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Abstract
The task of the peg-in-hole assembly is a very common task in industry. Despite its intuitive comprehensibility and everyday
experience, the industrial assembly faces specific problems. The naive approach of inserting with bare hands an industrial peg
inside into an industrial hole can very certainly bring to the jamming and damaging because of a very small gap between them.
Therefore, the initial alignment of the details before insertion, so-called peg-on-hole phase, or simply peg-on-hole, is of the
special importance in industry to avoid jamming. This paper develops the description and analysis of this phase based on the
methods of analytical mechanics. As a common approach, the details in this study are considered as cylindrical, and such that peg
is supported at the edge of vertically fixed hole, and could freely move keeping a three-point contact with three degrees of
freedom, namely (i) nutation angle or align describing planar motion of aligning parts, (ii) precession angle or slide describing
rotational motion around hole axis, and (iii) self-rotation angle or slip describing rotational motion about its axis. The analytical
approach implies the system of Lagrange Equations for this particular case of motion, which is called Dynamic Differential
Equations (DDE). DDE describes interconnections between motion in three degrees of freedom on one side, reaction forces on
another side, and the external forces and torques on the third side. DDE includes geometrical properties of the details, and full
descriptions of velocities, normal reactions, and friction forces at the contact points. It is the most general description of the peg-
on-hole case. As the example of application, the normal reactions were found for relative large alignment angles far from
reduction into a two-point contact, and for a small alignment angles, when system transits to the two-point contact. It was shown
that for both cases, reaction forces become larger during alignment because they have to balance the force of gravity. For the
larger angles, slip reduces the reaction forces, whereas for small alignment angles, slip and slide increases them.

Keywords Cylindrical parts . Three contact points . Compound motion . Three degrees of freedom . Dynamic responses .

Differential equations . Robotic assembly

1 Introduction

Assembly of cylindrical peg inside the hole, which is also
called peg-in-hole, is of great importance. In machine-
building industry, it may amount to about 20%, and in
instrument-making industry—up to 40% of all assembly

operations. Since the risk of jamming and damage requires
special control during the operation, automation of the process
is a relevant task, and robotic systems have increasingly been
in use to cope with it.

The comprehensive overview of the investigations related
to the peg-in-hole insertion was done by [1] and the latest in
2019 by [2] including the most up-to-date results for peg-in-
hole studies. The investigations involve the strategies that
could be largely divided into contact model–based and contact
model–free control systems. The contact model–based strate-
gies tend to either recognize the contact state [3–5] or control
of compliance of assembly [6–8]. The contact model–free
include learning from the demonstration like a human hand
[9–13], or from the environment based on the reward interpret
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mechanisms [14–17]. The later also allows to make an inser-
tion into a non-fixed hole [18]. All the approaches are based
on the different Artificial Intelligent (AI) and advanced statis-
tical techniques like, e.g., fuzzy classifiers, neural networks,
support vector machines, Gaussian mixtures model, and hid-
den Markov models.

The analytical background of the majority of investigations
is the classical quasi-static approach [3]. The approach is done
under the small angle approximation, which excludes three-
point contact, and guarantees the two-point contact. The
analytical approach was developed further by [19] by adding
deformations into the consideration. In addition, the two-point
contact was considered in [20–24]. More specifically, the re-
quired geometrical and kinematic characteristics, and force
interactions between a peg and a hole at the contact points
were defined for this process in [20] depending on angle γ
between the axes. Alternatives for relative orientation of parts
during automatic assembly were considered in [21–24], and
criteria for identifying them were specified.

The condition of two-point contact sets obvious limitations
on the gap size and on the precision of the control of the initial
angle between the parts, that is not systematically addressed.
This is an important topic because for the very small gaps,
there will be a three-point contact before the insertion starts,
during which an alignment of the axis of peg at the edge of the
hole is occurred. This phase is called peg-on-hole.

Peg with the three-point contact with the hole has three
degrees of freedom, and its position is characterized with three
generalized coordinates called Euler angles. They are: (i) nuta-
tion angle γ describing planar motion of aligning parts also
called align, (ii) precession angleψ describing rotational motion
around hole axis also called slide, and (iii) self-rotation angle φ
describing rotational motion of the peg about its axis also called
slip. Align is purely a planar motion with reduction of angle γ,
so both rotations are not directly involved in it. However, they
have a dynamic effect on the process. This effect could become
important for accidental slips and slides during align, and can
also be used intentionally to decrease the jammings.

There are quite a few studies devoted to analysing motion
of peg with three-point contact in Russian-speaking segment
this work took inspiration from. The simplest is the approach
with one degree of freedom. Directions of all interaction
forces in this case were defined, and trajectories of all peg
points and velocities of the contact were determined in [25,
26]; differential equations of peg motion characterizing align-
ment process were made [27]. The reasons of the parts’ seizure
were considered in detail, including action of gravity on the
movable part producing considerable forces of interaction be-
tween a peg and a hole at the contact points. A potential
reduction of this effect was analysed through changing a po-
sition of the movable part center of gravity [28, 29].

Works [30–33] present a mathematical model of aligning the
parts by use of a device transmitting vibration to a hole.

Calculations presented in these papers define a position of the
pegmass center relative to a vibrating hole. However, thismodel
is inadequate to determine a position of peg as a solid body.

An assembly process involving transmission of rotating
motion to peg, a second degree of freedom, was studied in
works [34–36]. Here the properties of gyroscope, a body that
has the only stationary point, are attributed to a peg. It sim-
plifies calculations for educative purposes, however, the de-
scription of forces is limited for academic or industrial
applications.

[37, 38] made a first attempt among the English-speaking
publication to consider the kinematics of three-point contacts
and to determine the direction of the normal reaction forces. In
their approach, the high stability of the assembly process
starting with three-point contact was recognized, however,
the normal reaction forces were not considered quantitatively,
and the friction forces were not determined at all.

The model in [38] allowed to compare the contact reaction
for the two situations of the alignments: with and without
uniform sliding. The comparison showed that the slipping
rotation during the alignment decreases reaction forces and
therefore, the risk of jamming.

A more recent publication on the three-point contact was
done by [7]. The modelling of the mechanics was meant to be
a partial case of [38]. It included the interconnection between
the alignment motion, reaction forces, the external forces for
one degree of freedom, and the friction forces were suggested
to get found experimentally. However, the directional cosines
of the normal reaction forces and of the friction forces were
not identified correctly.

Work [39] introduced the first analytical solution for the
three point-contact alignment, which included rigorous solu-
tion based on analytical mechanics. The approach was devel-
oped for two of three degrees of freedom, namely align and
slide. The reaction forces, including the normal reaction and
friction forces, were derived based on the laws of geometry
and analytical mechanics. As the next step, generalized coor-
dinates and forces were identified for these two degrees of
freedom. This allowed to derive a particular case of
Lagrange system of differential equation for this particular
case, a so-called Dynamic Differential Equations (DDE) of a
system. This set of equations defines the full dynamic of the
system, including interconnection between (i) the external in-
fluences, e.g., forces and torques of a manipulator; (ii)
contact reactions: forces and torques at the contact
points; as well as (iii) kinematic motion law of the
parts. In other words, DDE allows to derive from the
law of change of one of these sets the laws of change
of the other two.

The freely moving body has six degrees of freedom: three
planar and three rotational motions. Each contact point re-
duces one of the degrees of freedom, it means that the motion
of peg-on-hole with three-point contact has three degrees of
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freedom. This paper extends the study made in paper [38] by
adding the third degree of freedom into DDE. It allows to
consider the peg-on-hole motion in the most general case,
when the forces, transfer all three types of peg-on-hole move-
ments allowed by connections: align, slip, and slide.

The main part of the work is devoted to the step-by-step
derivation of DDE in Section 3. This includes the study of
directions of velocities, normal reactions, and friction forces
at the contact points.

The goal pursued with DDE in this paper is addressing
three major problems of the process for automated assembly
of cylindrical parts:

1. Determining patterns of peg movement that facilitates
alignment of the parts when all three generalized coordi-
nates (Fig. 1) change: nutation angle γ = γ(t), precession
angle ψ=ψ(t), and self-rotation angle φ =φ(t).

2. Determining forces acting on peg at the points of contact
and potentially preventing alignment of the parts.

Two example cases of solution of these problems were con-
sidered: (i) reaction forces for relative large alignment angle dur-
ing uniform alignment and slip γ̇ ¼ const; φ̇ ¼ const; ψ̇ ¼ 0 in
comparison to the case without slip γ̇ ¼ const; φ̇ ¼ 0; ψ̇ ¼ 0;
(ii) the kinematics and directional cosines were studied for the
small alignment angle approximation, and the reaction forces
were analysed. The second example is also intended to give a
simple insight into the principles behind DDE.

2 Methodology and methods

Analysis of motion that enables alignment of a peg with a
vertically fixed hole uses common patterns of mechanical
movement of a solid body with the three degrees of freedom:
nutation angle γ, precession angleψ, and self-rotation angleφ.

All necessary characteristics of such motion might be ob-
tained applying differential equations of the mass center
movement (1) and Lagrange differential Eq. (2).

m
d2хc
dt2

¼ ∑Fkx
;

m
d2yc
dt2

¼ ∑Fky;

m
d2zc
dt2

¼ ∑Fkz;

ð1Þ

d
dt

∂T
∂γ̇

−
∂T
∂γ

¼ Qγ ;

d
dt

∂T
∂ψ̇

−
∂T
∂ψ

¼ Qψ;

d
dt

∂T
∂ϕ̇

−
∂T
∂ϕ

¼ Qϕ;

ð2Þ

where Fkx, Fky, and Fkz are the projections of the external
forces k on the axes x, y, and z correspondingly. Т is a kine-
matic energy of the peg during the motion,Qγ,Qψ, andQφ are
generalized forces of Lagrange.

Three coordinate systems are canonical to use for these
three motions of the system: (i) fixed system of coordinates
О1xyz (see, e.g., Fig. 1), which are used in the definition of
Lagrange equations; (ii) coordinate system О1hez (see, e.g.,
Fig. 2) performing precession motion ψ with the peg around
hole axis, in which peg could be considered without preces-
sion; and (iii) moving coordinate system О2εηζ associated
with peg, performing nutation motion γ. In this system, the
self-rotational motion of peg around О2ζ is considered. These
coordinate systems are used to consider three generalized mo-
tions independently. Mathematically, transitions from (iii) to
(ii), and from (ii) to (i) include nutation and precession mo-
tions into consideration consequently. The coordinate system
О1hez is the most convenient to describe the dynamics, since
the most essential geometric and dynamical connections de-
pend on the alignment angle γ. Thus, we use coordinates h and
z to describe the dynamics and geometry in DDE (29).

Now, the left and right parts of (1) and (2) will be consid-
ered separately in order to derive DDE (29).

2.1 The left parts of mass center equations

The left parts of the first three differential equations (1) are the
time derivatives from coordinates хc, уc, and zc of the peg mass

Fig. 1 Position of moving coordinate system О2εηζ relative to fixed
system О1хуz at the beginning of alignment
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center that are the functions of generalized coordinates γ, ψ,
and φ.

The peg position in the process of aligning is defined
relative to the fixed system of coordinates О1xyz (see Fig.
1), the beginning of which coincides with center О1 of the
hole aperture edge, axis О1z is directed along the hole
axis, coordinate plane О1xz passes through the hole axis,
and the peg axis in the initial position of the parts, axis
О1x is the line of intersection of this plane with the hor-
izontal plane of the edge, it coincides with the hole diam-
eter, axis О1y is perpendicular to plane О1xz.

A moving coordinate system О2εηζ (Fig. 1) is asso-
ciated to the peg, with the beginning at the center of its
aligned end, axis О2ζ is directed along the peg axis,
coordinate plane О2ζη passes through axes of the parts
and is a principal plane of their symmetry in the course
of alignment, axis О2η coincides with the diameter of a
peg located in the plane of symmetry, axis О2ε is per-
pendicular to plane О2ζη. When the peg moves, axis
О2ε remains parallel to segment В1В2, axis О2η remains
perpendicular to this segment.

To define a position of peg during its rotation about the
sleeve axis, an auxiliary system of coordinates О1еhz is
used, with the beginning at point О1. Axis О1h is a line
of intersection of the parts’ plane of symmetry with the
horizontal plane of the hole and forms angle ψ with fixed
axis О1х. Axis О1е is perpendicular to plane О1hz (see Fig.
2). Coordinates of mass center relative to fixed system of
coordinates О1хуz, defined in work [18], are as follows:

xc ¼ −O1C1cosψ ¼ − 0:5H−a2ð Þsinγcosψ ¼ hccosψ;
yc ¼ −O1C1sinψ ¼ − 0:5H−a2ð Þsinγsinψ ¼ hcsinψ;
zc ¼ 0:5H−a2ð Þcosγ þ a1:

ð3Þ

where a1 ¼ OO1 ¼ d−Dcosγ
2sinγ is a distance between point О of

intersection of the parts’ axes and center О1 of the hole

edge circumference, and a2 ¼ OO2 ¼ D−dcosγ
2sinγ —distance

between point О and center О2 of the aligned peg end.
In Eq. (3) and the corresponding expressions, the same

notations are used as defined in the introduction: H is a height
of the peg, D and d are diameters of hole and peg
correspondingly.

The obtained values of the peg mass center coordinates (3)
allow to transform the left parts of differential equations of the
mass center movement (1)

d2xc
dt2

¼ dhc
dγ

cosψγ̈−hcsinψψ̈

þ d2hc
dγ2

cosψγ˙
2−hccosψψ˙

2−2
dhc
dγ

sinψγ˙ ψ˙ ; ð4:1Þ

d2yc
dt2

¼ dhc
dγ

sinψγ̈ þ hccosψψ̈

þ d2hc
dγ2

sinψγ˙
2−hcsinψψ˙

2 þ 2
dhc
dγ

cosψγ˙ ψ˙ ; ð4:2Þ

m
d2zc
dt2

¼ m
d2zc
dγ2

γ˙
2 þ dzc

dγ
γ̈

� �
: ð4:3Þ

2.2 Left parts of Lagrange equations

The left parts of Lagrange equations (2) used in DDE (29)
shall be obtained through transforming kinetic peg energy,

T ¼ mV2
c

2
þ I cεγ̇

2

2
þ I zψ̇

2

2
þ I ζφ̇

2

2
; ð5Þ

where m—mass of a peg, Vc – a velocity of its mass
center, γ̇ —angular velocity of planar motion, ψ̇ —an-
gular velocity of rotation motion of peg about hole axis,

φ
˙
angular velocity of self-rotation, Icε—inertia moment

of peg relative to axis Сε, passing through its mass
center perpendicular to the parts’ plane of symmetry.
IZ is inertia moment of peg relative to hole axis О1z,
Iζ—inertia moment of peg relative to figure rotation axis
О2ζ.

Here, Icε ¼ m
12 3R2 þ H2
� �

is a central moment of peg iner-
tia relative to axis Сε, passing through the peg mass center

perpendicular to its plane of symmetry, I ζ ¼ mR2

2 is a moment

of peg inertia relative to its axis О2ζ, I z ¼ I cηsin2γ þ I ζcos2γ

Fig. 2 Position of moving coordinate system О1еh relative to fixed
coordinate system О1ху
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þmh2c is a moment of peg inertia relative to hole axis О1z,
which is a variable value that depends on angle γ between axes.

Mass center velocity is expressed through its projections to
fixed axes of coordinates О1хуz

Vcx ¼ dxc
dt

¼ dhc
dγ

cosψ γ˙ −hcsinψψ
�
;

Vcy ¼ dyc
dt

¼ dhc
dγ

sinψγ˙ þ hccosψψ
�
;

Vcz ¼ dzc
dγ

γ
�
;

where values hc and zc are defined by expressions (3). Hence,

V2
c ¼

dxc
dt

� �2

þ dyc
dt

� �2

þ dzc
dt

� �2

¼ dhc
dγ

� �2

þ dzc
dγ

� �2
" #

γ
� 2 þ h2cψ

� 2
:

Then, kinetic energy (5) shall be as follows

T ¼ m
2

dhc
dγ

� �2

þ dzc
dγ

� �2
" #

γ
� 2 þ h2cψ

� 2
( )

þ Icεγ
˙ 2

2

þ I zψ
˙ 2

2
þ I ζφ

˙ 2

2
: ð6Þ

After kinetic energy is properly transformed, the left parts
of Lagrange equations shall have the following values:

d
dt

∂T
∂γ̇

−
∂T
∂γ

¼ m
dhc
dγ

� �2

þ dzc
dγ

� �2
" #

γ
�� þIcε γ

��

þ m
dhc
dγ

d2hc
dγ2

þ dzc
dγ

d2zc
dγ2

� �
γ
� 2

− m
dhc
dγ

d2hc
dγ2

þ 0:5
dIcz
dγ

� �
ψ
� 2
; 7:1ð Þ

d
dt

∂T

∂ψ
� −

∂T
∂ψ

¼ mh2c þ I z
� �

ψ
��
þ dIz

dγ
γ
�
ψ
�
; 7:2ð Þ

d
dt

∂T
∂φ�

−
∂T
∂φ

¼ I ζ
d2φ
dt2

: 7:3ð Þ

ð7Þ

2.3 Right parts of mass center equations

The right parts of differential equations of mass center motion
(1.1), (1.2), and (1.3) constitute the sums of projections to
fixed axes of coordinates of all forces that act upon peg, name-
ly, assembling forces, peg gravity force, and normal reactions
and friction forces applied at the contact points.

Assembling forces for aligning parts are known values that
depend on a method of assembly and assembly device used.
Normal reactions and friction forces characterizing interaction
forces between the parts shall be defined.

Directions of normal reactions shall be defined by location
of contact points, and the value of each contact point depends

on common patterns of motion. Normal reaction NK is direct-
ed perpendicular to the peg generating line; its projections to
the fixed coordinate axes are equal to.

NKx ¼ NKcosγcosψ; NKy ¼ NKcosγsinψ; NKz ¼ NKsinγ:

ð8Þ

Lines of action of normal reactions NB1, NB2 at symmetric
points of contact В1 and В2 pass through point О of peg and
hole axes’ intersection [18], and their direction cosines shall
be defined from geometrical ratios. They should have the fol-
lowing values after transformations:

cosαN
B1 ¼ −

S1cosψþ bsinψ
B1

� �
; cosαN

B2 ¼ −
S1cosψ−bsinψ

B1

� �
;

cosβN
B1 ¼ −

S1sinψ−bcosψ
B1

� �
; cosβN

B2 ¼ −
S1sinψþ bcosψ

B1

� �
;

cosλN
B1 ¼

a1
B1

; cosγNB2 ¼
a1
B1

;

ð9Þ

where (Fig. 3) b ¼ BB1 ¼ BB2; B1 ¼ OB1 ¼ OB2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25D2 þ a21

q
:

Fig. 3 Projections of the velocities of the planar motion onto axis systems
О1у, О1z, and О2η, О2ζ
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Hence, projections of normal reactions shall be written as
follows.

Nx
B1 ¼ NB1cosα

N
B1; Nx

B2 ¼ NB2cosα
N
B2; Nx

K ¼ NKcosα
N
K ;

Ny
B1 ¼ NB1cosβ

N
B1; Ny

B2 ¼ NB2cosβ
N
B2; Ny

K ¼ NKcosβ
N
K ;

Nz
B1 ¼ NB1cosλ

N
B1; Nz

B2 ¼ NB2cosλ
N
B2; Nz

K ¼ NKcosλ
N
K :

The direction of friction force is always opposite to the
absolute velocity of the point of its application that involves
determining the values of velocities of contact points of parts
В1, В2, and К.

An absolute velocity of each point of peg shall be equal to

vector sum of velocities of all component motions V ¼ Vγ þ
Vψ þ Vφ

; whereVγ
is velocity of planar motion,Vψ

andVφ
are

rotation velocities of points about hole and peg axes, respectively.
Planar motion. When only single angle γ is changing, the

peg makes a planar motion which is characterized by the mo-
tion of its cross-section in the symmetry plane. The velocities
of the points of the peg located in the plane symmetry are
defined as rotational around the instantaneous center of veloc-
ities, located at the intersection of the perpendiculars to the
velocities VK and VA.

Velocities of symmetric points of contact В1 and В2 are
equal to point В velocity, since they are located on one per-
pendicular line to the symmetry plane, passing through point
В, hence, the values of the contact points’ velocities shall be
equal to

Vγ
B1 ¼ Vγ

B2 ¼ Vγ
B ¼ BL γ

�
; Vγ

K ¼ KL γ
�
:

Projections of velocities Vγ
B1; V

γ
B2;V

γ
K of points В1, В2, and

К on movable axes О2η and О2ζ are equal to (see Fig. 3)

Vγ
B1η ¼ Vγ

B2h ¼ −BL γ� cosε2 ¼ −2a2 γ
�
;

Vγ
B1ζ ¼ Vγ

B2ζ ¼ −BL γ� sinε2 ¼ −2S2 γ
�
:

Vγ
Kζ ¼ KL γ

�
;Vγ

Kη ¼ 0:

ð10Þ

Projections of these velocities Vγ
B1;V

γ
B2;V

γ
K to auxiliary

axis О1h are equal (see Fig.4) to

Vγ
B1h ¼ Vγ

B2h ¼ −BL γ� cosε1 ¼ −2a1 γ
�
;

Vγ
Kh ¼ −KL γ� sinγ:

ð11Þ

These expressions include (see Fig.3) ε1—angle between
segment ВL and axis of hole, ε2—angle between segment ВL

and peg axis, cosε1 ¼ a1
OB; sinε1 ¼ S1

OB; sinε2 ¼ S2
OB; cosε2 ¼ a2

OB;

B ¼ OB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ S21

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ S22

q
; BL = 2OB = 2B.

Projections of velocities Vγ
B1; Vγ

B2; V
γ
K to fixed axesО1х,

О1у, and О1z (Fig. 4) are equal to

Vγ
B1x ¼ Vγ

B2x ¼ −Vγ
B1hcosψ ¼ −2a1cosψγ

�
; Vγ

Kх ¼ −KLsinγcosψγ
�
;

Vγ
B1y ¼ Vγ

B2y ¼ −Vγ
B1hsinψ ¼ −2a1sinψγ

�
; Vγ

Ky ¼ −KLsinγsinψγ
�
;

Vγ
B1z ¼ Vγ

B2z ¼ −2S1 γ
�
: Vγ

Kz ¼ KL γ
�
cosγ:

ð12Þ

Rotation about hole axis occurs with angular velocity of

ψ̇ ¼ dψ
dt . Velocities of contact points in this movement are lo-

cated in the fixed plane О1ху, directed (see Fig.5) at tangents
to the hole aperture edge circumference and at all contact
points are equal in magnitude

Vψ
B1 ¼ Vψ

B2 ¼ Vψ
K ¼ 0:5Dψ˙ :

Fig. 4 Projections of velocities of planar potion on the fixed coordinate
axes О1x, О1y

Fig. 5 Projections of velocities of the contact points during the rotation
around hole’s axis onto axes О1х and О1у
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Projections of these velocities to the fixed axes of coordinates

О1х and О1у (Fig. 5) taking values of sinτ ¼ b
0:5D and cosτ

¼ S1
0:5D into account shall be transformed to the following form:

Vψ
B1x ¼ − S1sinψ−bcosψð Þψ

�
; Vψ

B2x ¼ − S1sinψþ bcosψð Þψ
�
;

Vψ
Kx ¼ 0:5Dsinψψ

�
;Vψ

B1y ¼ S1cosψþ bsinψð Þψ
�
;

Vψ
B2y ¼ S1cosψ−bsinψð Þψ

�
;Vψ

Ky ¼ −0:5Dcosψψ
�
;

Vψ
B1z ¼ 0;Vψ

B2z ¼ 0;Vψ
Kz ¼ 0:

ð13Þ

To define projections of velocities Vψ
B1 and V

ψ
B2 onto mov-

ing axes of coordinatesО2ε andО2η, they are first divided into
two components. One of these components is parallel to axis
О1е, and the second one is parallel to axis О1h (Fig. 6).

V
ψ

B1 ¼ V
ψ

B1е þ V
ψ

B1h; V
ψ

B2 ¼ V
ψ

B2e þ V
ψ

B2h:

The values of these components define the projections of
velocities to auxiliary axes О2е and О2h (see Fig. 6).

Vψ
B1e ¼ −Vψ

B1cosτ ¼ −0:5Dψ˙
O1B
0:5D

¼ −S1ψ˙ ;

Vψ
B2е ¼ −Vψ

B2cosτ ¼ −0:5Dψ˙
O1B
0:5D

¼ −S1ψ˙ ;

Vψ
B1h ¼ Vψ

B1sinτ ¼ 0:5Dψ˙
BB1

0:5D
¼ bψ˙ ;

Vψ
B2h ¼ −Vψ

B2sinτ ¼ −0:5Dψ˙
BB2

0:5D
¼ −bψ˙ :

ð14Þ

Components Vψ
B1h and Vψ

B2h, in its turn, shall be
decomposed into two components, one of which is parallel
to peg О2ζ axis, the second is parallel to axis О2η

V
ψ

B1h ¼ V
ψ

B1ζ þ V
ψ

B1η; V
ψ

B2h ¼ V
ψ

B2ζ þ V
ψ

B2η:

Thus, velocitiesVψ
B1 and V

ψ
B2 of pointsВ1 and В2 of rotation

peg motion around hole О1z axis shall be decomposed into
three components.

V
ψ

B1 ¼ V
ψ

B1ε þ V
ψ

B1ζ þ V
ψ

B1η; V
ψ

B2 ¼ V
ψ

B2ε þ V
ψ

B2ζ þ V
ψ

B2η:

Projections of velocities Vψ
B1, V

ψ
B2, and V

ψ
K to moving axes

of coordinates О1ε, О1η, and О1ζ shall be obtained through
adding projections of their components (see Fig. 6).

Vψ
B1ε ¼ Vψ

B1e ¼ −S1ψ˙ ; Vψ
B2ε ¼ Vψ

B2e ¼ −S1ψ˙ ; Vψ
Kε ¼ 0:5Dψ˙ ;

Vψ
B1η ¼ Vψ

B1hcosγ ¼ bψ˙ cosγ; Vψ
B2η ¼ Vψ

B2hcosγ ¼ −bψ˙ cosγ; Vψ
Kη ¼ 0;

Vψ
B1ζ ¼ −Vψ

B1hsinγ ¼ −bψ˙ sinγ; Vψ
B2ζ ¼ Vψ

B2hsinγ ¼ bψ˙ sinγ: Vψ
Kζ ¼ 0:

ð15Þ

Rotation of peg about its axis occurs with angular velocity

φ̇ ¼ dφ
dt .

Velocities Vφ
K , V

φ
B1, V

φ
B2 of contact points К, В1 and В2

while moving are located in the plane of aligned peg end
О2εη, and are equal in magnitude:

Vφ
K ¼ Vφ

B1 ¼ Vφ
B2 ¼ 0:5dφ˙ :

Projections of these velocities to peg О2ζ axis are equal to
zero:

Vφ
B1ζ ¼ Vφ

B2ζ ¼ Vφ
Kζ ¼ 0:

Projections to moving axes О2ε and О2η (see Fig.7) are
equal to.

Vφ
В1ε ¼ Vφ

B1cosβ ¼ −0:5dφ˙
S2
0:5d

¼ −S2φ˙ ; Vφ
В1η ¼ Vφ

В1sinβ ¼ 0:5dφ˙
b

0:5d
¼ bφ˙ :

Vφ
В2ε ¼ −Vφ

B1cosβ ¼ −0:5dφ˙
S2
0:5d

¼ −S2φ˙ ; Vφ
В2η ¼ Vφ

В1sinβ ¼ −0:5dφ˙
b

0:5d
¼ −bφ˙ :

Vφ
Kε ¼ 0:5dφ˙ ; Vφ

Kη ¼ 0:

ð16Þ
Each of Vφ

B1η and Vφ
B2η shall be divided into two compo-

nents, one of which is directed along axis О1h, the other is
parallel to axis О1z (see Fig. 8)

V
φ

B2η ¼ V
φ

B2h þ V
φ

B2z:

Hence, velocity in each point may be presented as a sum of
three components, two of which are located in horizontal
plane О1ху, and the third one is located vertically, i.e., parallel
to axis О1z.

V
φ

B1 ¼ V
φ

B1е þ V
φ

B1h þ V
φ

B1z; V
φ

B2 ¼ V
φ

B2е þ V
φ

B2h þ V
φ

B2z;
Fig. 6 Projections of the velocities of the contact points during the
rotation around the hole’s axis onto axes О1е and О1h

Int J Adv Manuf Technol (2020) 107:689–704 695



Projections of rotation velocities of the points to auxiliary
axis О1h are equal to.

Vφ
B1h ¼ Vφ

B1ηcosγ ¼ bcosγφ˙ ; Vφ
B2h ¼ Vφ

B2ηcosγ

¼ −bcosγφ˙ ; Vφ
Kh ¼ 0; ð17Þ

Projections of velocities Vφ
B1, V

φ
B2, and V

φ
K to fixed axes of

coordinates (Fig.8), after modifications shall be transformed
to the form

Vφ
B1x ¼ Vφ

B1hcosψ−V
φ
B1esinψ ¼ − S2sinψ−bcosγcosψð Þφ˙ ;

Vφ
B1y ¼ Vφ

B1hsinψþ Vφ
B1ecosψ ¼ S2cosψþ bcosγsinψð Þφ˙ ;

Vφ
B1z ¼ Vφ

B1ηsinγ ¼ bsinγφ˙ ;
18:1ð Þ

Vφ
B2x ¼ −Vφ

B2hcosψ−V
φ
B2esinψ ¼ − S2sinψþ bcosγcosψð Þφ˙ ;

Vφ
B2y ¼ −Vφ

B2hsinψþ Vφ
B2ecosψ ¼ S2cosψ−bcosγsinψð Þφ˙ ;

Vφ
B2z ¼ Vφ

B2ηsinγ ¼ −bsinγφ˙ ;
18:2ð Þ

Vφ
Kx ¼ 0:5dsinψφ˙ ; Vφ

Ky ¼ −0:5dcosψφ˙ ; Vφ
Kz ¼ 0: 18:3ð Þ

ð18Þ

Projections of absolute velocities of each point of contact to
fixed axes of coordinatesО1х,О1у andО1z shall be defined as
sums of projections of velocity components based on Eqs.
(12), (13), and (18), and shall be transformed to form:

VB1x ¼ Vγ
B1x þ Vψ

B1x þ Vφ
B1x ¼ −2a1cosψγ˙ − S1sinψ−bcosψð Þψ˙ − S2sinψ−bcosγcosψð Þφ˙ ;

VB1у ¼ Vγ
B1у þ Vψ

B1у þ Vφ
B1у ¼ −2a1sinψγ˙ þ S1cosψþ bsinψð Þψ˙ þ S2cosψþ bcosγsinψð Þφ˙ ;

VB1z ¼ Vγ
B1z þ Vψ

B1z þ Vφ
B1z ¼ −2S1γ˙ þ bsinγφ˙ ;

19:1ð Þ

VB2x ¼ Vγ
B2x þ Vψ

B2x þ Vφ
B2x ¼ −2a1cosψγ˙ − S1sinψþ bcosψð Þψ˙ − S2sinψþ bcosγcosψð Þφ˙ ;

VB2у ¼ Vγ
B2у þ Vψ

B2у þ Vφ
B2у ¼ −2a1sinψγ˙ þ S1cosψþ bsinψð Þψ˙ þ S2cosψ−bcosγsinψð Þφ˙ ;

VB2z ¼ Vγ
B2z þ Vψ

B2z þ Vφ
B2z ¼ −2S1γ˙ −bsinγφ˙ ;

19:2ð Þ

VKx ¼ Vγ
Kx þ Vψ

Kx þ Vφ
Kx ¼ −KLsinγcosψγ˙ þ 0:5Dsinψψ˙ þ 0:5dsinψφ˙ ;

VKy ¼ Vγ
Ky þ Vψ

Ky þ Vφ
Ky ¼ −KLsinγsinψγ˙ −0:5Dcosψψ˙ −0:5dcosψφ˙ ;

VKz ¼ Vγ
Kz þ Vψ

Kz þ Vφ
Kz ¼ KLγ˙ cosγ:

19:3ð Þ

ð19Þ

Projections of absolute velocities of contact points to mov-
ing axes of coordinates О2ε and О2η shall be determined
based on Eqs. (11), (14), and (17).

VB1ε ¼ Vγ
B1ε þ Vψ

B1ε þ Vφ
B1ε ¼ −S1ψ˙ −S2φ˙ ;

VB1η ¼ Vγ
B1η þ Vψ

B1η þ Vφ
B1η ¼ −2a2γ˙ þ bcosγψ˙ þ bφ˙ ;

20:1ð Þ

VB2ε ¼ Vγ
B2ε þ Vψ

B2ε þ Vφ
B2ε ¼ S1ψ˙ −S2φ˙ ;

VB2η ¼ Vγ
B2η þ Vψ

B2η þ Vφ
B2η ¼ −2a2γ˙ −bcosγψ˙ −bφ˙ ;

20:2ð Þ

VKε ¼ Vγ
Kε þ Vψ

Kε þ Vφ
Kε ¼ 0:5Dψ˙ þ 0:5dφ˙ ;

VKη ¼ Vγ
Kη þ Vψ

Kη þ Vφ
Kη ¼ 0:

20:3ð Þ

ð20Þ

Projections of absolute velocities of contact points to aux-
iliary axis О1h shall be determined based on Eqs. (11), (14),
and (17)

VB1h ¼ Vγ
B1h þ Vψ

B1h þ Vφ
B1h ¼ −2a1γ˙ þ bψ˙ þ bcosγφ˙ ;

VB2h ¼ Vγ
B2h þ Vψ

B2h þ Vφ
B2h ¼ −2a1γ˙ −bψ˙ −bcosγφ˙ ;

VKh ¼ Vγ
Kh þ Vψ

Kh þ Vφ
Kh ¼ −KLsinγγ˙ :

ð21Þ

The obtained values of projections of points В1, В2, and К
velocities to axes of coordinates allow to identify directions of
friction forces relative to the specified axes of coordinates
using direction cosines that will be opposite in sign to direc-
tion cosines of the respective absolute velocities.

Direction cosines of friction forces relative to fixed axes of
coordinates shall be defined by the following expressions

cosαF
B1 ¼ −

VB1x

VB1
; cosαF

B2 ¼ −
VB2x

VB2
; cosαF

K ¼ −
VKx

VK
; 22:1ð Þ

cosβ F
B1 ¼ −

VB1y

VB1
; cosβ F

B2 ¼ −
VB2y

VB2
; cosβ F

K ¼ −
VKy

VK
; 22:2ð Þ

cosλF
B1 ¼ −

VB1z

VB1
; cosλF

B2 ¼ −
VB2z

VB2
; cosλF

K ¼ −
VKz

VK
; 22:3ð Þ

ð22Þ

where V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þ V2

y þ V2
z

q
—modulus of velocity at the

corresponding point.
As a result of the conducted analysis, the following direc-

tions were established: directions of (i) the perpendicularFig. 8 Projections of self-rotation velocities to axes О1e and О1h

Fig. 7 Projections of self-rotation velocities to moving axesО2ε andО2η
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reactions and of (ii) all the friction forces, direction cosines of
which are defined with the expressions (19), and (22), corre-
spondingly. Therefore, the right parts of the differential equa-

tions of the mass centers (1) make the following expressions,
in which Fas

x , F
as
y , and Fas

z are the projections of the assembly

forces on the fixed coordinate axes.

∑Fkx ¼ Fas
x þ NK cosαN

K þ f cosαF
K

� �þ NB1 cosαN
B1 þ f cosαF

B1

� �þ NB2 cosαN
B2 þ f cosαF

B2

� �
; 23:1ð Þ

∑Fky ¼ Fas
y þ NK cosβN

K þ f cosβ F
K

� �þ NB1 cosβN
B1 þ f cosβF

B1

� �þ NB2 cosβN
B2 þ f cosβ F

B2

� �
; 23:2ð Þ

∑Fkz ¼ −mg þ Fas
z þþNK cosβN

K þ f cosβ F
K

� �þ NB1 cosβN
B1 þ f cosβ F

B1

� �þ NB2 cosβN
B2 þ f cosβ F

B2

� �
: 23:3ð Þ

ð23Þ

2.4 Right parts of Lagrange equations

The right parts of Lagrange equations are the sums of moments
of all forces applied to peg relative to pertinent rotation axes.

Generalized force Qγ, the right part of the first
Lagrange equation, is equal to the sum of moments of
forces acting upon peg relative to instantaneous axis of
rotation Ll, which passes through instantaneous center
of velocities L perpendicular to the plane of parts sym-
metry О1hz. Normal reactions intersect instantaneous ax-
is of rotation; their moments relative to this axis are
equal to zero. Thus, generalized force Qγ is composed
of moments of assembling forces, gravity force, and
friction forces applied at the contact points.

Qγ ¼ mLl F
as	 


þ mLl mg
	 


þ mLl FK

	 

þ mLl FB1

	 

þ mLl FB2

	 

:

The moment of assembling force is a known value that
depends on a method of assembly.

To determine gravity force mg moment and moments of

friction forces FK , FB1, and FB2 relative to instantaneous axis
Ll, axes of coordinates О1h1 and Lz1, perpendicular to instan-
taneous axis of rotation, shall be associated with point L: axis
Lh1, parallel to axisО1h, and axis Lz1, parallel to hole axisО1z
(see Fig. 9).

Gravity force moment (see Fig. 9) relative to instantaneous
axis is equal to

mLl mg
	 


¼ −mgHc ¼ −mg О1L1−С1О1ð Þ ¼
−mg S1−hcð Þ ¼ −mg S1− 0:5H−a2ð Þsinγ½ �:

ð24Þ

Moment of each friction force relative to instantaneous axis
shall be defined by formula

mLl F
	 


¼ h1Fz1−z1Fh1; ð25Þ

where h1 and z1 are coordinates of points for applying these
forces in the specified system of coordinates (Fig.8), Fz1 and
Fh1 are projections of friction forces to these axes.

Coordinates of contact points В1, В2, and К are equal to

h1B1 ¼ h1B2 ¼ h1B ¼ LB3 ¼ 2S1; h1K ¼ −KL1 ¼ −KLcosγ;
z1B1 ¼ z1B2 ¼ −L1L ¼ −2a1; z1K ¼ −KLsinγ;

ð26Þ

Axis of coordinates Lz1 is parallel to axis О1z, hence, di-
rection cosines of friction forces relative to axis Lz1 are equal
to direction cosines of angles relative to axisО1z, the values of
which are as follows (19)

cosλF
B1 ¼ −

VB1z

VB1
; cosλF

B2 ¼ −
VB2z

VB2
; cosλF

K ¼ −
VKz

VK
:

Fig. 9 Coordinates of the contact points in the coordinate system Llh1z1
associated to the instantaneous center of velocities of the planar motion
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After substituting all components into formula (25) and

further transformations, moments of friction forces FK , FB1,

and FB2 relative to instantaneous axis of rotation shall be
equal to

mLl FK

	 

¼ hK FKz−zK FKh ¼ f NK

KL2γ̇
VK

;

mLl FB1

	 

¼ hB1FB1z−zB1FB1h ¼ f NB1

BL2γ̇−2a1bψ̇−2a2bφ̇
VB1

;

mLl FB2

	 

¼ hB2FB2z−zB2FB2h ¼ f NB2

BL2γ̇ þ 2a1bψ̇þ 2a2bφ̇
VB2

:

Thus, generalized force of the first Lagrange equation is
equal to

Qγ ¼ mLl F
as	 


−mg S1− 0:5H−a2ð Þsinγ½ � þ f NK
KL2γ̇
VK

þ f NB1
BL2γ̇ þ 2a1bψ̇−2a2bφ̇

VB1
þ f NB2

BL2γ̇ þ 2a2bφ̇þ 2a1bψ̇
VB2

� �
:

ð27:1Þ

Generalized force Qψ in the second Lagrange equation is
equal to the sum of moments of all these forces relative to the
hole axis. Gravity force is parallel to the hole axis, normal
reactions intersect it, thus, their moments are equal to zero.

Moment of assembling forces mz F
as� �

depends on a method
used for assembling.

Moment of each friction force shall be defined by formula

mz F
	 


¼ xFy−yFx;

where х and у are coordinates of contact points К, В1, and В2

in fixed system coordinatesО1хyz, values of which after trans-
formations are equal to

xB1 ¼ S1cosψþ bsinψ; xB2 ¼ S1cosψ−bsinψ; xK ¼ −0:5Dcosψ;
yB1 ¼ S1sinψ−bcosψ; yB2 ¼ S1sinψþ bcosψ; yK ¼ −0:5Dsinψ:

Projections of friction forces to fixed axes of coordinates
shall be expressed through normal reactions at contact points

FB1x ¼ f NB1cosα
F
B1; FB2x ¼ f NB2cosα

F
B2; FKx ¼ f NKcosα

F
K ;

FB1y ¼ f NBycosβ
F
B1; FB2x ¼ f NB2cosβ

F
B2; FKy ¼ f NKcosβ

F
K ;

where all direction cosines are defined by values (22).
After substituting all values and further transformations,

moments of friction forces FB1, FB2, and FK relative to axis
О1z shall have the following values.

mz FB1

	 

¼ xB1FB1y−yB1FB1x ¼ f NB1

� 2a1bγ̇− S1S2 þ b2cosγ
� �

φ̇−0:25D2ψ̇

VB1
;

mz FB2

	 

¼ xB2FB2y−yB2FB2x ¼ − f NB2

� 2a1bγ̇ þ S1S2 þ b2cosγ
� �

φ̇þ 0:25D2ψ̇

VB2
;

mz FK

	 

¼ xK FKy−yK FKx ¼ − f NK

0:25D2ψ̇þ 0:25dDφ̇
VK

:

Hence, generalized force of the second Lagrange equation
shall be brought to the following form.

Qψ ¼ mz F
as	 


þ mz FK

	 

þ mL FB1

	 

þ mz FB2

	 

¼ mz F

as	 

þ f NB1

2a1bγ̇− S1S2 þ b2cosγ
� �

φ̇−0:25D2ψ̇

VB1
− f NB2

2a1bγ̇ þ S1S2 þ b2cosγ
� �

φ̇þ 0:25D2ψ̇

VB2

− f NK
0:25D2ψ̇þ 0:25dDφ̇

VK
:

ð27:2Þ

Generalized force Qφ of the third Lagrange equation
is equal to the sum of moments of all forces applied to
peg relative to peg axis О2ζ. Moments of gravity force
and normal reactions are equal to zero, since lines of
their action intersect this axis. Moments of friction
forces relative to peg axis О2ζ shall be defined by for-
mula mζ(F) = εFη − ηFε.

Coordinates of contact points in moving system of coordi-
nates О2εηζ are equal to

εB1 ¼ BB1 ¼ b; εB2 ¼ BB2 ¼ −b; εK ¼ 0;
ηB1 ¼ O2B ¼ S2; εB2 ¼ BB2 ¼ −b; ηK ¼ −0:5d:

Projections of friction forces are equal to

FB1ε ¼ f NB1cosε
F
B1; FB2ε ¼ f NB2cosε

F
B2; FKε ¼ f NKcosε

F
K ;

FB1η ¼ f NBycosη
F
B1; FB2η ¼ f NB2cosη

F
B2; FKη ¼ f NKcosη

F
K ;

where direction cosines of friction forces with axesО2ε and
О2η are equal to
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cosεF
B1 ¼

S1ψ̇þ S2φ̇
VB1

; cosηF
B1 ¼

2a2γ̇−bcosγψ̇−bφ̇
VB1

;

cosεFK ¼ −
0:5Dψ̇þ 0:5dφ̇

VK
; cosεFB2 ¼

S1ψ̇þ S2φ̇
VB2

;

cosηF
B2 ¼

2a2γ̇ þ bcosγψ̇þ bφ̇
VB2

; cosηF
K ¼ 0;

After transformations, moments of friction forces relative
to peg axis О2ζ shall be brought to the following form

mζ FKð Þ ¼ − f NK
0:25d2φ̇þ 0:25dDψ̇

VK
;

mζ FB1

	 

¼ f NB1

2a1bγ̇−0:25d2φ̇− S1S2 þ b2cosγ
� �

ψ̇

VB1
;

mζ FB2

	 

f ¼ NB2

2a1bγ̇−0:25d2φ̇− S1S2 þ b2cosγ
� �

ψ̇

VB2
:

Generalized force of the third Lagrange equation shall be as
follows

Qφ ¼ mζ F
as	 


þ f NB1
2a1bγ̇−0:25d2φ̇− S1S2 þ b2cosγ

� �
ψ̇

VB1

þ f NB2
2a1bγ̇−0:25d2φ̇− S1S2 þ b2cosγ

� �
ψ̇

VB2
− f NK

0:25d2φ̇þ 0:25dDψ̇
VK

;

ð27:3Þ

wheremζ F
as� �

is a moment of assembling force relative to
peg axis О2ζ.

2.5 Dynamic differential equations (DDE)

Comprehensive analysis of peg motion enabled to define right
(5) and left (28) parts of differential equations of mass center
movement (1), and right (8) and left (28) parts of Lagrange
equations (2). After equating corresponding values of these
components, six differential equations shall be obtained (28).

m
dhc
dγ

� �2

þ dzc
dγ

� �2
" #

γ̈ þ Icεγ̈ þ m
dhc
dγ

d2hc
dγ2

þ dzc
dγ

d2zc
dγ2

� �
γ˙
2− m

dhc
dγ

d2hc
dγ2

þ 0:5
dIcz
dγ

� �
ψ
� 2

¼ mLl F
as	 


−mg S1− 0:5H−a2ð Þsinγ½ �

þ f NK
KL2γ̇
VK

þ f NB1
BL2γ̇ þ 2a1bψ̇−2a2bφ̇

VB1
þ f NB2

BL2γ̇ þ 2a2bφ̇þ 2a1bψ̇
VB2

:

ð28:1Þ

mh2c þ I z
� �

ψ̈ þ dIz
dγ

γ˙ ψ˙ ¼ mz F
as	 


− f NK
0:25D2ψ̇þ 0:25dDφ̇

VK

þ f NB1
2a1bγ̇− S1S2 þ b2cosγ

� �
φ̇−0:25D2ψ̇

VB1

− f NB2
2a1bγ̇ þ S1S2 þ b2cosγ

� �
φ̇−0:25D2ψ̇

VB2
;

ð28:2Þ

I ζ φ
:: ¼ mζ F

as	 

− f NK

0:25d2φ̇þ 0:25dDψ̇
VK

þ f NB1
2a2bγ̇ þ 0:25d2φ̇− S1S2 þ b2cosγ

� �
ψ̇

VB1

− f NB2
2a1bγ̇−0:25d2φ̇− S1S2 þ b2cosγ

� �
ψ̇

VB2
:

ð28:3Þ

m½dhc
dγ

cosψ γ̈ −hcsinψψ̈ þ d2hc
dγ2

cosψγ˙
2−hccosψψ˙

2−2
dhc
dγ

sinψγ˙ ψ˙ � ¼

¼ Fas
x þ NK cosαN

K þ f cosαF
K

� �þ NB1 cosαN
B1 þ f cosαF

B1

� �

þNB2 cosαN
B2 þ f cosαF

B2

� �
;

ð28:4Þ

m½dhc
dγ

sinψ γ̈ þhccosψψ̈ þ d2hc
dγ2

sinψγ˙
2−hcsinψψ˙

2 þ 2
dhc
dγ

cosψγ˙ ψ˙ � ¼

Fas
y þ NK cosβN

K þ f cosβ F
K

� �þ NB1 cosβN
B1 þ f cosβ F

B1

� �

þNB2 cosβN
B2 þ f cosβ F

B2

� �
;

ð28:5Þ

mðd
2zc
dγ2

γ˙
2 þ dzc

dγ
γ̈ Þ ¼ −mg þ Fas

z þ NK cosλN
K þ fcosλF

K

� �

þNB1 cosλN
B1 þ fcosλF

B1

� �þ NB2 cosλN
B2 þ fcosλF

B2

� �
ð28:6Þ

This is a system of Dynamic Differential Eqs. (28),
and it is a mathematical model of process for aligning
cylindrical parts in the most general way, when a peg,
supported at the three points of the hole edge of verti-
cally fixed hole, makes a compound motion character-
ized by three degrees of freedom. Such model may
serve as a basis for considering all possible alternatives
of vertical assembly schemes. A comparison of them
will facilitate assessment of effect that rotatory motions
have on reliability and quality of assembly.
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2.6 Examples of application of DDE

DDE (28) is the general way to describe the mechanics of the
peg-on-hole during three-point contact. One could distinguish
different types of motion by implementing alignment of small
angle approximation γ = γ0 + ε. The expression for a1from (3)
becomes:

a1 ¼ Dγ0ε
2 γ0 þ εð Þ ð29Þ

From here four stages of alignment could be identified: (i)
small alignment angles ε ≪ γ0 ≪ 1 with a1 ≈Dε/2 ≈ 0; (ii) me-

dium alignment angles ε~γ0 ≪ 1 with a1 ¼ Dγ0ε
2 γ0þεð Þ; (iii) larger

alignment angles γ0 ≪ ε ≪ 1 with a1 ≈Dγ0/2 and (iv) large
alignment angles ε~1 with exact expression a1 ¼ d−Dcosε

2sinε .

Based on this classification, two examples of DDE appli-
cations are considered. The first is the comparison of the re-
action forces for the cases with and without rotational slip
motion. The second is a small angle case for three degrees
of freedom.

2.6.1 Analysis of the influence of the alignment with help
of rotational motion

Based on the DDE (28), two cases of the assembly process
were considered, and the dynamic reactions at the contact
points under the assembly moment M as

γ were established:

(i) with one degree of freedom, where differential equations
of motion are obtained by substituting values φ= 0, φ̇ ¼ 0;
ψ= 0, and ψ̇ ¼ 0 into system of DDE (28). Here the constant
alignment angular velocity γ̇ ¼ −0; 16 s−1 is used;

(ii) with two degrees of freedom, where differential equations
of motion are obtained by substituting values ψ= 0, ψ̇ ¼ 0 into
system of DDE (28). Here the constant alignment
γ̇ ¼ −0; 16 s−1 and rotational φ̇ ¼ 2 s−1 angular velocities are
used.

The following set of parameters was considered for both
cases: D = 50 mm, d = 49.9 mm, Н = 70 mm, friction coeffi-
cient f = 0.2.

The system of equations, obtained by the mentioned
substitutions allow to find an equation of peg alignment
motion γ = γ(t), and find the values of dynamic reac-
tions, which correspond to this process. The differential
equations were solved numerically based on standard
Mathcad package.

The results are presented as a dependence between

angle γ and value nK ¼ RK
mg, which is an overall reaction

at point К to peg normalized to the gravity force.

Overall reaction R consists normal reaction N and fric-

tion force F, and is their vector sum. Thus,

RK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

K þ F2
K

q
¼ NK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

p
. As follows from the

plot, the system reaches the maximal reaction forces
when the alignment angle approaches the critical value
γ0 = acos(d/D). Here peg-on-hole alignment phase fin-
ishes, because symmetric points of contact B1 and B2

becomes one at the opposite of contact point K, and
the peg-in-hole insertion begins.

The results of the solution of the DDE are shown
graphically for cases (i) and (ii), see Fig. 10. From
the results it follows, that the reaction for the gamma
values of ~0.15 during the alingmnent without peg ro-
tation (i) is ~45, and is larger in comparison to the case
with the peg rotation ~35.

Fig. 10 Comparison of reaction
force in point K during alignment
between cases with and without
rotational slip motion. γ̇ ¼ −0:16
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So the use of DDE could lead us to the conclusion that the
peg rotation could reduce the contact forces during the align-
ment by factor of ~ 1.3.

To determine an impact of rotary motion of peg around its
axis on the process of aligning parts, differential equations of
peg motion with the two degrees of freedom: angle γ, charac-
terizing planar motion, and self-rotation angle φ, specifying
common patterns of the peg rotary motion around its axis,
need to be written. Here, differential equations shall be obtain-
ed by substituting values ψ = 0, ψ̇ ¼ 0 into equation (33).
After all transformations five Eqs. (36) were compiled that
define common patterns of motion of the peg with the two
degrees of motion, which enable to write equations of peg
motion and normal reactions at contact points depending on
assembly forces applied.

2.6.2 Small alignment angles with three degrees of freedom

One of the most interesting cases for the peg-in-hole assembly
is a state recognition. So it would be especially interesting to
understand, what happens during transition from three-point
contact to two-point contact. The mathematical condition for

this is ε≪γ0≈ΔD
D ≪1, where ΔD =D − d.

As an example, the following values for the parameters are
considered (similarly to Section 2.6.2): D = 50 mm, d =
49.9 mm, Н = 70 mm, friction coefficient f = 0.2, alignment
rotational speed γ̇ ¼ −0:16 s�1.

Under these assumptions, the basic values get the follow-
ing expressions:

a1≈0; a2≈0; S1≈D=2; S2≈D=2; b≈0; B1≈D=2; hc≈0;
dhc
dγ

≈−H=2;
d2hc
dγ2

≈−D=2;
dzc
dγ

≈D=2;
d2zc
dγ2

≈D=γc:

ð30Þ

These expressions show in particular, that for small angles
the axes of the details are crossed at the center of peg base, and
that two symmetrical points of contact B1 and B2 are reduced
to a single point B, which is positioned at the opposite side of
the base circle from the point K. Now the expressions (30)
could be substituted into Eqs. (8–9) to find the approximate
directional cosines for the normal reaction forces at the points
of the contact:

cosαN
B1
≈cosαN

B2≈−cosψ; cosβN
B1≈cosβ

N
B2≈−sinψ; cosλN

B1≈cosλ
N
B2≈0;

cosαN
K≈cosψ; cosβN

B1≈sinψ; cosλN
K≈γ0:

ð31Þ

Set of expression (31) could again be interpreted as the
interaction of two horizontal bases of the peg and the hole.
All the normal reaction forces are directed inside the plane of
the hole base towards the hole center. The only exclusion is
the small vertical component of the normal reaction at the

point K. The reason of this vertical component is small
misalignment γ0 caused by the gap between the peg and the
hole.

The expression of velocities components for the align mo-
tion, related to the nutation angle γ could be obtained by the
substitution of (30) into (12):

Vγ
KZ≈V

γ
KX≈V

γ
KY≈V

γ
B1X≈V

γ
B1Y≈V

γ
B2X≈V

γ
B2Y≈0; Vγ

B2Z≈V
γ
B2Z≈−D

˙γ
:
:

ð32Þ

The expressions (32) could be interpreted as a planar mo-
tion in a vertical plane around the point L which is reduced to
the point K in this case. The reduced contact point B is the
opposite side of the peg base circle with respect to point K, so
the radius of the instantaneous rotation in this case is the peg
diameter D.

The expression of velocities components for the slide mo-
tion, related to the precession angleψ could be obtained by the
substitution of (30) into (13):

Vψ
KY ≈−D=2cosψψ

�
; Vψ

KX≈D=2sinψψ
�
; Vψ

KZ≈V
ψ
B1Z≈V

ψ
B2Z≈0:

Vψ
B1X≈V

ψ
B2X≈−D=2sinψψ

�
; Vψ

B1Y≈V
ψ
B2Y≈−D=2cosψψ

�
;

ð33Þ

The expressions (33) describe the horizontal rotation
of the contact points around the hole axis with radius
D/2 and angular velocity ψ̇. Again, the reduction contact
points B1 and B2 to a single point B opposite to K is
obvious here.

The expression of velocities components for the slip mo-
tion, related to the peg self-rotational angle φ could be obtain-
ed by the substitution of (30) into (18):

Vφ
KY≈−D=2cosψφ

�
; Vφ

KX≈D=2sinψφ
�
; Vφ

KZ≈V
φ
B1Z≈V

φ
B2Z≈0:

Vφ
B1X≈V

φ
B2X≈−D=2cosψφ

�
; Vφ

B1Y≈V
φ
B2Y≈D=2cosψφ

�
;

ð34Þ

Expressions (34) could be interpret as the horizontal rota-
tion of the contact points around the peg axis with radius d/2 ≈
D/2. Due to small gap between the parts and small angle of
misalignment, (33) and (34) become equivalent. Which mean
that although mathematically slip and slide are still indepen-
dent, physically they become indistinguishable, and could be
considered as one.

Expressions (32–34) allow to obtain simplified formulae
for (19) for the full velocities components:

VB1X≈VB2X≈−D=2sinψ ψ
�
þφ

�	 

; VB1Y≈VB2Y≈D=2cosψ ψ

�
þφ

�	 

; VKZ≈0

VKX≈D=2sinψ ψ
�
þφ

�	 

; VKY≈−D=2cosψ ψ

�
þφ

�	 

; VB1Z≈VB2Z≈−D γ

�
:

ð35Þ
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From (35) it is easy to get the full absolute of velocities:

VB1≈VB2≈D=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 γ

�	 
2
þ ψ

�
þφ

�	 
2
;

r
VK ¼ D=2 ψ

�
þφ

�	 

:

ð36Þ

In (36) the same rotational components for the velocities at
all points around the approximate common axis of the peg and
the hole is obvious. The vertical component of the planar
motion of the reduced points B1 and B2 is also clearly visible.

Now the expressions (30–36) could be substituted to DDE
(28) to get the approximation of the small alignment angle.
Here we assume that all the motions are ensured by the torque
caused by the compensated pair of the forces. It would mean
that the projections of the joint external forces to the axis are
zero. We also assume the homogeneous rotation in all three
degrees of freedom: γ̇ ¼ const; φ̇ ¼ const; ψ̇ ¼ const: In or-
der to get the values for the reaction forces only the Eqs.
(28.4–28.6) will be in the focus of attention.

NK cosψ− f sinψð Þ

þ NB1 þ NB2ð Þ −cosψþ f sinψ ψ̇þ φ̇ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ̇ð Þ2 þ ψ̇þ φ̇ð Þ2

q
0
B@

1
CA

¼ m −D=2cosψγ˙ 2 þ Hsinψγ˙ ψ˙
h i

; ð37:1Þ

NK sinψþ f cosψð Þ

þ NB1 þ NB2ð Þ −sinψ−
f cosψ ψ̇þ φ̇ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ̇ð Þ2 þ ψ̇þ φ̇ð Þ2

q
0
B@

1
CA

¼ m −D=2sinψγ˙ 2 þ Hcosψγ˙ ψ˙
h i

; ð37:2Þ

NKγ0 þ NB1 þ NB2ð Þ f 2γ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ̇ð Þ2 þ ψ̇þ φ̇ð Þ2

q
¼ m −D=γ0−H=2ð Þγ˙ 2 þ mg: ð37:3Þ

To analyse the motion further, we notice that the most rea-
sonable assumptions detail sizes are of the order of cm, of the
gap—of the order of 0.1 mm, of the align speed – of the order
of 1 1/s. With respect to these estimations, the acceleration of
the free fall ~10m/s2 has a much higher value. So it will be the
most significant term at the right part of (37.3). As the last part
of the simplification of (37), the direction of the axes X and Y
are chosen without reduction of generality to fulfil cosψ = 1.
The expressions of (37) will turn to:

NK− NB1 þ NB2ð Þ≈−mD=2γ˙ 2; ð38:1Þ

f NK− f NB1 þ NB2ð Þ ψ̇þ φ̇ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ̇ð Þ2 þ ψ̇þ γ̇ð Þ2

q ≈−mHγ˙ ψ˙ ; ð38:2Þ

NKγ0 þ NB1 þ NB2ð Þ f 2γ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ̇ð Þ2 þ ψ̇þ φ̇ð Þ2

q ≈mg: ð38:3Þ

From (38) it could be deduced that although geometrically
(i.e., from the left-hand side of the equations), slip and slide
are indistinguishable, it is the mechanics (i.e., right-hand side)
that makes them independent. Despite all the approximations,
slip does not change the position of the mass center of the peg
by the definition of slip, but slide does.

Deriving NK from (38.1), and substituting it into (38.3) we
could derive the expression for (NB1 +NB2), and find NK. We
assumed here that the right-hand side of (38.1) is negligible
with gravity force.

NB1 þ NB2ð Þ≈NK≈
mg

γ0 þ f
2γ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ̇ð Þ2 þ ψ̇þ φ̇ð Þ2
q : ð39Þ

Both γ0 and f are small values, so the reaction forces at the
moment of transition from three-point to two-point contacts
are very high. The value for the forces could vary form mg/
(γ0 + f) tomg/γ0. For the parameters assumed in the beginning
of this subsection, the first value equals approximately 3.8
weights of the peg (i.e., mg) and is realized for a pure align
with no slide and slip. The second value equals approximately
15.8 mg and is realized for high slide and slip rotational ve-
locities, when the rotational velocity of the align becomes
negligible.

3 Conclusions

A detailed kinematic analysis of compound motion of peg
supported at the edge of vertically fixed hole was performed.
In this analysis all three degrees of freedom in the course of
alignment process were taken into account. The directions of
interaction forces were identified at the peg and hole contact
points.

Dynamic Differential Equations providing the most general
description of a process of aligning cylindrical parts were
written. They describe the mutual dependence between the
motion of the parts during the three-point contact, the forces
ensuring this motion and the reaction forces at the points of
contact.

DDE enables to analyse all possible alternatives of vertical
assembly, to determine interaction forces of parts at contact
points, to find the required forces for the requiredmotion, or to
find the motion with given external forces.
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As partial cases, the alignment motion with and without
slip were compared. It was identified that the reaction forces
during alignment are increased, and that slip could decrease
the forces a bit. DDE were analysed for the small angles of
alignment. It was established that near the transition into a
two-point contact, the reaction forces are very high, and addi-
tional slide and slip makes them even higher.

The application of peg compound motion may help to se-
lect parameters and modes of assembly, optimize the reaction
forces for the small gaps, use predictions to recognize the
contact state.
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