renishaw XL80 interferometer and MLC simultaneously as
seen in Fig. 7. The interferometer and the laser launcher of the
XM60 are placed on the worktable while the laser reflector
and the receiver are installed on the spindle. The measured
positioning error and straightness error by MLC is corrected
through Eqs. (7)–(9). In the ideal situation, the measured lin-
ear errors by interferometer and MLC should be equal with
each other. However, due to the existing of measurement er-
rors discussed in Subsection 2.2 and uncertainty of the instru-
ments, there are some little difference among the measured

linear errors. Take Z axis as an example, the deviations of
the detected linear errors by two instruments are depicted in
Fig. 8. The deviations of the positioning error δz(Z) and
straightness error δx(Z) δy(Z) measured by the laser interfer-
ometer are approximately 2.1 μm, 1.2 μm, and 1.5 μm, re-
spectively, compared to the corrected results by MLC.

In order to eliminate the effects of measurement errors on
linear errors, the measured results are corrected according to
the Eqs. (7)–(9) in Section 2. The length of Lw-o is 75 mm and
the corrected errors of three translational axes errors are pre-
sented in Fig. 9. The solid line in Fig. 9 presents the measured
linear errors and the dash dot line presents the corrected final
kinematic errors. Comparing three axes kinematic errors, the
basic kinematic accuracy of the X axis and the Z axis is higher
than that of the Yaxis. The maximum positioning errors of the
X, Y, and Z axes are about 4 μm, 16 μm, and − 12 μm respec-
tively. The three angular errors of the Z axis are all less than
8 μm/m in its full stroke, and the maximum angular error of

Fig. 10 The straightness errors
used for correction of squareness
errors. a X axis. b Yaxis. c Z axis

Table 1 The straightness errors in
different squareness measurement
ranges

Measurement
diameter

Δδy(X)
(μm)

Δδz(X)
(μm)

Δδx(Y)
(μm)

Δδz(Y)
(μm)

Δδx(Z)
(μm)

Δδy(Z)
(μm)

600 mm 5.7 4.2 4.7 4.6 3.3 1.5

200 mm 1.9 1.0 2.4 1.2 0.3 2.4
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the X axis and the Y axis can reach 25 μm/m and 60 μm/m,
respectively. The measured and corrected linear errors of X
and Z axes are basically the same, whereas the measured and
corrected positioning error δy(Y) and straightness error δx(Y)
have some deviations. Since the angular errors of Y axis are
bigger than that of X and Z axes, thereby the variation of the
measured and corrected Y axial linear errors are more obvi-
ously than other two axes.

The uncertainty analysis based on Monte Carlo method is
carried out for the purpose of evaluating the effect of MLC
random error on each measured kinematic error. The simulat-
ed results are marked by error bar as shown in Fig. 9. For the
purpose of minimizing the effects of random measurement
error, the six errors of each axis are measured five times and
the measured results are of good repeatability. Therefore, the
corrected linear errors have high confidence.

3.2 The corrected squareness errors

The squareness errors of a precision machine tool are mea-
sured with the Renishaw RC-20 double ball bar and the radius
of the circular test is selected as 100 mm/300 mm. Figure 10

Table 2 The measured and
corrected squareness errors Parameters Value 1 Value 2

Case ID 1 2

Centre point (mm) [477, 338, 476] [477, 338, 476]

Radius (mm) 300 100

Measured squareness error (μm/m) XY − 7.9 − 10.7
YZ − 46.0 − 57.3
XZ − 0.5 4.9

Modifying value deduced from the straightness errors (μm/m) XY − 17.3 ± 3.1 − 21.7 ± 8.6
YZ − 10.1 ± 3.3 − 17.9 ± 10.1
XZ − 13.3 ± 3.3 − 6.7 ± 9.7

Corrected squareness error (μm/m) XY 9.4 ± 3.1 11.0 ± 8.6

YZ − 33.1 ± 3.3 − 29.7 ± 10.1
XZ 12.8 ± 3.3 11.6 ± 9.7

(a) bar length of 300 mm (b) bar length of 100 mm

Fig. 11 Squareness error
measurement using double ball
bar. a Bar length of 300 mm. b
Bar length of 100 mm
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Fig. 12 Comparison of the measured, calculated, and corrected
squareness errors
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showns the straightness errors at the position of different
squareness error measurements. The difference of the straight-
ness errors in different squareness error measurement range
can be calculated as shown in Table 1. Therefore, the local
squareness errors can be corrected to global squareness errors
by the LSECM presented in Subsection 2.3. Furthermore, the
measured, calculated and corrected squareness errors are giv-
en in Table 2 and the experimental photos are presented in
Fig. 11. The negative symbol of the squareness error means
that the angle between the two positive axes is less than 90°.

The measured squareness errors with diverse radiuses are
different and have about 2.8~11.3 μm/m deviations. Note that
the sign of the measured XZ squareness error in two cases are
different. The measured squareness in case 1 indicates that the
angle between X axis and Z axis is an acute angle. However,
the measured squareness in case 2 indicates that the angle
between X axis and Z axis is an obtuse angle. And this differ-
ence lies that only local squareness errors are measured in both
cases. Thus, in order to eliminate this difference, the square-
ness error correction should be carried out to obtain the global
squareness. According to the squareness correction method
mentioned in Section 2.3, the deviations of the measured local
squareness errors can be calculated. By substituting the calcu-
lated squareness deviations into measured local squareness
errors, the corrected global squareness errors are obtained.

The uncertainty of the identified squareness error is evalu-
ated by Monte Carlo method and depicted in Table 2. The
standard deviations of the calculated squareness errors in case

1 are about 3 μm/m. However, the standard deviations of the
calculated squareness errors in case 2 are about 9 μm/m and
they are about 3 times bigger than case 1. According to Eq.
(14), the denominators in both cases are smaller than 1, which
means that the measurement errors are amplified.
Furthermore, the denominator in case 2 is three times smaller
than case 1. Thus, the measurement error in case 2 is about
three times larger than case 1. This error amplification phe-
nomenon will be improved in the case of a longer measure-
ment stroke. Therefore, for the precision machine tool, the
measuring radius of the double ball bar should be as long as
possible. In this paper, the obtained kinematic errors are mea-
sured with multiple times for the purpose of minimizing the
effects of random measurement error.

The comparison of the measured, calculated, and corrected
squareness errors is shown in Fig. 12. It can be seen that the
corrected global squareness errors in XY and ZX planes are
absolutely inconformity with the measured results. Taking
squareness of XY plane as example, the measured results
show that the angle between the positive X and Y axes is less
than 90°, but the corrected results are opposed. Note that the
straightness error δx(Y) shown in Figs. 9 and 10 is positive and
the measuring stroke of the slide table is between 38 mm and
638 mm. Furthermore, the straightness error δx(Y) in position
638 mm is larger than which in 38 mm; thereby, the measured
squareness in this stroke is negative.

4 The error compensation experiments
and analysis

4.1 The setup of the experiments

Experiments are carried out in this section for the purpose of
comparing the accuracy of the models based on LSECM and
DMM respectively. The errors of four volumetric diagonals
without error compensation and with different error compen-
sation methods are measured and analyzed. According to the
ISO 230-6 [31], four volumetric diagonals are named as PPP,
NPP, PPN, and NPN, where P and N means the positive and
negative moving orientation of the axis (see Fig. 13). The

PPN diagonalNPN diagonal

X

Y
Workspace

Machine tool 

coordinate 

Modeling 

coordinate

Z

Z

X

Y

PPP diagonal

NPP diagonal

Fig. 13 Sketch of volumetric diagonal measuring paths

(a) PPP (b) NPP (c) PPN (d) NPN

Fig. 14 The measurement of volumetric diagonal errors. a PPP. b NPP. c PPN. d NPN
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Renishaw interferometer XL80 has been adopted to complete
the diagonal error measurement as shown in Fig. 14.

4.2 The comparison of the volumetric diagonal errors
of measurement and modeling

According to the volumetric modeling and error corrected
methods proposed in Section 2, the volumetric diagonal errors
based on LSECM and DMM are obtaind. The comparision of
the predicted volumetric diagonals based on LSECM and
DMM are presented in Fig. 15. The results indicate that the
calculated diagonal curves with LSECM have better fitting
ability than DMM. In other words, the deviations of the diag-
onal curves with DMM and LSECM are caused by the mea-
surement errors. The mean squared error (MSE) and the R-
square of the calculated diagonal curves based on LSECM and
DMM are calculated in Table 3 to evaluate the fitting

performance. Theoretically, the smaller MSE is and the closer
R-square is to 1, the better fitting performance the predicted
models have [32]. The calculatedMSEs based on LSECM are
much smaller than DMM and the R-square values of the di-
agonal curves calculated by LSECM are closer to 1. The max-
imum improvement of the MSE of four diagonals is 67.1286
and the R-square value is improved from 0.8204 to 0.9958.

4.3 The comparison of the compensation effects
with LSECM and DMM

The NC coordinates adjustment method is used to compensate
the volumetric diagonal errors for the purpose of evaluating
the error compensation performance of LSECM and DMM.
Figure 16 indicates the compensated volumetric diagonal er-
rors with LSECM and DMM. Both error compensation
methods significantly improved volumetric diagonal accura-
cy. However, LSECM has better compensation performance
than DMM. In contrast with DMM, the bidirectional system-
atic deviation of the positioning of PPP, NPP, PPN, and NPN
with LSECM are reduced from 19.8 μm, 12.2 μm, 9.6 μm,
6.7 μm to 3.7 μm, 7.9 μm, 6.8 μm, and 6.4 μm respectively.

The LSECM can significantly improve the volumetric ac-
curacy of the machine tool. On the one hand, the deviations of
the linear errors are corrected and the volumetric diagonal
accuracy is improved. On the other hand, the measured local
squareness errors are corrected to global squareness errors;
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Fig. 15 The comparison of the
measured and calculated
volumetric diagonal errors. a PPP.
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Table 3 The MSE and R-square of the calculated diagonal curves

MSE R-square

LSECM DMM LSECM DMM

PPP 14.8006 81.9295 0.9958 0.8204

NPP 10.9761 41.9232 0.9434 0.8626

PPN 9.0659 21.0750 0.9397 0.9385

NPN 15.0324 15.1491 0.9714 0.9678
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thereby, the effects of the squareness errors on volumetric
errors are corrected. Furthermore, in some conditions, the di-
rections of the measured local squareness and the global
squareness are opposite, and may lead to the poor volumetric
compensation effects. Thus, the squareness error correction is
essential for volumetric accuracy improvement. According to
the experimental results, the bidirectional systematic deviation
of positioning of four volumetric diagonals with improved
error compensation method reduced about 81.3%, 35.2%,
29.2%, and 4.5% respectively.

5 Conclusion

An improved error compensation method for machine tools is
proposed and described in this paper. The mechanism of the
measurement errors of linear and squareness errors is investi-
gated in detail. The linear errors, including position errors and
straightness errors, are corrected by considering the distance
effect between optical mirror groups and the surface of work-
table. The squareness errors are corrected through modifying
local squareness errors measured with double ball bar to glob-
al squareness errors, with the aid of straightness errors mea-
sured with multi-laser calibrator.

The experiments illustrated that the squareness errors mea-
sured in different measuring strokes have marked difference.
Furthermore, the calculated volumetric diagonal errors based
on improved error compensation method have better fitting
performance than which using direct measurement method.
The values of the mean squared error and R-square of calcu-
lated and measured diagonal errors can be improved with the
improved error compensation method. The maximum im-
provement of the mean squared error of four diagonals is
67.1286 and the R-square value is increased from 0.8204 to
0.9958. Contrast with the direct measurement method, the
bidirectional systematic deviation of positioning of PPP,
NPP, PPN, and NPNwith improved error compensationmeth-
od reduced about 81.3%, 35.2%, 29.2%, and 4.5%
respectively.

The improved error compensation method with measure-
ment error correction proposed in this paper has universal
applicability, which can be used for error prediction and anal-
ysis of other topological machine tools and robots.
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