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Abstract
In the present study, we present the application of spindle power signals in tool condition monitoring (TCM) under different
cutting conditions based on the Hilbert-Huang transform (HHT) algorithm. We extracted two features from the original collected
data using the HHTalgorithm to detect the tool wear and conducted six sets of cutting experiments to verify the feasibility of this
tool condition monitoring method. The results show that these features are highly correlated with the wear state of cutting tools,
regardless of the cutting parameters, workpiece materials, and machining methods. The calculated correlation coefficients
between the extracted features and the actual tool wear reach 0.79–0.98. This demonstrates that the HHT algorithm is suitable
for extracting features from the spindle power signals to construct the online tool condition monitoring system.
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1 Introduction

Machining is a highly complicated process that is signif-
icantly affected by a variety of combinations of cutting
parameters [1, 2], different machinability of materials [3,
4], diverse mechanisms of machining methods [5–7], and
varying design strategies of tools [8, 9]. Among them, the
cutting tool is one of the most critical factors of determin-
ing the products’ quality and machining efficiency.
During a cutting process, wear occurs on the cutting edge
of the cutting tool due to the thermal fracturing, abrasion,
adhesion, diffusion, or chemical wear, and the cutting
edge inevitably becomes blunt gradually [10]. The cutting
tool with blunt cutting edges leads to unwanted vibration,
which deteriorates the surface finish and causes dimen-
sional inaccuracy [11]. Therefore, the implementation of
online tool condition monitoring (TCM) in real-time dur-
ing a cutting process is highly critical for producing high-
quality parts and improving the production efficiency in
industrial practice.

Challenges remain on establishing an accurate and low-
cost online tool condition monitoring (TCM) system.
Currently, the reported TCM systems can be classified into
two categories, namely the direct-monitoring and the
indirect-monitoring system [12]. The direct-monitoring sys-
tem monitors the tool condition by measuring changes oc-
curred in the actual shape or surface of cutting tools during
the cutting process via the radiation, electric resistance, optical
system, etc. It cannot implement the real-time monitoring due
to the continuous contact between the cutting tool and the
workpiece and the presence of coolant fluids [13]. The
indirect-monitoring system evaluates the tool condition by
analyzing one or several signals, such as the spindle power,
cutting force, vibration, and AE, which closely relates with the
tool condition and can be collected at a low cost during the
cutting process [10, 14, 15]. Using the spindle power as the
source signal has many advantages. Collecting the spindle
power of the machine tool in the cutting process is rather
simple and does not require any modification on the machine
tool or customization on fixtures, which makes it possible to
implement a low-cost and real-time online monitoring pro-
cess. However, compared with other signals, the spindle pow-
er signal collected during the cutting process contains much
more noise since it is susceptible to severe viscous drag and
friction between mechanical structures [13]. Therefore, one
critical step of constructing a feasible TCM system based
on the spindle power signal is finding an algorithm that
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can effectively filter the raw spindle power signals and
extract at least one feature to reflect the tool condition
precisely.

Instead of the time domain or frequency domain analysis,
time-frequency analysis methods, such as the wavelet trans-
form (WT) [16, 17] and the Hilbert-Huang transform (HHT)
[12, 18], are widely used to analyze the nonlinear and nonsta-
tionary spindle power signal collected from the cutting pro-
cess. Based on theWTalgorithm, Shao et al. [19] decomposed
the single-channel spindle power signal into several groups of
signals, from which the signals related to a milling cutter and
spindle were separated. Choi et al. [20] used theWTalgorithm
to obtain details of the cutting force signal and estimate trends
of the tool wear. In practice, the WT can only be used to post-
process the linear nonstationary signals as the selection and
construction of the wavelet bases are challenging and highly
depend on the cutting conditions.

The Hilbert-Huang transform (HHT) algorithm is a novel
signal analysis method derived byHuang et al. [21]. It consists
of the empirical mode decomposition (EMD) and the intrinsic
mode function (IMF). It decomposes signals according to their
time-scale features without any basis functions. Therefore,
theoretically, it can be used to analyze any nonlinear and non-
stationary signal, including the spindle power signal collected
in the cutting process, because both the harmonic component
and noises could be suppressed effectively in this way. Several
studies had attempted to utilize the HHT algorithm to con-
struct online TCM systems. For example, Bassiuny et al.
[22] used smooth nonlinear energy operators and the HHT
to capture characteristics of the motor current signal and pre-
dict the tool breakage successfully. Raja et al. [23] found that
the tool wear would lead to an increase in the amplitude of the
corresponding IMF component when they employed the HHT
to process AE signals in the turning process. Sun et al. [24]
developed a TCM system by extracting features from vibra-
tion signals using HHT algorithm and inputting eigenvectors
to the neural network to judge the tool wear status. However,
the development of an online TCM system based on the anal-
ysis of spindle power signals using the HHTalgorithm has not
been reported.

In the present study, based on the HHT algorithm, we
extracted a feature from the spindle power signals that can
precisely reflect the tool condition in real-time, which
makes it possible to develop an effective and low-cost
online TCM system based on the spindle power signal.
We constructed a spindle power signal acquisition system
using sensors, DAQ, and Lab VIEW and extracted the
suitable feature (η) from the signal based on the HHT
algorithm. As available studies had demonstrated the ef-
fectiveness and accuracy of the continuous wavelet trans-
form (CWT) algori thm in the feature extraction
[25–27]we processed the raw spindle power signals using
both the CWT and HHT algorithm and compare the

obtained results to demonstrate both the advantages and
disadvantages of the method proposed in the present
study. The correlation coefficient value (r) between the
extracted feature (η) and the measured tool flank wear
(VB) is used as the index to evaluate the prediction accu-
racy of the algorithm used in the analysis. Besides, we
demonstrated the feasibility of monitoring the tool condi-
tion by analyzing the spindle power signal using the HHT
algorithm in a set of well-designed cutting experiments.

2 Experimental

In the present study, we adopted the HHT algorithm to
analyze the spindle power signal and obtained two fea-
tures (η1 and η2) that closely relate to the tool condition.
For the sake of comparison, we also used the CWT algo-
rithm to generate another feature (η0) from the same raw
data. We provide a detailed description on the extraction
of these features, as well as the setup of cutting
experiments.

2.1 Spindle power signal processing

2.1.1 Feature extraction using the CWT algorithm

The CWT algorithm, which was developed from the Fourier
transform, is a time-frequency domain analysis method that
applies to process the nonstationary signal. The most critical
step for implementing CWTalgorithm is to choose an optimal
wavelet basis function that well matches the waveform of a
specific original signal. Based on the frequency spectrum of
the raw data and the property of the wavelet function, we
choose the complex Morlet wavelet basis functions “cmor3-
3”with a bandwidth of 3 and a center frequency of 3 [28]. The
CWT decomposes the raw signal into a linear combination of
these basis functions. Figure 1a shows a CWT time-frequency
spectrum. The magnitude of each CWT coefficient is repre-
sented by the brightness of each point in the time-frequency
plane. The distinct white line of 133.3 Hz in the figure indicates
that the energy of spindle power distributes around this frequency
and the behavior of these maxima is strongly influenced by the
wear of cutting tools. For this reason, these wavelet coefficients
are considered as the optimal indicators, and the average values
of them is defined as the feature (η0) reflecting the tool condition.
Figure 1b presents a flowchart of the whole extraction process.

2.1.2 The HHT algorithm

The HHT algorithm consists of two fundamental parts, name-
ly, the empirical mode decomposition (EMD) and the Hilbert
spectral analysis [21]. Using the EMD method, the raw signal
is decomposed into a series of IMF components and a residue.
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Then, the Hilbert transform is used to process each IMF to obtain
the instantaneous frequency and amplitude of every moment.

Firstly, the original signal is decomposed into n intrinsic
modes and a residue rn:

x tð Þ ¼ ∑
n

i¼1
ci tð Þ þ rn tð Þ ð1Þ

The following step is to perform theHilbert transform on each
IMF. For any real value function x(t) of Lp class, the Hilbert
transform is essentially a convolution with the function
h tð Þ ¼ 1

πt. Thus, the Hilbert transform of each IMF is defined as

Y i tð Þ ¼ P
π

∫
∞

−∞

ci τð Þ
t−τ

dτ ð2Þ

where P indicates the principal value of the singular integral.
Then the analytic signal is defined as

Z tð Þ ¼ X tð Þ þ jY tð Þ ¼ a tð Þejθ tð Þ ð3Þ

where

a tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X tð Þ2 þ Y tð Þ2
q

and θ tð Þ ¼ arctan Y tð Þ
X tð Þ (4,5)

Here, a(t) denotes the instantaneous amplitude, θ(t) denotes
the phase function, and the instantaneous frequency is natu-
rally denoted by

ω tð Þ ¼ dθ
dt

ð6Þ

After the Hilbert transforming process, we obtain the
Hilbert spectrum of the original signal as the following form:

H ω; tð Þ ¼ Re ∑
n

i¼1
ai tð Þejθ tð Þ ¼ Re ∑

n

i¼1
ai tð Þe j∫ωi tð Þdt ð7Þ

This expression illustrates that the Hilbert spectrum can be
represented in a three-dimensional plot showing the amplitude
distribution over time and frequency. Since the frequency and
amplitude are both functions of time, we define the marginal
spectrum as

h ωð Þ ¼ ∫T0H ω; tð Þdt ð8Þ

The marginal spectrum is represented in a two-
dimensional plot with the frequency and the amplitude.
The amplitude of a specific frequency in the marginal
spectrum displays the energy of the component corre-
sponding to this frequency in the overall data. In terms
of statistics, the larger the amplitude is, the higher the
probability of the corresponding signal is. Unlike the
Fourier transform using the whole periodic signal to de-
termine the local frequency, the Hilbert transform directly
defines the instantaneous frequency as a function of time,
through which the local frequency properties of nonsta-
tionary signals are well preserved.

2.1.3 Feature extraction using the HHT algorithm

We extract two features from the raw spindle power signal
by adopting the HHT algorithm. Firstly, the EMD is per-
formed on the raw data to obtain seven IMF components
and a residue r7, as shown in Fig. 2a. These components
have specific physical meanings. For example, the first
few ones mainly correspond to high-frequency noises.
Therefore, there should exist an optimal IMF component
which can provide useful information about the state of
tool wear. The presence of the energy peak in the frequen-
cy spectrum or marginal spectrum of the raw signal also
supports this deduction. We signify the corresponding fre-
quency as dominant frequency fd.

During a stable cutting process like flank milling, the cut-
ting force acted on the cutting tool varies periodically; thus,
the dominant frequency should be equal to the tooth passing
frequency (ft), which is determined using the following equa-
tion:

f t ¼ k*
n
60

ð9Þ

where n is the spindle rotating velocity (rpm) and k is the
number of teeth of the cutter.

We select the IMF component corresponding to fd as an
optimal one. The average absolute values of its extrema are
denoted as a feature (η1), which reflects the changes in the
spindle power caused by the tool wear. The raw power signal
in Fig. 2a is captured from a flank milling process. The spindle

Fig. 1 a Wavelet time-frequency
spectrum. b The flowchart of η0
extraction
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rotational speed is 8000 rpm. Only one tooth is installed.
According to Eq. (9), ft is 133.3 Hz, which is approximately
equal to the frequency of IMF3. Therefore, we calculate η1
based on this component.

Considering the insufficient performance of the EMD
method on noise reduction, a certain amount of noise still
exists in all the IMF components, including the optimal
one. Therefore, η1 might not be reliable enough in
reflecting the geometric change of the cutting tool. As a
reference, the Hilbert transform is performed on every
IMF to generate the Hilbert-Huang spectrum and marginal
spectrum, from which we can obtain another feature (η2).

In this way, the influence of the tool wear on the spindle
power can be characterized by the magnitude of peak in
the spectrum, which is designated as η2. In this test, the
milling operations were performed repeatedly. Figure 2b
shows the Hilbert spectrum of the 4th cutting cycle and
Fig. 2c presents the marginal spectra and pictures of the tool
edge in cycle 4 and 50. During the cycle 4, the tool is slightly
wornwith a flankwear of 0.07mm,which reaches 0.22mmafter
46 cycles. In the marginal spectrum, the magnitude of the dom-
inant component increases from 0.0037 to 0.0072 with a growth
rate of 94.6%, while other harmonics are unaffected. This result
indicates that the peak in the marginal spectrum is a reliable
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indicator of the flank wear of the cutting tool. Figure 2d presents
a flowchart of extracting the η1 and η2.

2.2 Experimental setup

We conducted a set of cutting experiments to verify the accu-
racy of the features extracted from spindle power signals
based on the HHT algorithm in evaluating the tool condition
under various machining conditions, in which we choose a
variety of cutting parameters, workpiece materials, and ma-
chining methods. The cutting conditions are provided in
Table 1. All tests were performed on a three-axis CNC drilling
center. This machine tool has a maximum spindle power of
5.5 kW and a rotational speed of 20000 rpm. A Sandvik
CoroMill390 with single coated carbide insert was used in
flank milling experiments, which simplified the measurement
of tool wear. An uncoated carbide drill bit and a TiN-coated
drill bit were chosen for experiments 5 and 6, respectively.
The average flank wear of two cutting edges represented the
actual wear of the drill. In each cutting test, the cutting tool
was unloaded from the spindle every 1–3 cutting passes and
its flank wear was measured in a microscope. The lifetime of a
cutting tools is defined as the cutting time it experienced be-
fore its flank wear reached 0.2 mm.

Figure 3 shows the spindle power signal acquisition system
adopted in the present study. The current sensor and voltage
sensor were mounted on the spindle motor cable to collect the
current and voltage data, which were used to calculate the
spindle power. The collected signals were digitalized by
DAQ devices and stored in the local PC using a Lab View
program. The accuracy of the voltage and current sensor was ±
6 V (measurement range, 0~ ± 900 V) and ± 1 A (measure-
ment range, 0~ ± 150A). The DAQ device is a NI 9239 with a
24-bit resolution. The sampling rate of this acquisition system
was 2 kHz. It means more than 12,500 data points were

collected in one cutting pass (cutting length, 100 mm) with
the fastest feed rate (960 mm/min) in the test. Due to the
intermittency of the flank milling process, the collected sig-
nals carry useful information related with the cutting tool con-
dition only when the cutting tool is in contact with the work-
piece. Therefore, the signals between the time points corre-
sponding to engagement and disengagement of the cutting
tool and workpiece are selected as the raw data, from which
we obtain the feature (η) reflecting the tool condition.

3 Experimental results

We processed the power signal collected from experiment 1
using the CWTand HHT algorithm separately. The results are
presented in Fig. 4a, b, and c. Figure 4a represents the results
obtained from the CWT method and the other two represent
the results derived from the HHT method. The VB versus
cutting cycle curve, as displayed in Fig. 4d, represents the
typical variation pattern of the tool wear.

It is seen from Fig. 4a that the η0 shows random dis-
tribution as a function of the cutting cycle. The correlation
coefficient between the η0 and VB is 0.34, indicating that
the CWT algorithm failed to filter the noise in raw power
signal effectively. In Fig. 4b, we can observe that the
variation of η1 is not consistent with that of the VB of
the cutting tool neither. The correlation coefficient be-
tween the η0 and VB is as low as 0.62, which is insuffi-
cient for reflecting the tool condition. However, a turning
point presents near the 45th cutting cycle, where the VB
of the cutting tool is about 0.15 mm, which corresponds
the critical point at which the tool condition transfers from
the normal wear region to the rapid wear regime.
Comparatively, in Fig. 4c, it appears that the η2 coincides
with the VB variation well during the whole cutting test,

Table 1 Cutting conditions
Experiment Tool

(insert)
Rotational
speed
(r/min)

Cutting
depth
(mm)

Cutting
width
(mm)

Feed
rate
(mm/
min)

ft
(Hz)

Machining
method

Workpiece
material

1 2030 8000 2 3 800 133.3 Flank
milling

45 steel

2 2030 8000 3 3 960 133.3 Flank
milling

45 steel

3 2030 6000 2 4 600 100 Flank
milling

45 steel

4 S30T 1200 2 4 96 20 Flank
milling

TC4

5 Uncoated 6000 – – 960 200 Drilling 45 steel

6 TiCN
coat-
ing

1600 – – 160 53.3 Drilling TC4
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with a correlation coefficient value as high as 0.84 be-
tween them. Further, the two transition points could be
recognized from the η2 evolution, which provides a
high-precision evaluation of the tool condition. From the
above results, it is arrived that the feature η2, which is
extracted from the spindle power signal based on the
HHT method, can be used as the index of the tool condi-
tion. We suppose that the ability of processing both the
nonlinear and nonstationary data of the HHT algorithm
attribute to this result significantly.

Due to the changes of cutting parameters, the total numbers
of cutting cycles in the first three experiments differed from
each other, which were 51, 48, and 39, respectively. Figure 5
shows the results of experiments 2 and 3. The left column
represents the changes of η1. The highly vibrating data make
it hard to figure out the relationship between η1 and VB, nor
the transition point of the tool wear region. While in Fig. 5b

and d, the behavior of η2 is consistent with the tendency of the
actual flank wear. In the initial wear stage of experiment 2, the
amount of η2 increases rapidly. Subsequently, η2 shows a
gradually increasing tendency in fluctuation followed by a
rapid wear stage, during which the growth rate rises abruptly.
In these three experiments, the tool wear conditions are well
characterized by the fluctuating η2. The results demonstrate
that the proposed features are independent of cutting parame-
ters in 45 steel machining operation.

Additionally, the correlation coefficient value between the
feature and the flank wear increases from 0.37 and 0.50 to
0.79 and 0.93 in these two experiments. It can be explained
by the mode mixing problem of the EMD, which results in
great difficulty in separating the noise components in the sig-
nal through EMD directly. Thus, it is necessary to perform
Hilbert transform to extract features more sensitive to the wear
state of the cutter.

Fig. 4 The graph of VB and η
versus cutting cycle in experiment
1: a η0, b η1, c η2. d The typical
growth pattern of tool wear: initial
wear region, normal wear region,
and rapid wear region

Fig. 3 Experimental setup:
spindle power signal acquisition
system
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As the TC4 titanium alloy is a difficult-to-machine materi-
al, the cutting tools experience severe wear and thus the rapid
failure during the cutting process. The accuracy of the
HHT-based signal analysis in this cutting condition is ver-
ified in experiment 4. In milling TC4, cutting chips
started to wrap around the cutting tool at the 11th cycle
and the flank wear reached 0.19 mm after 15 cutting cy-
cles. Figure 6 demonstrates the results obtained in exper-
iment 4. In the initial wear stage, the increments of tool
wear are too small to be detected and presented in the
graph. As it is exhibited in the pictures, in spite of slight
oscillations due to the noise disturbance, both η1 and η2
have a strong correlation with the actual flank wear. Both
correlation coefficients (r) between the η1 and the mea-
sured VB and the η2 and the measured VB surpassed 0.85, which
is different from the results obtained in the previous experiments

that the η2 exhibits higher correlation coeffect compared with the
η1. During the machining of TC4, the cutting forces change
significantly and havemore impact on the spindle power because
of the rapid increase of built-up edge, the complex tool wear
mode and the plastic deformation of cutting edge [29–32].
Therefore, the spindle power signals collected in this condition
contain higher proportion of parts related with the tool wear and
thus less proportion of noise. In this case, the feature obtained
using EMD is accurate enough to estimate the tool wear.
According to the correlation coefficient of each test, we could
conclude that the workpiece materials has little influence on the
accuracy of this analysis method.

By comparing the results obtained from tests of drill TC4 and
45# steel, we showed that influence of the workpiece material on
the HHT-based TCM method. Figure 7 a and b present the IMF
components and the marginal spectrum of the 106th drilling

Fig. 5 The graph of VB and η
versus cutting cycle: a η1 in
experiment 2, b η2 in experiment
2, c η1 in experiment 3, d η2 in
experiment 3

Fig. 6 The graph of VB and η
versus cutting cycle in experiment
4: a η1, b η2
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cycle in experiment 5. Since the cutting edges of the drill con-
stantly contacted with the workpiece in the drilling process, fd is
no longer equal to ft. According to the marginal spectrum in Fig.
7b, the dominant frequency corresponds to 400 Hz. This phe-
nomenon also occurred in experiment 6. Therefore, the IMF
component matching 400 Hz is selected as the optimal IMF to
calculate η1.

Figure 7 c and d display the results of experiment 5. As the
flank wear of the drill increases, both η1 and η2 show an
apparent upward trend. In contrast to the highly fluctuating
η1, η2 stabilized around the curve of VB versus cutting cycle
and is more sensitive to the tool’s condition. The results

presented in Fig. 7e and f further confirm that both the two
features (η1 and η2) can reflect the wear condition of the drill in
drilling TC4. Besides, it is noted that in experiment 6, both the
two features closely correlate with the flank wear of the cut-
ting tool, which is consistent to the results obtained in exper-
iment 4.

4 Discussion

Figure 8 displays the cutting edge of the tool after each cutting
experiment. In the initial wear stage, we can see an even flank

Fig. 7 The HHT processing results of the 106th drilling cycle in experiment 5: a IMF components, bmarginal spectrum. The graph of VB and η versus
cutting cycle: c η1 in experiment 5, d η2 in experiment 5, e η1 in experiment 6, f η2 in experiment 6
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wear of the cutting edge. When the cutting tool entries the
normal wear phase, a chipped or blunt cutting edge with un-
even wear can be observed.

For us, what makes sense is the moment that the tool
entries into the failure region as displayed in Fig. 8. As it
is impossible to identify the actual transition point due to
the limit of capturing the cutting edge of the tool, instead,
we monitor the geometrical changes of the cutting edge
by examining the evaluation of the η indirectly.

Table 2 demonstrates the correlation coefficients between
the extracted η and the actual flank wear. The following con-
clusions can be drawn.

In experiment 1, the spindle power signals were ana-
lyzed by the CWT and HHT algorithm to extract three
features. Although it has been reported that the feature
extracted from the spindle power signal based on the
CWT algorithm could reflect the tool condition precisely
[19], challenges still remain in selecting an appropriate

Fig. 8 Pictures of the tool edge
for each experiment, scale bar = 1
mm
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wavelet basis function for the detection of a potential
unknown tool failure. Comparatively, the HHT algorithm
could process both nonlinear and nonstationary signal
with a high resolution. Therefore, using the HHT algo-
rithm, the uncertainty of the Wavelet transform could be
overcome. The correlation coefficients between the three
extracted features and the VB are 0.34, 0.62, and 0.84,
among which the η2 presents the strongest correlation
with the flank wear of the cutting tool. These results in-
dicate that the two features (η1 and η2) can extract more
valuable information that related with the tool condition
from the raw signals.

In the present study, the correlation coefficients be-
tween the features extracted from the spindle power signal
by the HHT algorithm range from 0.79 to 0.98 and they
showed weak dependence on the cutting parameters, the
workpiece material, or the machining method. That is to
say, both the η1 and η2 are reliable indicators of the tool
wear. Furthermore, the low-cost of the signal acquisition
system for the spindle power and the fast and straightfor-
ward algorithm developed in the present study to extract
features provides a potential application of this method in
the real workshop.

Comparing with the η1 that is extracted from the EMD
method, the η2 shows stronger correlation with the measured
flank wear. Even though EMD is theoretically applied to any
signal, challenges still remain regarding to the modemixing in
the feature extraction from weak and composite raw signals.
Therefore, the Hilbert transform is used to obtain more sensi-
tive features. The inherent property of the HHTmethod allows
observation of the effect of the geometric changes resulted
from the tool wear on the marginal spectra with little distur-
bances. Considering that the calculation of η2 costs more than
72% higher CPU time than that of η1, η1 has an advantage in
being able to determine the tool wear stage rapidly and im-
prove the real-time performance of the whole system, and η2 is
suitable to estimate the amount of the tool wear precisely.

Besides, we observe that both the two features in experi-
ment 6 have the strongest correlation with the VB compared
with the results obtained in other experiments. The correlation

coefficients obtained in experiments 4 and 5 are relatively
higher than those obtained in the first three tests. Under dif-
ferent cutting conditions, the signals generated due to the tool
wear account for different proportions in raw spindle power
data, the complexity of extracting useful features from raw
signals varies greatly. Under a complicated machining condi-
tion, such as experiments 4 and 6, the response of the spindle
power to the cutting tool condition is great enough to be rep-
resented by η1 that is extracted from the EMD method.

5 Conclusion

In the present study, two reliable features are successfully
extracted from the spindle power signal using the HHT algo-
rithm to precisely estimate the tool condition. The results
show that the HHT algorithm can effectively suppress the
noise interference in the raw spindle power signal and the
extracted two features (η1 and η2) consistently coincides with
the measured flank wear (VB) of the cutting tool. The corre-
lation coefficients between them calculated in various cutting
experiments maintain at a high level and show weak depen-
dence on the cutting parameter, the workpiece material, or the
machining method. Besides, the spindle power signal acqui-
sition system could be established at a low cost and the fea-
tures could be extracted efficiently, which makes such as tool
condition monitoring (TCM) system meets the economic and
efficiency requirements in the industrial production. For the
feasibility of this method in a wider range of cutting tools and
machining conditions, further work is required to develop an
AI-based monitoring system that can predict tool wear state
and promote the efficiency of the management of the tool life
cycle.

Funding information This study received financial support from the
Ministry of Industry and Information Technology of China (Grant No.
CDGC01-KT0505) and the National Science and Technology Major
Project of China (Grant Nos. 2018ZX04011001 and 2018ZX04005001-
002).

Table 2 The correlation
coefficients between the extracted
features and the actual flank wear

Experiment Method and material r between η0 and
VB

r between η1 and
VB

r between η2 and
VB

1 Flank milling, 45 steel
(parameter 1)

0.34 0.62 0.84

2 Flank milling, 45 steel
(parameter 2)

– 0.37 0.79

3 Flank milling, 45 steel
(parameter 3)

– 0.50 0.93

4 Flank milling, TC4 – 0.86 0.90

5 Drilling, 45 steel – 0.63 0.88

6 Drilling, TC4 – 0.91 0.98
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