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Abstract
Breakout is the most serious incident in continuous casting. The missing and false alarms will seriously damage the caster and
greatly affect the quality of slabs. In view of the defects of existing breakout prediction methods, k-means clustering and dynamic
time warping (DTW) are combined to investigate and develop an effectual prediction method. Through extracting the typical
temperature timing characteristics from the temporal and spatial perspectives, the method based on k-means clustering and DTW
is proposed to distinguish and recognize the breakout. Compared with in-service breakout prediction system (BPS), the predic-
tion results of the proposed method confirm that the number of false alarms can be reduced from 50 to 8 while ensuring a 100%
correct alarm rate. The excellent prediction performance demonstrates that the clustering-based breakout prediction method
exhibits good application potential, while it offers a novel approach to monitoring abnormalities in the continuous casting
process.
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1 Introduction

Breakout is a serious accident in continuous casting that not
only damages the caster but also affects the quality of slabs
and smooth production [1, 2]. Breakout is known as the rup-
ture of weak shell and exudation of molten steel in the mold
[3]. Many reasons can cause breakout, such as mold level
fluctuation [4], large casting speed, or improper friction force.
Near the mold meniscus [5], the shell will stick to the mold
copper plate in virtue of poor lubrication [6], which results in
the rupture of the shell and the appearance of breakout.

Existing breakout prediction methods can be divided into
two categories: logical judgment [7] and artificial intelligence
methods [8–10]. Although with certain accuracy, the methods

suffer from the following defects: (i) they rely on parameter
setting and sample making, which are greatly influenced by
casting speed, steel grade, etc.; (ii) they are hard to accurately
capture the time lag and temperature inversion characteristics
of breakout. The above defects are primary factors of missing
and false alarms, and the rapid changes of casting speed
caused by missing and false alarms will seriously affect the
surface and internal quality of slabs [11–13]. Consequently,
effectively reducing the number of false alarms on the premise
of avoiding missing alarms is crucial to the development of
novel breakout prediction methods.

Based on the change of temperature measured by thermo-
couple (TC) installed on the mold copper plates, a breakout
prediction system can monitor whether breakout occurs accord-
ing to the heat transfer [14]. The temperature of TC possesses
the time series characteristics of single TC and the spatial link-
age characteristics of multiple TCs during the breakout. The
time series characteristics of single TC exhibit a “rise-fall”with
time, and the amplitude and change rate satisfy certain contin-
uous change conditions. The spatial linkage characteristics of
multiple TCs, which are ignored by existing prediction
methods, refer to the alternating appearance of rise-fall charac-
teristic. The time series characteristics of single TC and the
spatial linkage characteristics of multiple TCs constitute the
temperature timing characteristics of the breakout, which are
vital to identification of distinct temperature modes.
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In view of the similarity between the temperature timing
characteristics of same modes is higher while the difference
between that of different modes is larger, this work proposed a
novel breakout prediction method based on dynamic time
warping (DTW) and k-means clustering. DTW can effectively
measure the similarity of temperature timing characteristics of
breakout, and k-means can maximize the difference of that
under breakout and normal casting conditions. Therefore,
the combination of DTW and k-means clustering can effec-
tively extract and distinguish the commonalities and differ-
ences between the temperature timing characteristics.

The rest of this paper is organized as follows: Section 2
reviews the mechanism of breakout and temperature charac-
teristics of different patterns, followed by construction of
timing characteristics in Section 3; Section 4 briefly discusses
sample distance metric based on DTW; k-means and its intro-
duction are detailed in Section 5; design of breakout predic-
tion method based on clustering is elaborated in Section 6;
Section 7 presents the test results of the proposed method;
and finally, this paper is concluded with conclusions.

2 Mechanism of breakout and temperature
variation characteristics

2.1 Mechanism of sticking breakout

Figure 1 shows the temperature change and the mechanism of
sticking breakout. Under normal conditions, the temperature
changes steadily with time and there is no significant

fluctuation, as shown in Fig. 1(a). Along the casting direction,
the thickness of strand shell and the heat resistance between
the shell and mold increase. Therefore, the temperature of TCs
in the lower row continuously decreases.

The temperature exhibits a typical rise-fall trend when
sticking point occurs; i.e., the temperature rises by a certain
amplitude and then falls over time. The rise-fall of temperature
in the second row lags behind that in the first row in time, as
observed in Fig. 1(b–e), which is called “time-lag phenome-
non.” In some scenarios, the temperature in the lower row is
higher than that in the upper row, known as “temperature
inversion,” as shown in Fig. 1(e) and (f).

When the sticking point moves down along the casting
direction and leaves the exit of the mold, the thin shell near
the sticking point cannot support ferrostatic pressure and, sub-
sequently, causes a breakout accident, as shown in Fig. 1(f).

2.2 Temperature variation characteristics

Figure 2 illustrates the temperature under distinct patterns.
Figure 2a–e shows the temperature under normal conditions,
which can be easily recognized by existing breakout predic-
tion methods.

The characteristics of the temperature under breakout pat-
terns, such as change rate, amplitude, and the time of rise-fall,
satisfy corresponding conditions, as shown in Fig. 2f–j. These
characteristics can be extracted, induced, and identified, which
constitute the basis of prediction methods based on logical
judgment or neural networks.

Fig. 1 Sticking breakout mechanism. (a) The normal conditions. (b–e) The sticking point keeps moving down and passing through the thermocouples of
first and second rows. (f) The breakout when the sticking point leaves the exit of mold
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When breakout prediction system (BPS) misjudged the
temperature under normal casting conditions as that of
breakout, the system will issue an incorrect alarm, which
is called a false alarm. There are, of course, no breakout
signs on the surface of corresponding slab. For example,
the temperature of TCs in the upper and lower rows rises
simultaneously in a short period of time. Alternatively, the
temperature in the first row rises slightly while that of the
second row rises quickly, as observed in Fig. 2k–o. Despite
these patterns are similar to those of breakout, their char-
acteristics are diverse, and what is more, they are not rep-
resentative. In other words, the temperature of false alarm
patterns does not have the typical time lag and temperature
inversion characteristics.

3 Construction of temperature timing
characteristics

Taking into consideration the real-time requirements of online
detection and prediction, this study constructs the temperature
timing characteristics from the first- and second-row temper-
atures which are nearest to the meniscus and more sensitive to
breakout.

3.1 Temperature change rate difference

The change rate of temperature has a decisive effect on iden-
tifying the characteristics of single TC and can extract the
temperature characteristics including rising/decreasing trend

Fig. 2 Comparison of temperature in different patterns. a–e Temperatures in normal pattern. f–j Temperatures in breakout pattern. k–o Temperatures in
false alarm pattern
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and amplitude. On the other hand, the change rate will scale
the diverse ranges of temperature to the similar range, which is
convenient for measuring the similarity or distance between
different samples. The equation of change rate in temperature
is

v rowð Þi ¼ Tiþ5−Ti

5
; i ¼ 1; 2;…; 20 ð1Þ

where Ti is the temperature of the ith time increment.
Then, the difference of v(row 1) and v(row 2) is calculated to

extract the spatial characteristics of multiple TCs, i.e., time lag
and temperature inversion. The equation can be written as

v row 1–row 2ð Þi ¼ v row 1ð Þi−v row 2ð Þi; i ¼ 1; 2;…; 20 ð2Þ

where v(row 1)i and v(row 2)i are the temperature change rate in
the first- and second-row TCs.

3.2 Normalization of second-row temperature

The variation trend of the temperature of the second row is of
great benefit to the identification of breakout from false
alarms. However, the similarities of the breakout samples will
be relatively low when the amplitudes of the temperature in
the second row are diverse from each other. In this context, the
second-row temperature is normalized to eliminate inconsis-
tencies of amplitudes in the rising temperature. The tempera-
tures are normalized as

nori ¼ Ti−Tmin

Tmax−Tmin
; i ¼ 1; 2;…; 25 ð3Þ

where Tmin and Tmax are the minimum and maximum values
of the temperature.

Equations (1)~(3) are used to extract the temperature
timing characteristics, including the time series characteristics
of single TC and the spatial linkage characteristics of multiple
TCs, for constructing the timing characteristic samples.

Figure 3a and b denotes the timing characteristic samples
obtained by processing the temperature in Fig. 2c. Figure 3c
and d corresponds to Fig. 2i, and Fig. 3e and f corresponds to
Fig. 2o. The dissimilarities between the constructed results are
readily discernible.

In this work, 30 breakout and 50 normal timing character-
istic samples were constructed for training, and all the samples
constituted the sample library Q.

4 Dynamic time warping and sample distance
metric

In the real casting processes, the temperature change rate,
amplitude, extreme, and lag interval of the same pattern are
distinct, and the curves of normal, breakout, and false alarm

temperature patterns differ from each other. Therefore, the
conventional Euclidean distance cannot effectively measure
their similarity, especially the breakout samples under differ-
ent casting conditions. So, it is necessary to choose a proper
distance measurement method to distinguish breakout and
normal patterns for avoiding missing and false alarms.

4.1 Dynamic time warping

In view of its nonlinear mapping ability and flexibility of
sequence alignment, DTW can effectively handle the se-
quence length and error matching limitations of the
Euclidean distance [15–17]. Therefore, DTW exhibits excel-
lent performance in many fields [18].

Assuming the two time series (P andQ), the DTW distance
is computed by, first, finding the best alignment between
them. The exact matching equation [19] is given by

dtw P;Qð Þ ¼ argmin
W¼w1;w2;:::;wk ;:::;wK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
K

k¼1;wk¼ i; jð Þ
Pi−Qj

� �2
s

ð4Þ

where wk is the subscript of values in the sequences P and Q
and Pi and Qj represent the matched values in P and Q.

The concept and calculation principle of DTW are shown
in Fig. 4. P is [1, 2, 4, 5, 6, 7, 6, 5, 4, 3], and Q is [0, 1, 1, 2, 3,
5, 6, 4, 3, 2]. Although the waveforms of P and Q are similar,
the characteristics on the time axis are not aligned. Figure 4a
shows the Euclidean distance algorithm, and Fig. 4b shows
the DTW distance algorithm. It can be seen from Fig. 4b that
the sequences P and Q are warped and aligned in multiple
places; i.e., P(2) and P(3) are warped and aligned to Q(4)
and Q(5). P(5), P(6), and P(7) are warped and aligned to
Q(7), etc. The table in Fig. 4c shows the results of calculation
operation (the square of the absolute value of the difference)
between the values after P and Q are warped.

The calculation process of Euclidean distance between se-
quences P and Q is

Euclidean P;Qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
k

i¼1
Pi−Qið Þ2

s

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ 9þ 9þ 9þ 4þ 0þ 1þ 1þ 1

p ¼ 6:0 ð5Þ

The calculation process of DTW distance between se-
quences P and Q is

dtw P;Qð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0þ 0þ 0þ 1þ 0þ 0þ 1þ 0þ 1þ 0þ 0þ 1

p

¼ 2:2

ð6Þ

It should be noted that the value-matching method is
unique for the Euclidean distance, as indicated by the red
arrows in Fig. 4c, while that of the DTW distance is not
unique. Therefore, DTWuses the idea of dynamic program-
ming to find the optimal value–matching method, as shown
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by the blue arrows in Fig. 4c. The distance calculated by
this optimal value–matching method is the smallest. This
smallest distance is called DTW distance, which indicates
that DTW can reasonably and effectively measure the sim-
ilarity of P and Q.

4.2 Sample distance metric

The corresponding two-segment numerical series, including
v(row 1–row 2) and nor, are obtained after constructing each
sample with timing characteristics. Hence, on the basis of

Fig. 3 Construction results of temperature in different patterns. a, b Construction results of temperatures in the normal pattern. c, d Construction results
of temperatures in the breakout pattern. e, f Construction results of temperatures in the false alarm pattern

Fig. 4 a–c The matching methods of Euclidean and DTW distance
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Eqs. (1,2,3), the overall similarity or distance of the samples is
measured by Eq. (7)

dcon s1; s2ð Þ ¼ dtw v row 1−row 2ð Þ1; v row 1−row 2ð Þ2
� �

þ dtw nor1; nor2ð Þ ð7Þ

where dcon(s1, s2) represents the distance between s1 and s2.
v(row 1 − row 2)1 and nor1 are the processing results correspond-
ing to sample s1, whereas v(row 1 − row 2)2 and nor2 correspond
to sample s1. dtw(w1,w2) denotes the DTW distance between
w1 and w2.

5 k-means clustering

Clustering is a vital unsupervised learning method in the field
of machine learning [20, 21], which divides data into multiple
clusters according to the similarity among data objects [22].
The similarity in the same cluster is higher than that in differ-
ent clusters after clustering [23]. k-means clustering only
needs to set one parameter (k), and the clustering results are
easy to understand. More than that, it can maximize the tem-
perature differences between the breakout and normal
conditions.

Given a sample library Q = {q1, q2,…, qm}, Q ∈ Rn, the k-
means algorithm splitsQ into k non-overlapping clusters {Q1,
Q2,…,Qk} based on the similarity, where k is a predefined
positive integer. Clusters can be represented by their centroids
{μ1, μ2,…, μk}, where μidenotes the centroid of cluster Qi.
Besides, clusters {Q1,Q2,…,Qk} must satisfy the following
conditions:

a.

Qi≠∅; i ¼ 1; 2;…; k

b.

Qi∩Qj ¼ ∅; i≠ j; i; j ¼ 1; 2;…; k

c.

Q ¼ ∪kl¼1Ql; l ¼ 1; 2;…; k

k-means clustering uses the sum of the squared error as a
convergence condition to minimize the sum of the distances
between all samples and their corresponding centroids [24].
The convergence criterion can be written as

arg min
Q

∑
k

i¼1
∑

q∈Qi

q−μik k2≤ tol ð8Þ

where q ∈Q and tol is convergence accuracy.

6 Design of breakout prediction method
based on clustering

6.1 Cluster centroid acquisition and pattern
distinction

This paper sets k = 2 since there are only two temperature
patterns in Q: breakout and normal conditions. k-means clus-
tering was used to obtain the breakout cluster (cb) and normal

Fig. 5 Clustering result of
breakout and normal samples
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cluster (cn) conditions from the sample library Q, as well as
their centroids (μb and μn). The distribution of samples be-
longing to Q is shown in Fig. 5.

In Fig. 5, the x-axis represents the product of the distance
between the sample and the centroid of breakout cluster (μb)
and the scaling factor (λ) obtained by Eq. (9), whereas the y-
axis measures the distance between the sample and centroid of
normal cluster (μn).

λi ¼ exp
− f i

f avg ; i ¼ 1; 2;…; S ð9Þ

where λi ∈ (0, 1], fi is the amplitude of the first-row tempera-

ture, S is the number of breakout samples, f avg ¼ ∑S
i¼1 f i is

the average of amplitudes of all breakout samples, and favg is
calculated to be equal to 11 °C.

By introducing the scaling factor (λ), the breakout pat-
terns can be clearly distinguished from that of normal cast-
ing conditions. For the breakout sample, the scaling factor
(λ) obtained by Eq. (9) is less than 1. The larger the ampli-
tude of the temperature sample, the smaller the scaling factor
(λ). For the sample of normal casting conditions, the

Fig. 6 The number of false alarm
under different thresholds

Fig. 7 The number of missing
alarm under different thresholds
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temperature amplitude is basically 0, so the corresponding
scaling factor (λ) is 1. Therefore, Eq. (9) can scale the
breakout samples to the adjacent region, while it can keep
them away from the region where the samples under normal
casting conditions locate.

In Fig. 5, all the distances between breakout samples
and their own centroid (μb) are less than 5 after scaling,
but the distances between them and μn are relatively large,
i.e., 10–40. On the contrary, the distances between all the
samples in the normal cluster and μb are greater than 10,
whereas the distances to the center of their own cluster
run from 2.5 to 20, which indicates that the breakout
samples and the normal samples are obviously distributed
in two different regions. The samples of the two patterns
can be clearly distinguished from each other, laying the
foundation of the pattern distinction lines.

As can be seen from Fig. 5, all of the breakout samples
are gathered adjacent to each other in the same region,
verifying the similarity of the temperature under the
breakout mode. Therefore, it is possible to identify and
detect the breakout samples by setting the breakout
region. In order to avoid missing alarms and to minimize
the number of false alarms, the pattern distinction lines
are obtained by Eqs. (10) and (11) to define the breakout
region

Bthreshold ¼ ωb �max xbif g ð10Þ

N threshold ¼ ωn �min ybif g ð11Þ

where max{xbi} and min{ybi} are the maximum abscissa and
the minimum ordinate of the sample in breakout cluster (cb) in
Fig. 5. ωb and ωn are the correction coefficients.

6.2 Determination of the optimum thresholds

In order to determine the thresholds ωb and ωn, the num-
ber of missing and false alarms is calculated with different
combinations of ωb and ωn. The calculation results are
shown in Figs. 6 and 7. As can be seen from Fig. 6, with
the increase of ωb, the number of false alarm gradually
increases. So, the better clustering effect is achieved with
the smaller value of ωb. Figure 7 illustrates that with the
decrease of ωn, the number of missing alarm gradually
becomes zero when ωn = 0.9. Above all, under the pre-
mise of zero missing and minimum false alarm, ωb and
ωn are set to 1.1 and 0.9, respectively.

The maximum of xbi is obtained and is equal to 4.57, and
the minimum of ybi is equal to 9.90. So, the value of pattern
distinction lines of Bthreshold = 5.03 and Nthreshold = 8.91 is
achieved.

6.3 Design of breakout prediction method

Figure 8 elaborates a flowchart of the breakout prediction test.
Details of the test steps for breakout prediction are as follows:

(1) Construct the temperature timing characteristics of test
sample to get xnew;

(2) Calculate the distances between xnew and μn and μb to
obtain dn and db

dn ¼ dcon xnew;μnð Þ ð12Þ
db ¼ dcon xnew;μbð Þ � λ ð13Þ

Fig. 8 Flowchart of breakout prediction test
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(3) Estimate whether dn and db meet the following condi-
tions at the same time:

dn > N threshold and db < Bthreshold

(4) If yes, a breakout alarm will be released and the casting
speed should be reduced immediately; if not, return to
steps (1)~(3) to deal with the next sample

7 Results and discussion

To verify the validity and accuracy of the proposed method de-
scribed in Section 6, 120 test samples reported byBPS, including
50 normal, 20 breakout, and 50 false alarm temperature samples,
were used for this purpose. Calculate the distances dn and db of
each test sample. If dn is greater than Nthreshold and db is less than
Bthreshold, thecorrespondingtestsampleisconsideredtobeabreak-
out sample; otherwise, it is considered to be a normal sample.

Fig. 9 Test results of normal
samples

Fig. 10 Test results of breakout
samples
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The test results are stated in Figs. 9, 10, and 11. Light-
colored circles are breakout training samples, and light-
colored squares are normal training samples. The two lines
are the pattern distinction lines x = 5.03 and y = 8.91. The
shaded area is the breakout region mentioned in Section 6,
which is the basis of judging whether a sample denotes break-
out or not.

From Fig. 9, it is clear that all the normal test samples are
located to the right of the line x = 5.03, so they are not break-
out samples. The test samples and training samples are located
in the same area, which shows that the proposed method is
consistent with BPS in identifying normal samples.

Figure 10 demonstrates the results of the breakout test sam-
ples. All 20 breakout samples are located in the breakout re-
gion. Thus, they are identified as breakout samples according
to the method described in Section 6, which is consistent with
BPS. In addition, 50 breakout samples, including training and
testing, cover large-scale process parameters during continu-
ous casting, i.e., casting speed and steel grade. They are con-
verged on the left of breakout region, implying that the pro-
posed method can extract and distinguish the characteristics of

breakout on the premise of overcoming the influence of cast-
ing process on temperature. As consequence, it is evidenced
that the combination of k-means and DTW is adequate to
predict breakout.

The 50 false alarm samples misjudged by BPS were tested,
and the results are shown as blue rhombuses in Fig. 11. All 50
false alarm samples lie above the line y = 8.91, but eight of
them are located to the left of x = 5.03. In other words, eight
false alarm samples cannot be accurately and effectively iden-
tified. Hence, the number of false alarms could be decreased
from 50 to 8, leading to an 84% reduction in number.

In Figs. 9, 10, and 11, it is readily discernible that the range
and limit of the breakout and normal clusters can be obviously
separated using the pattern distinction lines after k-means clus-
tering. The confusion matrix and performance comparison
with BPS are shown in Table 1. It is worth mentioning that
the performance of the two methods is the same for breakout
and normal patterns. In other words, the different patterns can
be captured and identified accurately and effectively.
However, when the temperature samples vary from the typical
patterns, the proposed method shows excellent performance
compared with BPS, which indicates that the false alarm rate
can be significantly reduced while guaranteeing a 100% cor-
rect alarm rate.

8 Conclusion

Although the breakout prediction methods based on logic
judgment and neural networks have certain prediction

Fig. 11 Test results of false alarm
samples

Table 1 The confusion matrix and performance comparison with BPS

Actual The proposed method BPS

Breakout Normal Breakout Normal

Breakout 20 0 20 0

Normal 8 92 50 50
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accuracy, they rely heavily on parameter setting and sample
making and cannot accurately extract the time lag and inver-
sion characteristics of breakout temperature, resulting in an
increase in false alarms. In view of this, the present work
extracts the timing characteristics of raw temperature without
human intervention in temporal and spatial perspectives, con-
structs the samples containing timing characteristics, and then
proposes a new breakout prediction method based on k-means
clustering and DTW, in which the distances between the sam-
ples and the centroids are calculated by DTWand the k-means
clustering algorithm is used to obtain the clusters’ centroids of
samples and distinguish the breakout and normal casting con-
ditions. The proposed method reduces the number of false
alarms from 50 to 8 on the premise of ensuring a 100% correct
alarm rate compared with BPS. The results show that k-means
clustering and DTW have great potential in breakout predic-
tion, which lays a foundation for the use of machine learning
methods to identify and detect abnormalities in the continuous
casting process.

Funding information This work is supported by the National Natural
Science Foundation of China (51474047) and the Fundamental
Research Funds for the Central Universities.

References

1. Zhang YX, Wang WL, Zhang HH (2016) Development of a mold
cracking simulator: the study of breakout and crack formation in
continuous casting mold. MMTB 47(4):2244–2252

2. Mills KC, Billany TJH, Normanton AS, Walker B, Grieveson P
(1991) Causes of sticker breakout during continuous casting.
Ironmak Steelmak 18(4):253–265

3. LuMJ, Lin KJ, Kuo CH, ChienWC (1993) Sticker breakout theory
and its prediction in slab continuous casting. In: Proceedings of
76th Steelmaking Conference, 28–31 March 1993, Dallas
America, pp. 343–353

4. Roy PDS, Tiwari PK (2019) Knowledge discovery and predictive
accuracy comparison of different classification algorithms for
mould level fluctuation phenomenon in thin slab caster. J Intell
Manuf 30(1):241–254

5. Blazek KE, Saucedo IG (1990) Characterization of the formation,
propagation, and recovery of sticker hanger type breakouts. ISIJ Int
30(6):435–443

6. Moon CH, Lee DM, Moon SC, Park HD (2008) Re-start technol-
ogy for reducing sticking-type breakout in thin slab caster. ISIJ Int
48(1):48–57

7. He F, Zhang LY (2018) Mold breakout prediction in slab continu-
ous casting based on combined method of GA-BP neural network
and logic rules. Int J Adv Manuf Technol 95(9–12):4081–4089

8. Liu Y,Wang XD, DuFMYM,GaoYL,Wang FW,Wang JY (2017)
Computer vision detection of mold breakout in slab continuous
casting using an optimized neural network. Int J Adv Manuf
Technol 88(1–4):557–564

9. Ji C, Cai ZZ, Tao NB, Yang JL, Zhu MY (2012) Molten steel
breakout prediction based on genetic algorithm and BP neural net-
work in continuous casting process. In: Proceedings of the 31st
Chinese Control Conference, 25–27 July 2012, Hefei China, pp.
3402–3406

10. Zhang BG, Li Q,Wang G, GaoY (2010) Breakout prediction based
on BP neural network of LM algorithm in continuous casting pro-
cess. International Conference on Measuring Technology and
Mechatronics Automation, 13–14 March 2010, Changsha, China,
pp. 765–768

11. Liu Y, Wang XD, Du FM, Kong LW, Yao M, Zhang XB (2015)
Visual detection based on computer vision for sticker breakout in
slab continuous casting. Ironmak Steelmak 42(6):417–423

12. Liu GM, Zheng BP, Chen JX,WuGL (2004) Process and quality of
continuous casting and rolling of thin slab. J Cent South Univ 35(5):
763–768

13. Han ZW, Chen DF, Feng K, Long MJ (2010) Development and
application of dynamic soft-reduction control model to slab contin-
uous casting process. ISIJ Int 50(11):1637–1643

14. Luk’yanov SI, Suspitsyn ES, Krasilnikov SS, Shvidchenko DV
(2015) Intelligent system for prediction of liquid metal breakouts
under a mold of slab continuous casting machines. Int J AdvManuf
Technol 79(9–12):1861–1868

15. Kate RJ (2016) Using dynamic time warping distances as features
for improved time series classification. Data Min Knowl Discov
30(2):283–312

16. Duong TA, Le HT (2015) An efficient implementation of k-means
clustering for time series data with DTW distance. Int J Bus Intell
Data Min 10(3):213–232

17. Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic
time warping. Knowl Inf Syst 7(3):358–386

18. Esling P, Agon C (2012) Time-series data mining. ACM Comput
Surv 45(1):1–34

19. Niennattrakul V, Ratanamahatana CA (2007) On clustering multi-
media time series data using k-means and dynamic time warping,
In: Proceedings of International Conference on Multimedia and
Ubiquitous Engineering, 26–28 April 2007, Seoul South, Korea,
pp. 727–732

20. Jain AK (1999) Data clustering: a review. ACM Comput Surv
31(3):264–323

21. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE
Trans Neural Netw 16(3):645–678

22. Rodriguez A, Laio A (2014) Clustering by fast search and find of
density peaks. Sci 344(6191):1492–1496

23. Liao TW (2005) Clustering of time series data—a survey. Pattern
Recogn 38(11):1857–1874

24. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of
efficient initialization methods for the k-means clustering algo-
rithm. Expert Syst Appl 40(1):200–210

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Int J Adv Manuf Technol (2020) 106:4777–4787 4787


	Application of k-means clustering for temperature timing characteristics in breakout prediction during continuous casting
	Abstract
	Introduction
	Mechanism of breakout and temperature variation characteristics
	Mechanism of sticking breakout
	Temperature variation characteristics

	Construction of temperature timing characteristics
	Temperature change rate difference
	Normalization of second-row temperature

	Dynamic time warping and sample distance metric
	Dynamic time warping
	Sample distance metric

	k-means clustering
	Design of breakout prediction method based on clustering
	Cluster centroid acquisition and pattern distinction
	Determination of the optimum thresholds
	Design of breakout prediction method

	Results and discussion
	Conclusion
	References


