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Abstract
The dynamic error of CNCmachine tools, which often exceeds the quasi-static error at high-speed machining, becomes the main
reason affecting the machining error of the sculptured surface parts. Although much research efforts have been dedicated to
dynamic error, there is a lack of systematical summaries. In this review, firstly, the dynamic error is defined as the deviation of
actual displacement of effector end of axis relative to reference displacement during feed motion. Secondly, according to the
mechanical and control structure of the servo feed system, the dynamic error is divided into two components: dynamic error
inside the servo loop (component 1) and dynamic error outside the servo loop (component 2). Based on the two components, the
causes resulting in the dynamic error are analyzed from the points of view of the servo feed system itself and its input (setpoints).
Thirdly, the basic strategies for reducing the dynamic error of individual axis, as well as for reducing the trajectory dynamic error
by coordinating the dynamic error of individual axis, are summarized. Finally, the problems and future research directions on
dynamic error are analyzed. It is concluded that resolving the contradiction between the setpoints and the servo feed system is still
a great challenge for dynamic error in high-speed machining. To achieve high dynamic accuracy at high-speed machining, the
control strategies on the dynamic error outside the servo loop should be further developed and integrated into dynamic error
inside the servo loop-oriented control strategies. Meanwhile, the servo feed system itself and its input need to be investigated as a
whole, so that the servo feed system of each axis can adapt to the differences and changes of the setpoints, and the differences in
the servo dynamics of each axis can be considered in the setpoints.
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1 Introduction

Machine tool errors are errors in the position of the tool rela-
tive to the workpiece [1, 2], which are mainly caused by quasi-
static error and dynamic error [1, 3].

Quasi-static error refers to the error when the machine tool
does not move (spindle does not rotate or the worktable does
not move) or the speed of motion is low, including geometric
error and thermal error. Geometric error originates from
manufacturing and assembling errors of parts. In addition,
the deformation of structures caused by gravity causes the
change of geometric error [4]. Thermal error is generated on

account of the thermal expansion and distortion caused by the
change of structure element and environment temperature [5].
There are some very nice reviews on the research progress of
geometric error and thermal error in different periods. Sartori
and Zhang [6] classified the methods for geometric measure-
ment in direct and self-calibration methods, depending on the
calibrated or uncalibrated standards. Ramesh et al. [7] sum-
marized the sources and compensation methods of geometric
error. Schwenke et al. [8] reviewed the direct measurement
methods of geometric error and its compensation strategies.
Ibaraki and Knapp [9] summarized the indirect measurement
methods for internal error sources of three- and five-axis ma-
chine tools. Ramesh et al. [10] and Li et al. [5] reviewed the
thermal error and its compensation methods of machine tool
and spindle, respectively. Uriarte et al. [11] summarized mea-
surement and compensation methods for geometric error and
thermal error of large machine tools.

Dynamic errors have not been clearly defined so far and are
generally considered to be related to feed motion [12]. The
goal of dynamic error control is to achieve high trajectory
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accuracy. Schmitz et al. [13] carried out a case study, in which
the grid plate encoder was employed to measure the trajectory
errors of a circle–diamond–square tool path. They found out
that the feed rate had effect on the trajectory errors. When the
feed rate was increased from 150 to 8000 mm/min, the trajec-
tory error of the circle–diamond–square tool path was in-
creased from 6 to 11 μm, as shown in Fig. 1. Not only the
feed rates, but also the acceleration/jerk [14] and the tool path
curvature [15] have the effects on the dynamic errors, as well
as the trajectory errors.

At high-speed machining of sculptured surface parts, the
dynamic error is often greater than the quasi-static error,

becoming the crucial factor to affect the machining error.
After summarizing the development of machine tool feed
drive from the transmission system, structural dynamic
models, the control of rigid and flexible feed drives, etc.,
Altintas et al. [16] pointed out that there have been more than
105 rpm of spindles, which requires feed drives traveling over
5 × 104 mm/min with an acceleration of 10 g. Achieving the
high dynamic accuracy is an ongoing hot topic and research
challenge.

Althoughmany researchworks related to the dynamic error
have been published internationally, the complete and system-
atic summary on the dynamic error is still lacking. Some re-
lated reviews mainly summarized the research progress in
each period around the individual axis tracking error control
and the multi-axial tracking error coordinated control. Koren
and Lo [17] summarized the feedback controller, feed forward
controller, and cross-coupling controller early used in contour
machining. Then, Koren [18] reviewed the servo control for
individual axis, interpolators for coordinating the motion of
several axes, and adaptive control for adjusting the cutting
variables in real-time. Ramesh et al. [19] summarized the
tracking error control systems and contour error control sys-
tems. Huo and Poo [1] summarized the control methods of
trajectory tracking error, including individual axis tracking
error control and multi-axis coordinated control. In multi-
axis coordinated control, the cross-coupling controller and
the methods of gain matching were mainly reviewed. Tang
and Landers [20] summarized the research works of contour
tracking control, including individual axis tracking control
and multi-axis cross-coupling controller. In particular, the
cross-coupling controller and its various improved methods
were reviewed extensively. Jia et al. [15] carried out an exten-
sive summary to the present state of the art of contour error
control method research, including the contour error-oriented
interpolation algorithm, individual axis tracking controllers,
cross-coupling controllers, etc.

The above reviews revolve around the tracking error, in-
volving the content of dynamic error partly, but the definition
of dynamic error is still vague and the research framework is
not clear. In this review, the definition of dynamic error is
firstly given on the basis of summarizing the research of dy-
namic error in an all-round way. Secondly, based on the me-
chanical and control structure of the servo feed system, the
dynamic error is divided into two components: the dynamic
error inside the servo loop (component 1) and the dynamic
error outside the servo loop (component 2). Then the causes of
the two components of dynamic error are analyzed. Finally,
the control methods of dynamic error are reviewed. In conclu-
sion, the problems existing in the research of the dynamic
error are analyzed and the future research directions are sug-
gested. The contents of the existing reviews focused on the
research progress of the tracking error in different periods are
covered as component 1. Beyond that, the research progresses

Fig. 1 a, b Trajectory errors of the circle–diamond–square tool path
measured by the grid plate encoder at two feed rates [13]
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on component 2 of the dynamic error are summarized. The
contribution of this review is that the dynamic error of ma-
chine tool is clearly defined, and the research framework on
the dynamic error is systematically presented.

It is noted that just the dynamic error related to feed motion
is included. Although the disturbance, such as the harmonic
force/torque of the motor [21–23], the cutting forces [24–26],
the friction force [27–31], the pitch error of transmission [14],
the transmission clearance [14, 32, 33], transmission harmonic
component [34], etc., affect the dynamic error, the dynamic
error caused by high feed rate, acceleration and jerk is often
prominent in high-speed and high-precision machining.
Therefore, the dynamic error caused by disturbance is not
included.

2 Definition, components, and causes
of dynamic error

2.1 Definition of dynamic error

Zhao et al. [34] systematically induced the classification of
CNC machine tool errors, and then gave the definition of
dynamic error, which is the deviation of the actual displace-
ment of axis relative to the reference displacement, as shown
in Fig. 2.

The mechanical and control structure of the Yaxis of a five-
axis machine tool is as shown in the upper half of Fig. 3 a. This
axis is driven by a rotating motor and a ball screw. An encoder
and a linear scale are used for closed loop control in velocity
loop and position loop, respectively. The servo feed system of
the Y axis has the longest mechanical series, including the
mechanical transmission of the Y axis and the cascaded me-
chanical series of the Z, A, andC axes. The upper half of Fig. 3
b and c shows the mechanical and control structure of a ball
screw feed system with semiclosed loop and the mechanical
and control structure of a linear motor feed system.

It can be seen from the upper half of Fig. 3 that the actual
displacement of axis is the actual displacement at the effector
end of axis (e.g., the cutter or worktable). Thus, according to
the definition put forward by Zhao [34], the dynamic error is
the deviation of the actual displacement at the effector end of
axis relative to the reference (setpoints) displacement in the
feed motion.

2.2 Components and causes of dynamic error

It can be seen from the upper half of Fig. 3 that the deviation
between the effector end displacement and the reference
(setpoints) displacement can be divided into two components:
the dynamic error inside the servo loop (component 1) and the
dynamic error outside the servo loop (component 2).

2.2.1 Component 1: dynamic error inside the servo loop
(tracking error)

Component 1 is the dynamic error inside the servo loop,
which is usually called tracking error. For closed loop-
controlled servo feed system, the tracking error is the devia-
tion between the linear scale detecting displacement and the
reference displacement, as shown in Fig. 3 a and c; for the
semiclosed loop-controlled servo feed system, the tracking
error is the deviation between the motor encoder detecting
displacement and the reference displacement, as shown in
Fig. 3 b.

The feed rate of setpoints at high-speed machining sculp-
tured surface is usually not constant. The variable feed rate
causes the tracking error to change along with it. Therefore,
the tracking error is called as the dynamic error in some
researches.

Slamani et al. [35] referred to the tracking error as servo error
or servo dynamic error. Their research showed that the higher the
feed rate is, the larger the servo dynamic error is. The servo
dynamic error accounted for 80% of the volume error at a feed

Fig. 2 Classification of CNC Machine tool errors induced by Zhao [34]
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rate of 10 m/min. Soon afterward, Slamani et al. [36] established
the prediction model of servo dynamic error, which took the
difference between output and input of the second-order system
closed loop transfer function as the servo dynamic error. Chiu
and Yao [27] referred to dynamic error as dynamic positioning
error and stated that the dynamic position error was caused by the
lack of bandwidth in the servo feed system. Zhao et al. [34]
divided the tracking error into two states: steady state and tran-
sient state. The steady-state error is the position tracking error
caused by time lag which is caused by acceleration and deceler-
ation process and servo control. The transient error is the devia-
tion between the reference displacement and the actual displace-
ment caused by the adjustment and vibration excited by the
sudden change of the setpoints. Zhong et al. [37] stated that the
dynamic error is sensitive to tool trajectory and feed rate.

To sum up, the servo errors, servo dynamic errors, and
dynamic positioning errors mentioned above are the deviation

between the linear scale/encoder detecting displacement and
the reference displacement. They are essentially the tracking
errors which therefore belong to component 1 of dynamic
error.

Component 1 of dynamic error originates from the phase
lag of the servo system, but more importantly originates from
the contradiction between the high setpoint bandwidth and the
low servo bandwidth. When the setpoint bandwidth is larger
than the servo bandwidth, the useful frequency component in
setpoints which exceeds the servo bandwidth cannot be real-
ized. The increase of the feed rate, acceleration, and jerk lead
to the increase of the setpoint bandwidth, hence result in the
increase of the tracking error. Servo bandwidth is related to
mechanical dynamic characteristics. The mechanical modes
both inside the servo loop and outside the servo loop may be
the factors that limit the increase of servo bandwidth, as
shown in lower half of Fig. 3.

Fig. 3 a–c The definition, styles, and causes of dynamic error
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2.2.2 Component 2: dynamic error outside the servo loop

Component 2 is the dynamic error outside the servo loop. For
closed loop-controlled servo feed system, it is the deviation
between the effector end displacement and the linear scale
detecting displacement, as shown in Fig. 3 a and c; for the
semiclosed loop-controlled servo feed system, it is the devia-
tion between the effector end displacement and the motor
encoder detecting displacement, as shown in Fig. 3 b.

In high-speed machining, the setpoints not only have high
feed rate, but also have high acceleration. For example, for a
given circular/corner path, when the path velocity is doubled,
the required acceleration is increased by four times [38].

High acceleration causes high inertia force and, consequently,
leads to the elastic deformation of mechanical series [39]. The
jerk is the change rate of the accelerationwhich is regarded as the
dynamic excitation [40], exciting the vibration of mechanical
series.When the high acceleration and jerk act on themechanical

series outside the servo loop, it produces the deviation between
the effector end and the closed loop/semiclosed loop detection
point. This part of the error cannot be detected and controlled
directly by the servo loop because the mechanical series is out-
side the servo loop. According to the difference of control type
and mechanical structure, this kind of deviation can be classified
into two cases: ball screw feed system with semiclosed loop
control, as shown in Fig. 3 b and ball screw feed system and
linear motor feed system with closed loop control, as shown in
Fig. 3 a and c.

1. Ball screw feed system with semiclosed loop control

When the high acceleration and jerk of setpoints is input to
the servo feed system, the mechanical transmission yields in-
ertial force and inertial force excitation. For the ball screw
servo feed system, the table is linked with the servo motor
by the screw. Due to the finite stiffness, on the one hand, the

Fig. 3 (continued)
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screw produces torsion [41–44] and elongation/compression
[45] elastic deformations [46] under the action of inertia force,
resulting in the difference between the motor and the workta-
ble (this difference is also known as lost motion [43, 44] or
loss of momentum [47]). On the other hand, under the action
of inertial force excitation, the screw produces vibration.
Therefore, the dynamic error includes elastic deformation
and vibration.

In semiclosed loop control, the servo system uses the signal
of the encoder attached to the motor as the feedback signal,
which can only control the error at the motor, but cannot
correct the error at the worktable’s position caused by the
elastic deformation of the screw [42].

In closed loop control, the servo system uses the signal of
linear scale as the feedback signal, which can significantly
reduce the elastic deformation of the screw [45, 46].
However, the vibration caused by inertial force excitation still
exists. This kind of vibration is an important factor to limit the

improvement of the servo bandwidth, which affects compo-
nent 1 of dynamic error.

To sumup, for the ball screw feed systemwith semiclosed loop
control, this component of dynamic error includes elastic deforma-
tion and vibration of mechanical transmission which originates
from the acceleration and jerk of setpoints, respectively.

2. Ball screw feed system and linear motor feed system with
closed loop control

For the multi-axis machine tool with series structure, be-
cause of the limitation of the structure, the feedback elements
in some axes, such as linear scales, cannot be installed close to
the end of effector, even if the closed loop control is adopted,
which results in many mechanical series outside the servo
loop. Whether it is the ball screw feed system shown by Fig.
3 a or the linear motor feed system shown by Fig. 3 c, the
feedback position is far from the effector end.

Fig. 3 (continued)
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Under the action of the acceleration of setpoints, the me-
chanical series outside the servo loop produces the inertial
force which has usually an offset from the driving force (the
driving force and the inertial force are not on the same line).
The offset further produces the moment of inertial force [48]
which causes the elastic deformation of the mechanical series
[38, 49–51], as shown in Fig. 4. The amplitude of the elastic
deformation is linearly correlated with the acceleration and
offset distance [53].

Under the action of jerk of setpoints, the eigenmodes of
mechanical series outside the servo loop can be excited [51],
which lead to the vibration of mechanical series outside the
servo loop [38, 49, 50]. In order to eliminate the vibration, it is
necessary to limit the jerk [11, 54].

The elastic deformation and vibration of themechanical series
outside the servo loop cannot be controlled by the closed loop
[11, 54–57]. It can lead to surface quality defects in high-speed
milling of corners, sharp edges, and S-shaped curves, which are
typical technological features with significant elastic deformation
and vibration. Large and heavy machine tools usually produce a
larger elastic deformation and vibration at a given acceleration.
Columnar and portal machine tools are more likely to produce
elastic deformation and vibration than C-shape and box-in-box
machine tools [52].

The elastic deformation and vibration of the mechanical
series outside the servo loop, directly relating to the inertial
force and inertial force excitation [58], are widely regarded as
the dynamic error. However, the definition of the dynamic
error is different according to different concerns. Bringmann
and Maglie [51] defined the dynamic error as dynamic path
error, which is the relative dynamic displacement between the
tool and workpiece at the tool tip point. By using the R-test
method, they measured the error of the dynamic trajectory in
three translational degrees of freedom, in which one was the

feed direction and the other twowere perpendicular to the feed
direction. ISO 230-8 defined the dynamic displacement at the
tool tip as inertial cross-talk [59]. Andolfatto et al. [60] defined
the additional error as the dynamic geometric error, which is
produced in high feed rate, as shown in Fig. 5. This error is
from the elastic deformation of the mechanical series with the
action of inertial force during the acceleration process. They
also found that the dynamic geometric error is related to the
feed rate, and also positively correlated with the feed acceler-
ation. In addition, the dynamic geometric error is obvious at
the sharp corner. Kono et al. [61] defined the error between the
tool tip and control detector position as dynamic mechanical
error. They pointed out that the error is mainly caused by the
dynamic response of the mechanical system.

To sum up, the dynamic geometric error, the dynamic tra-
jectory error, and the dynamic mechanical error mentioned
above are essentially the elastic deformation and vibration of
mechanical series outside the servo loop. Therefore, these er-
rors belong to component 2 of dynamic error which originates
from the acceleration and jerk of setpoints, including the elas-
tic deformation and vibration of mechanical series outside the
servo loop. The acceleration produces the inertial force and,
hence, causes the elastic deformation, while jerk as an excita-
tion arouses the vibration.

The dynamic error consists of inside servo loop dynamic
error and outside servo loop dynamic error. In Section 2, the
concepts mentioned in the literature (as shown in Table 1)
such as the servo dynamic error, dynamic position error, dy-
namic geometric error, dynamic trajectory error, etc. are es-
sentially one component of dynamic error.

The dynamic error is the deviation between the actual dis-
placement of the axis and the reference displacement and is
the superposition of the dynamic errors in component 1 and
component 2. The component dominating of dynamic error is
related to many factors, including mechanical structure, con-
trol system, setpoints, tool path, etc. But in general, the dom-
inating component depends on the servo feed system itself and
its input (setpoints) [62]. Consequently, this review induces
the components and the causes of dynamic error from the two
dimensions: the servo feed system itself and its input, as
shown in the lower half of Fig. 3.

The requirement of CNC machine tools is to coordinate
the movement of the axes to trace a predetermined trajec-
tory of the tool relative to the workpiece accurately [63]. If
the dynamic error of all the individual axes can be mini-
mized to a very small value, the trajectory accuracy can be
realized. Therefore, Sections 3 and 4 will summarize the
research works of minimizing dynamic error from the as-
pects of the servo feed system itself and input, respectively.
However, the dynamic error of individual axis is often
difficult to be completely eliminated. In this case, the tra-
jectory accuracy can only be ensured by coordinating the
dynamic error of all the individual axes. Therefore, in

Fig. 4 Elastic deformation of mechanical series outside the servo loop
caused by inertial force [52]
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Section 5, some research works on coordinated control will
be summarized.

3 Minimizing the dynamic error
from the aspects of the servo feed system
itself

3.1 Improvement of the phase–
and amplitude–frequency characteristics
for minimizing the dynamic error inside the servo
loop (component 1)

3.1.1 Improvement of phase–frequency characteristic
by reducing phase lag

The phase lag causes the time delay between the actual
displacement and the reference displacement. The repre-
sentative solving method for the phase lag is the zero
phase error tracking controller (ZPETC) proposed by
Tomizuka [64], as shown in Fig. 6. ZPETC takes the
inverse of the servo feed system model as the feed for-
ward transfer function on the basis of elimination for the
unstable poles, making the phase difference in the steady
state to be 0 in the frequency domain and the static
(frequency is 0) gain to be 1. Funahashi and Yamada
[65] improved the phenomenon of ZPETC gain decreas-
ing with the increase of frequency by means of feed
forward gain filter compensator. ZPETC can only be
used in a low-frequency range, but cannot implement
effective control in a high-frequency range (e.g., circular
follow process) [66].

ZPETC depends on the accuracy of the system model [66].
The variation of the system parameters and disturbance can
result in the failure of the controller. To enhance antiparameter
variation and antidisturbance ability, ZPETC needs to com-
bine with friction, reverse gap and trajectory error

Fig. 5 Servo error, quasi-static error, and dynamic error defined by Andolfatto et al. [60]

Table 1 Literatures about the definition, components, and causes of
dynamic error

Dynamic error Literatures

Component 1 and its causes Chiu and Yao [27]
Zhao et al. [34]
Slamani et al. [35, 36]
Zhong et al. [37]

Component 2 and its causes Heisel and Gringel [38]
Kono et al. [39]
Barre et al. [40]
Lim et al. [41]
Zhu and Fujimoto [42]
Sugie et al. [43, 44]
Kamalzadeh et al. [45]
Huang et al. [46]
Wu et al. [47]
Dong et al. [48]
Weekers [49]
Ahmadian et al. [50]
Bringmann and Maglie [51]
Knapp and Weikert [53]
Parenti et al. [52]
Ansoategui et al. [54]
Thoma et al. [55]
Nguyen et al. [56]
Zatarain et al. [57]
Mu and Ngoi [58]
ISO 230-8 [59]
Andolfatto et al. [60]
Kono et al. [61]
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compensation [67], disturbance observer [68], and robust con-
troller [69].

3.1.2 Improvement of amplitude–frequency characteristic
by increasing bandwidth

With the development of high-speed machining, the feed rate
has been increasing. The high feed rate leads to the high-
frequency setpoint bandwidth exceeding the servo bandwidth,
which is the main factor causing the tracking error [70].
Therefore, control methods to increase servo bandwidth have
been attracting much attention.

The servo bandwidth of ball screw servo feed systems can
only reach 30 Hz [16] to 50 Hz [62]. When the feed rate
reaches 40 m/min and the acceleration reaches 2 g, the servo
bandwidth must reach 100 Hz for effective control of the
tracking error in the machining of aeronautical structural parts
[70].

For the ball screw servo feed system, the axial and torsional
vibration modes of the screw limit the servo bandwidth. Chen
and Tlusty [71] compensated the two torsional vibration
modes by zero pole cancelation. They increased the servo
bandwidth to 100 Hz. Erkorkmaz and Kamalzadeh used adap-
tive sliding mode controller to suppress the first-order axial
vibration mode [72] and the notch filters to suppress the first-
and second-order torsional vibration modes [73], which in-
creased the servo bandwidth to above 200 Hz, as shown in
Fig. 7.

In addition to using filters to increase servo bandwidth,
researchers have been exploring advanced control strategies.
Altintas et al. [74] developed an adaptive sliding mode con-
troller to increase the servo bandwidth of the ball screw servo

feed system to above 60 Hz. Then Okwudire and Altintas [75]
proposed adaptive disturbance discrete-time sliding mode
controller to increase servo bandwidth above 200 Hz.
Pritschow and Croon [76] placed low stiffness bearings and
large dampers in servo feed systems to increase the servo
bandwidth by six times. Verl and Frey [77] proposed a semi-
active damping control method using a friction-based actuator
to selectively suppress vibrations, which increased the band-
width of the position loop by 100%. Moreover, the jerk was
doubled under the same tracking error (Fig. 8).

Sun et al. [78] proposed an additional table speed control
loop based on the traditional P-PI cascade control structure to
increase the bandwidth of the position loop, as shown in
Fig. 9. Based on this control structure, the speed difference
between the motor and the table was used as the mechanical
vibration to the speed controller to increase the position loop
bandwidth by 80% [79]. Since then, they [80] further im-
proved this method by setting the speed loop as a small gain
proportional control and setting the position loop as PD con-
trol, as well as adding the disturbance observer, which in-
creased the bandwidth of the position loop by 200% and de-
crease the tracking error by 70%.

Sencer and Dumanli [81] proposed an optimal controller
using the load side feedback signal. With their controller, the
bandwidth was increased to more than 300 Hz at a feed rate of
48 m/min and acceleration of 2.5 g, and the tracking error was
reduced to 40 μm without feed forward compensation. Liu
et al. [82] analyzed the reason of bandwidth limitation from
the point of view of noncollocated control. They stated that the
position feedback point and driving point of the motor were
noncollocated under closed loop control. The noncollocated
control caused the nonphase vibration and instability and,
hence, resulted in the limitation of the bandwidth. They used
the peak filter control to adjust the nonphase vibration to the
in-phase vibration, as shown in Fig. 10. As a result, the gain of
the speed control loop was increased, and the negative effect
of noncollocated control on the position control loop was
eliminated. Dumanli and Sencer [83] presented an optimal
noncollocated pole placement control technique for flexible
ball screw drives, in which a kinematic state observer was

Fig. 8 Control structure for the feed drive with semi-active damping
proposed by Verl and Frey [77]

Fig. 7 Sliding mode and notch filter controller proposed by Erkorkmaz
and Kamalzadeh [72]

Fig. 6 Zero phase error tracking controller (ZPETC) developed by
Tomizuka [64]
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developed that fused accelerometer and encoder measure-
ments together to enable noncollocated control on ball screw
drives.

In order to suppress the vibration, additional active
damping needs to be added in the closed loop. Fanuc proposed
a vibration damping control function which could suppress the
vibration by inputting the difference value of encoder and
linear scale to the torque command [84]. Heidenhain devel-
oped an active vibration damping option which could reduce
the low-frequency vibration from the mechanical transmission
as well as the whole machine [85].

Increasing the bandwidth of the servo system can reduce
the tracking error, but may result in a larger sensitivity to
higher-frequency disturbances. In order to balance tradeoffs
between low-frequency tracking properties and high-
frequency disturbance sensitivity, van Loon et al. [86] pro-
posed a bandwidth-on-demand variable gain control strategy,
as shown in Fig. 11, which is able to adjust controller gain
online to achieve bandwidth adjustment according to the var-
iation of feed rate.

3.2 Control methods for dynamic error
outside the control loop (component 2)

3.2.1 The compensation of screw elastic deformation of ball
screw servo feed system with semiclosed loop control

Component 2 of dynamic error of a ball screw feed system
with semiclosed control is as shown in Fig. 3 b.

In order to reduce the elastic deformation of the ball screw
under the semiclosed loop control, Lim et al. [41] proposed a
torsional displacement compensation method including an al-
gorithm of torsional displacement feedback and an estimation
method of torsional displacement. Kamalzadeh et al. [45]
established the relationship between elastic deformation and

inertia force for estimating the elastic deformation. The esti-
mated elastic deformation was compensated by offsetting the
setpoints. Huang et al. [46] derived the expressions of inertial
force, viscous forces, and elastic deformation in the feed mo-
tion. On this basis, they developed an interpolation algorithm
which could generate the modified setpoints to compensate
the elastic deformation, as shown in Fig. 12.

3.2.2 The control of dynamic error outside the servo loop
of the servo feed system with closed loop control

For a ball screw feed system and a linear motor feed system
with closed loop control, component 2 of dynamic error is as
shown in Fig. 3 a and c.

The control for component 2 of dynamic error should be
carried out on the basis of online estimation or offline mea-
surement. Themodel-based control, actual position estimation
of effector end through external sensors, and measurement are
the main methods employed in the current research.

In terms of model-based control, Wang et al. [87]
established a dynamic model of three-axis gantrymachine tool
considering inertial force and analyzed the effect of coupling
force on tool tip point deviation during acceleration and de-
celeration. Parenti et al. [52] decomposed the dynamic error at
high acceleration feed into static component proportional to
instantaneous acceleration and dynamic component coming
from the vibration excited by jerk. On this basis, a model-
based compensation scheme was proposed, as shown in
Fig. 13. Matsubara et al. [88] proposed a model reference
feedward controller.

In terms of actual position estimation of effector end
through external sensors, Zatarain et al. [57] employed an
acceleration sensor installed near the tool to predict the posi-
tion of tool center point. They used the predicted position as
the position feedback instead of the position read by the linear
scale. Denkena et al. [89] integrated Kalman filter into the
cascaded control of the servo feed system based on the me-
chanical rigid body model, as shown in Fig. 14. Receiving the
tool vibration data measured by laser vibrometer and linear
scale data, the Kalman filter could predict the position and
velocity at tool tip point and sent it as feedback signals.

In terms of measurement, Weikert [90] put forward the R-
test measuring device, which was used to measure the error of

Fig. 10 An intelligent
noncollocated control strategy for
ball screw feed drives with
dynamic variations proposed by
Liu et al. [82]

Fig. 9 P-PI control structure with an additional table speed loop
developed by Sun et al. [78]
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the five-axis machine tool. Based on this measuring device, as
shown in Fig. 15, the measurement and evaluation method of
dynamic 3D trajectory error of the five-axis machine tool at
the tool tip point was investigated by Bringmann and Maglie
[51]. Thoma et al. [55] also used the R-test to measure the
pitching errors caused by inertial force. They classified the
pitching error into inertial cross-talk and inertial in-talk. The
inertial in-talk is the position deviation along the feed direc-
tion, while the inertial cross-talk is the straightness deviation
along the direction perpendicular to the feed direction. Steinlin
et al. [91] compensated cross-talk error offline based on the
actual measurement data. Keck et al. [92] proposed an active
control system including a model-based compensation system
for dynamic errors to increase acceleration. An optical sensor
permitting the direct measurement of the actual tool center
point position was used for system identification of the re-
quired dynamic model.

4 Minimizing the dynamic error
from the aspects of the servo feed system
input (setpoints)

The setpoints, as the inputs of the servo feed drive system, are
generated by interpolation of the CNC system. The setpoint
interpolation is a process in which the geometric tool path is
transformed into the temporal motion setpoints of machine
tool axes under the multiconstraints of geometric precision,
kinematic constraints of axes, smoothness motion profile,
etc. Firstly, the setpoints must meet the requirements of tool
path geometric accuracy [93]. Secondly, the setpoints should
make full use of the kinematic constraints of machine tool
axes to increase the machining efficiency [94]. Finally, the
setpoint profile (feed rate/accelerate/jerk profile) should be
smooth, so that it is easy to achieve high tracking accuracy
and free of vibration [95].

Fig. 12 The elastic deformation compensation interpolation (EDCI) module proposed by Huang et al. [46]

Fig. 11 The bandwidth-on-
demand variable gain control
strategy proposed by van Loon
et al. [86]
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Among the many constraints in the interpolation process,
the smoothness of setpoints is the main factor that affects the
dynamic error. The smoothness of setpoints requires the
smoothness of the feed rate, acceleration, and jerk profile. If
the feed rate profile is not smooth, the setpoint bandwidth
increases, and the servo system is not able to follow the useful
frequency component of the setpoints beyond the servo band-
width, resulting in the tracking error. If the acceleration and
jerk profiles are not smooth, the setpoints contain more fre-
quency components, which can easily excite the vibration of
mechanical structure.

Many factors, such as the programmed feed rate, limitation
of acceleration and jerk, and the curvature of the tool path and
so on, affect the dynamic error through the smoothness of the
feed rate, acceleration, and jerk profile. Generally, the smooth-
ness of setpoints is related to the CAM and CNC. In the CAM,
the generated tool path itself should be smooth. In the CNC,
the generated feed rate profile should be smooth.

4.1 Tool path smoothing

Some CAM systems can generate NC codes in parametric
curve formats which are C2 continuous. Directly interpo-
lating these parameter curves, CNC systems can generate
smooth setpoints [96, 97]. Interpolation algorithms on
parametric curves, such as quintic spline [98], polynomial
curve [99], hermit curve, B-spline curve [100], Bezier
curve [101], Akima curve [102], NURBS-based paramet-
ric curves [103], etc., have been widely investigated, in
which NURBS-based parametric curves are paid more at-
tention [104, 105]. The interpolation for parametric curves
is essentially an optimization problem, and it is extremely
difficult to get the time-optimal solution. In order to solve
this problem, Zhong et al. [106] developed a real-time
interpolator for parametric curves, in which the look-
ahead length was dynamically adjusted to minimize the
computation load. Moreover, the interpolator took into

Fig. 13 Model-based compensation scheme proposed by Parenti et al. [52]

Fig. 14 Integration of the Kalman
filter in the cascaded control
proposed by Denkena et al. [89]
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consideration of constraints from machine dynamics and
contour error while maintaining the feed rate as high as
possible.

At present, most CAM systems cannot output parametric
curve tool paths, but can only output polygonal tool paths
composed of consecutive line segments. Polygonal tool paths
are only continuous in position, but its tangent and curvature
are discontinuous. In the corners of consecutive line segments,
smooth setpoints cannot be interpolated. The motion must
stop at the corner shallowly; otherwise, the driver will violate
the maximum acceleration and jerk limitation.

The methods of generating smooth motion without stop-
ping along the polygonal tool path are global smoothing [107]
and local corner smoothing [108] of the tool path by paramet-
ric curves.

Global smoothing employs parametric curves to approxi-
mate the discrete reference points in tool paths, which can be
carried out in the workpiece coordinate system or in the ma-
chine tool coordinate system [108, 109].

Local smoothing employs transition parameter curves to
blend the corners in consecutive line segments locally, as
shown in Fig. 16. The basic arcs, quadratic curves, quintic
curves [110–112], cubic B-splines [113], PH curves [108,
114], etc. are selected as transition parameter curves, in which
cubic B-splines have the lowest degree to achieve G2 continu-
ity. The transition curves overlap with each other when the
two adjacent lines are not long enough. In order to avoid this
problem, Tajima and Sencer [115] developed a method of
interpolating the velocity and acceleration of the axis near
the corner directly.

The smoothness of the five-axis tool path is more complex
than that of the two-/three-axis tool path, which requires not
only the smoothing of the tool tip path, but also the tool ori-
entation path. Beudaert et al. [116] used the dual spline ap-
proach to smooth the five-axis tool path. One spline was used

to smooth the tool tip path and the other one was used to
smooth the tool orientation path. Tulsyan and Altintas [110]
adopted the quintic and heptic micro splines, respectively, to
smooth the tool tip path and the tool orientation path. Shi et al.
[108] used a pair of quintic PH curves to round the corners of
the tool tip path and the tool orientation path. Tajima and
Sencer [117] proposed an online interpolation of five-axis
machining tool path in workpiece coordinates. TCP motion
was interpolated and locally blended in Cartesian coordinates
by finite impulse response filtering of axial velocity compo-
nents, and tool orientation was blended directly in spherical
coordinates.

4.2 Setpoint profile smoothing

Setpoint profile smoothing is usually called as feed rate plan-
ning or feed rate interpolation, which is a key task of the CNC
system to generate a setpoint for each axis. Feed rate planning
is a multiconstraints problem which needs to take into account
restrictions of geometric errors, kinematic parameters,
smoothness of setpoint profiles, etc. [118].

Firstly, the feed rate planning needs to consider the geomet-
ric error which is influenced by both the feed rate and the
curvature of the tool path. Under the same tool path curvature,
the larger the feed rate is, the greater the geometric error is.
Therefore, for the tool path with sharp curvature change, the
feed rate should be adjusted with the curvature change in order
to improve the machining efficiency under the premise of
satisfying the geometric error [119].

The traditional constant increment interpolators [100],
updating the parameter u uniformly with a constant increment,
can cause significant feed rate fluctuation. The constant feed
rate interpolators, using Taylor’s series to calculate the param-
eter u, can keep the constant feed rate [120]. However, this

Fig. 16 Smoothing sharp corner with quintic B-spline [110]

Fig. 15 The measurement of the accuracy of dynamic trajectory using the
R-test [51]

Int J Adv Manuf Technol (2020) 106:1869–1891 1881



method causes very large chord errors on the break points with
just C0 continuity and on the critical points with high curva-
ture [121]. The adaptive feed rate interpolators can adaptively
adjust the feed rate according to the relation among feed rate,
geometric error, and curvature [122, 123]. Jia et al. [124] de-
fined a large curvature region with the allowable feed rate less
than the programmed value as the feed rate-sensitive region.
Different constant feed rates were assigned in different sensi-
tive regions to further improve the smoothness of feed rate
profile.

Secondly, the feed rate planning should avoid the feed rate,
acceleration, and jerk of setpoints beyond the kinematic con-
straints of each axis [125, 126]. In addition, the kinematical
ability of the machine tool can be making the best use to
improve the machining efficiency by the look-ahead scheme
[109, 127, 128]. In the consecutive line segment interpolation,
the look-ahead scheme realizes the maximum feed rate under
the restriction of the machine tool kinematic parameters
through the pre-read several blocks of NC codes [129]. It
can not only overcome the frequent start/stop motions, but
also improve the machining efficiency. Furthermore, the
look-ahead scheme can detect the position and adjust the feed
rate at the sharp corner in the consecutive line segment inter-
polation, as well as the parametric curve interpolation [107,
130].

Finally, the feed rate planning should make the setpoint
profiles as smooth as possible. The acceleration-limited trap-
ezoidal-shape feed rate planning can just generate the contin-
uous feed rate profile [131]. The jerk-limited S-shape feed rate
planning can generate the continuous feed rate and accelera-
tion profiles [98, 113, 121, 129, 132], while the jerk continu-
ous (such as trigonometric) feed rate planning can realize the
continuous feed rate, acceleration, and even jerk profiles
[133]. Altintas et al. [16] compared the spectrum of accelera-
tion profile generated by trapezoidal feed rate planning (ve-
locity continuity), trapezoidal acceleration feed rate planning
(acceleration continuity), and cubic acceleration feed rate
planning (jerk continuity), as shown in Fig. 17. The last one
has the least amount of acceleration amplitude at high
frequencies.

In high-speed machining, cut feed rates greater than
60 m/min and accelerations higher than 2 g have been
used. In such high feed rates and accelerations, even a
small discontinuity in curvature or in tangency can result
in jerk spikes and, consequently, in machine vibrations
[134]. Therefore, eliminating the vibrations excited by
jerk has been paid intensifying attention in the past few
years. Shahzadeh et al. [134] proposed a path smoothing
method using biclothoid fillets. The fillet fitting was not
limited to line to line transitions. It can be fitted between
two arcs or a line and arc as well. Tajima et al. [135] used
a chain of FIR filters to generate the acceleration and jerk
continuous feed rate. Sencer and Tajima [136] presented a

feed rate planning technique, which had the capability to
avoid excitation of inertial vibrations. In their method, the
time-stamped acceleration profile of the feed profile was
defined as a ninth-order polynomial. The polynomial co-
efficients were solved through an optimization procedure
where the objective function penalized total frequency
energy in a desired frequency band. As a result, generated
reference acceleration commands did not contain any ex-
citation near the vibration modes. Tajima and Sencer
[115] proposed a real-time interpolation algorithm to gen-
erate continuous rapid feed motion along short segmented
linear tool paths by smoothing local and adjacent corners
that were within close vicinity to generate a global jerk-
limited high-speed motion trajectory. Sencer et al. [137]
presented a technique to generate reference trajectories
with optimal frequency spectra to avoid machine tool vi-
brations during linear point-to-point and spline interpola-
tion. In their method, reference acceleration profiles were
generated so that their spectral energy was attenuated
around vibration mode(s) of the machine.

The approaches of feed rate planning are generally divided
into two categories. The first approach uses modeled process
constraints in order to constrain velocities, accelerations, and
jerks during a preprocessing operation. The second approach
employs measured process parameters for limiting axis accel-
erations and velocities by adjusting the overall feed rate in
real-time. Mansour and Seethaler [138] developed an algo-
rithm that allowed combining the measured and modeled pro-
cess constraints.

4.3 Setpoint filtering and shaping

In order to further eliminate the high-frequency components in
the setpoints after tool path and feed rate smoothing,
prefiltering and shaping techniques can be used to remove
the frequency component which can excite the mechanical
modes.

Weck and Ye [95] set a low-pass filter before ZPETC to
filter out the high-frequency components, so that the control
performance of ZPETC for corner tracking was improved. Liu
et al. [130] used the notch filtering to eliminate the mechanical
natural frequency component contained in the setpoints in
NURBS parameter curve interpolation, as shown in Fig. 18.

Singer and Seering [139] and Dietmair and Verl [140] in-
vestigated input shaping methods for avoiding the structural
vibration. Altintas and Khoshdarregi [141] shaped the
setpoints to avoid the excitation of the targeted structural fre-
quencies. Jones and Ulsoy [142] designed the feedforward
filter to shape the setpoints and reduced the peak-to-peak vi-
bration magnitude by 50%. Okwudire et al. [143] developed a
trajectory optimization method minimizing tracking errors in
CNC machines that had unwanted vibration modes. The
setpoints were parameterized using B-splines whose basis
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functions were filtered using a model of the machine’s
dynamics.

To sum up, for reducing the dynamic error, algorithms of
tool path smoothing, setpoint profile smoothing, and setpoint
filtering and shaping are used by CNC systems. Not only can
these algorithms contribute to reduce tracking error (style 1 of
dynamic error), but also they play an important role of sup-
pressing the elastic deformation and vibration (styles 1 and 2
of dynamic error). The advanced CNC systems, such as
FANUC 30i [144] , SIEMENS 840D [145] , and
HEIDENHAIN iTNC530 [146], have been equipped with
these functions.

Setpoint smoothing mentioned above is the technology of
reducing the dynamic error through decreasing or limiting the
feed rate, acceleration, and jerk, but sacrifices the machining
efficiency [52, 147]. In order to further reduce the dynamic
error with the same machining efficiency, the contour error
[124, 148, 149] induced by the constraints of servo lag and
the machine natural frequencies [130] have been taken into
account in the interpolation.

5 Coordinating the dynamic errors

Trajectory error control is the basic task of multi-axis machine
tools.When the dynamic errors of each axis are very small, the
trajectory errors are considered to be very small. However, for
the reasons listed in Sections 3 and 4, the dynamic errors of
each axis or one axis cannot be effectively reduced to a small
extent in some situations. At this point, coordinating dynamic
error of individual axis is the choice for controlling the trajec-
tory error.

5.1 Cross-coupling controller

Cross-coupling controller (CCC), developed by Koren [63],
was first used to control the trajectory error of the two-axis
linear trajectory.

CCC consists of two parts. One part is trajectory error
estimation. The trajectory error is solved according to the geo-
metric relation between tracking error and trajectory error [63,
150, 151]. The estimation method of trajectory error for a

Fig. 17 Comparison of setpoints under three acceleration/deceleration strategies [16]
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linear trajectory is relatively simple. The trajectory error is
expressed as a function of tracking error and the slope of the
linear trajectory. Figure 19 shows the trajectory error of the
linear trajectory caused by tracking errors of two axes.

The trajectory error estimation methods for free form
curves are relatively complex, which can be generally divided
into two categories: local geometric approximations and iter-
ative searches. The major problem of trajectory error estima-
tion is that the approximation precision degrades in sharp cor-
ner regions [66, 152]. For example, the trajectory error esti-
mation method of iterative searches suffers from the sudden
change of trajectory error vector directions in regions of large
curvature, which will lead to “lost corners” and cause sudden
changes of acceleration in trajectory control. To combat this,
Yang et al. [153] developed a computationally efficient

nonparametric trajectory error estimation method for trajecto-
ry control. It first localized the large curvature regions and
then modified the trajectory error vectors to sweep smoothly
through the corner.

The other part of CCC is the control law of eliminating the
trajectory error. The control law can be PID control, optimal
control [154], adaptive control [155], fuzzy logic control
[156], and robust control [157]. The structure of the CCC is
shown in Fig. 20.

The CCC locates in the position loop. In order to ensure the
control effect, the bandwidth of the CCC should be smaller
than that of the position loop [158]. The frequency of trajec-
tory error is generally very low, which can meet this require-
ment. Therefore, CCC can achieve good results in reducing
trajectory error.

Due to the two rotary axes, the trajectory error estimation of
the five-axis machine tool is more complicated. It was not
until 2002 that Lo [159] reported five-axis CCC. His control-
ler consisted of a real-time transformation between the ma-
chine tool coordinate and the workpiece coordinate. The
tracking errors were firstly transformed to the workpiece co-
ordinate for the estimation of trajectory error and the solving
of control law. And then the control law was transformed to
machine tool coordinate by inverse Jacobian matrix kinemat-
ics transformation, as shown in Fig. 21. The trajectory error
estimation of the tool tip was obtained by the tangential pro-
jection along the tool path, and the trajectory error estimation
of the tool orientation was calculated by the tracking errors of
the two rotation axes.

Altintas and Sencer [160] established a method to estimate
the trajectory error of a five-axis tool tip and a tool orientation
trajectory error and realized the real-time compensation of the
trajectory error by the sliding mode controller. Yang et al.
established a kinematics model for five-axis machine tools
with various structural types by using the spinor theory
[161]. They improved the trajectory error estimation method
[162], and then developed a trajectory error control method for
five-axis machining based on model predictive control [163].

Fig. 19 Trajectory error of the linear trajectory caused by tracking errors
of two axes [63] Fig. 20 Cross-coupling controller (CCC) [150]

Fig. 18 NURBS parameter curve interpolation method with notch filter
proposed by Liu et al. [130]
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Li et al. [164] proposed a double sliding mode contour control
method, which could meet the requirements of reducing the
trajectory error and meanwhile suppressing the mechanical
vibration. Dong et al. [165] presented a five-axis CCC based
on the double NURBS parametric interpolation algorithm. In
a general way, trajectory error is estimated as the distance from
the actual point to the line between each interpolation points. It
neglects the error between the reference curve and interpola-
tion line segment. To eliminate the influence on the accuracy
of trajectory error estimation, Li et al. [166] constructed the
Ferguson curve to approximate the reference curve between
the interpolation points.

The CCC is a feedback control system based on online
estimation of trajectory error. The control signal needs to be
generated by the previous error signal. It is essentially a pas-
sive control method that produces trajectory error first and
then adjusts/compensates it. To achieve lead control of trajec-
tory error, Wang et al. [167] presented a trajectory error dy-
namical model-based position loop feedforward control strat-
egy, which is completely different from the existing CCC.

In addition, the CCC uses the tracking error to estimate the
trajectory error. Therefore, it can just compensate the trajecto-
ry error originating from the dynamic error of component 1.

5.2 Servo dynamics matching

Matching the servo dynamics of each axis, put forward by Poo
et al. [168], was first used to analyze the trajectory error of
linear trajectory. Xi et al. [169] further investigated the
matching method of two-axis servo gain in circular trajectory
machining.

For the five-axis machine tools, some specific methods
were designed to explore the matching methods. Smith [70]
identified the difference of servo bandwidth of each axis of the
five-axis machine tool. A delay was added in the high band-
width axis, so that it could be synchronized with the low
bandwidth axis. Lei et al. identified the dynamic difference
between rotary and rotary axes [170] and linear and rotary
axes [171] in a five-axis machine tool by means of a ballbar.
Through adjusting the position loop gains, the mismatch of
servo dynamics between rotary and rotary axes and linear and
rotary axes was eliminated. Later, Lei et al. [172] developed a
universal test method by means of a ballbar which could

inspect dynamic errors of all linear and rotary axes in a five-
axis machine tool equipped with any type of CNC systems.
Lin and Wu [173] stated that the mismatch of the servo dy-
namics between the linear axis and the rotary axis in the five-
axis machine tool was the main reason for the machining error
of the ISO10791-6 test trajectory. Wang et al. [174] and Jiang
et al. [175] analyzed the trajectory error of the S-shaped piece.
They also stated that the servo parameters affected the trajec-
tory error. Duong et al. [176] presented an offline gain adjust-
ment approach to reduce trajectory error in five-axis
machining.

5.3 Tool path planning considering the dynamics
mismatch

Tool paths directly affect the feed rate, acceleration, and jerk
profiles assigned to each axis. Therefore, it directly affects the
dynamic error of individual axis.

The classical methods of tool path planning, including iso-
parametric, iso-planar, iso-scallop methods, etc., mainly focus
on geometry accuracy by restraining scallop heights. In some
new tool path planning methods, the influences of the tool
path on cutting width [177–179], material removal rate [180,
181], and tool deformation [182] are further considered.
However, the performance of machine tools, such as dynamic
error, has not been considered in tool path planning.

Recently, Lu et al. [183] established the mathematical rela-
tionship between cutting direction, dynamics mismatch of
feed axes, and trajectory error of a three-axis machine tool,
as shown in Fig. 22. According to the dynamics mismatch of a
three-axis machine tool, the optimal cutting directions could
be determined for minimizing trajectory error. They verified
that it is feasible in theory that the tool paths could be gener-
ated along the optimal cutting directions for reducing the tra-
jectory error caused by dynamics mismatch between feed
axes.

6 Conclusions

High-speed machining requires not only high feed rate, but
also high feed acceleration and jerk. In sculptured surface
machining, tool paths with large curvature change (such as

Fig. 21 The five-axis cross-
coupling controller proposed by
Lo [159]
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sharp corner) increase the severity of feed rate change and
further raise the requirement of feed acceleration and jerk.
Under these situations, the dynamic error of machine tools
often exceeds the geometric/thermo error, becoming the main
reason that affects the machining error. Heretofore, although
there are already many researches focused on the dynamic
error, a systematic summary has not yet found in the literature.
Therefore, in this review, the definition, components, and
causes of dynamic error are summarized, and the research
works on reducing the dynamic error are reviewed.
Subsequently, some conclusions are drawn as follows:

1. The dynamic error is the deviation of actual displacement
of effector end of axis relative to reference displacement
during feed motion. The dynamic error presents two com-
ponents according to the servo feed system itself and its
input (setpoints): component 1 is the dynamic error inside
the servo loop, which is mainly caused by the contradic-
tion between the high bandwidth of setpoints and the low
servo bandwidth of the servo feed system; component 2 is
the dynamic error outside the servo loop, which originates
from the elastic deformation and vibration of mechanical
series outside the servo loop caused by the acceleration
and jerk of setpoints.

2. From the point of view of the servo feed system itself, the
basic strategies to reduce the dynamic error of individual
axis are as follows: decreasing the phase lag and increas-
ing the bandwidth of the servo feed system to reduce the
dynamic error inside the servo loop (component 1); esti-
mating or measuring the dynamic error of mechanical
series outside the servo loop to compensate for the elastic
deformation and suppress the vibration (component 2).

3. From the point of view of the servo feed system input
(setpoints), the basic algorithms to reduce the dynamic
error of individual axis are mainly the tool path smooth-
ing, setpoint profile smoothing, and setpoint filtering and
shaping. With these algorithms, the setpoints are more
easily followed by the servo feed system, so that the dy-
namic error inside the servo loop can be obviously re-
duced (component 1). Meanwhile, the high frequencies
in the setpoints which cause the elastic deformation and
vibration are removed out, so that the dynamic error out-
side the servo loop can be suppressed (component 2).

4. Under the situation that the dynamic error of individual
axis cannot be sufficiently reduced, coordinating the dy-
namic error of each axis is the basic strategy for reducing
the trajectory dynamic error. These strategies mainly in-
clude the CCC, servo dynamics matching of each axis,
and the tool path planning with the consideration of dy-
namics mismatch.

The feed acceleration in high-speed machining will be
increased from 2 to 10 g [16]. The increase of acceleration
will inevitably lead to the increase of the setpoint band-
width and the increase of the high-frequency component.
Meanwhile, for the servo feed system of especially five-
axis machine tools, the servo bandwidth and control abil-
ity on mechanical deformation and vibration are difficult
to improve due to the flexible links and high-order modes
of mechanical structures [184]. Therefore, resolving the
contradiction between the setpoints and the servo feed
system is a great challenge for dynamic error in high-
speed machining. There are still many researches that
need to be carried out in the future:

1. The feedforward control, filtering, and sliding mode con-
trol have greatly improved the performance of the servo
feed system. For higher servo bandwidth, future research
will be aimed at the intelligent control strategies, such as
enhanced learning [185] and data-driven control [186].

2. Compared with the dynamic error inside the servo loop
(component 1), the dynamic error outside the servo loop
(component 2) has not been solved very well. Therefore,
the control strategies on the dynamic error outside the
servo loop should be further developed and integrated into
dynamic error inside the servo loop-oriented control
strategies.

3. Although the investigations focused on the servo feed
system itself and its input have been intensively carried
out, these two parts are generally isolated from each other.
These two parts need to be considered as a whole, so that
the servo feed system of each axis can adapt to the differ-
ences and changes of the setpoints, and the differences in
the servo dynamics of each axis can be considered in the
setpoints.

Fig. 22 The geometrical relationship between tracking errors, trajectory
errors, and cutting directions established by Lu et al. [183]
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