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Abstract

A two-axis differential micro-feed system (TDMS) can overcome the accuracy limitation of the conventional drive feed system
(CDFS). However, the heat induced by friction in the ball screw, bearings, and motors will lead to axial thermal deformation of
the screw, with the deformation being the primary factor restricting the high precision micro-feed. EIman neural networks (ENs)
are employed to carry out the thermal error modelling in this paper. To improve the performance of ENs, the differential evolution
(DE) algorithm is used to optimize the initial weights and thresholds of the ENs. Complex operating conditions of the TDMS are
also considered in the model. The experimental results show that the thermal error residual decreased from 1.73 to 0.88 wm for
the DE-ELMAN model. Moreover, the proposed method of thermal error modelling proved to be accurate and robust when used

in the varying conditions.

Keywords Thermal error modelling - EIman neural network - Differential evolution algorithm - Feed system of machine tool

1 Introduction

In recent years, with the improvement of the precision and
speed of feed drive systems, the ball screw, as the core compo-
nent of the precision feed drive system, has an increasingly
obvious influence on the system. A large number of studies
have shown that the thermal error accounts for 40—70% of the
positioning error [1]. The study on the thermal error and com-
pensation of ball screw systems will improve the performance
of feed drive systems. Feng et al. proved that the influence of
nonlinear friction on the conventional drive feed system
(CDFS) can be reduced significantly by the two-axis differen-
tial micro-feed system (TDMS) [2—6]. However, the friction of
the supporting bearings and the ball screw in the system will
lead to axial thermal deformation, which being a main factor
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restricting high-precision micro-feeds. Due to the structure and
motion characteristics of the transmission parts of the TDMS,
the distribution of the heat source is different from that of the
CDFS. Clearly, it is essential to study the thermal error mea-
surement, modelling, and compensation methods of the TDMS.

High-precision thermal error models can improve machin-
ing accuracy effectively [7]. A neural network is one of the
important development directions of artificial intelligence al-
gorithms. Compared with a traditional classical theoretical
model, a neural network model has good data parallel process-
ing ability, storage capacity, data fault tolerance, and charac-
teristics of nonlinear mapping. Many scholars use back-
propagation (BP) neural networks [8], radial basis function
(RBF) neural networks [9], or support vector machines
(SVMs) [10] to build thermal error models. Because the pre-
diction results of neural network models depend largely on the
selected initial values, many scholars incorporate genetic al-
gorithms [8], particle swarm optimization [8], Grey theory
[11], and fuzzy theory [12] into the neural network to be used
as a neural network initial value optimization method, thereby
further improving the prediction results. Ma et al. utilized
particle swarm optimization and genetic algorithm to optimize
the thermal error modelling of a BP neural network [8] but did
not consider the thermal elastic effect of thermal deformation.
This approach will reduce the prediction accuracy when the
operating conditions are complex.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-019-04605-1&domain=pdf
http://orcid.org/0000-0001-9781-9677
mailto:dufuxin@sdu.edu.cn

280

Int J Adv Manuf Technol (2020) 106:279-288

In this paper, the thermal error is predicted by the dynamic
model with the elastic effect of thermal deformation taken into
account. The model input is a time series of variables, such as
temperature and speed. The thermoelastic effect can be under-
stood as follows: the temperature change near the location of
the heat source is faster than the change in the thermal defor-
mation, while the temperature change far from the heat source
is slower than the change in the thermal deformation. A dy-
namic neural network is often used for thermal error model-
ling because of its delay or feedback links. Chang et al. used a
dynamic feedforward neural network, with its input variables
corrected according to the time series [13]. Yang et al. simpli-
fied the heat conduction problem of the spindle into a one-
dimensional infinitely long heat conduction rod problem [14].
The analytical solution of the problem is given, and the inter-
nal regression diagonal neural network model is used for ther-
mal error prediction. Xia et al. used the packet display algo-
rithm to solve the heat problem of the finite length one-
dimensional bar and used the neural network model and
NARMAX time series model to predict the axial deformation
of a screw feed system [15]. Yang et al. used an Elman neural
network to build the thermal error model of a machine tool and
compared with the RBF neural network, which showed an
improvement in the prediction accuracy [16]. Similarly,
Huang et al. [17] utilized the Elman model optimized by the
genetic algorithm for thermal error prediction. Zhu et al. [18]
proposed a thermal error model using the OIF-Elman network.
These studies show that the Elman dynamic neural network
can significantly improve the modelling accuracy. However,
they did not consider the influence of different operating
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conditions on the thermal error. Chen et al. [19] used an
Elman neural network to build the thermal error model of
the ball-screw drive system and considered operating condi-
tions. However, the Elman neural network was not optimized.

In order to improve the accuracy and robustness of the
model, a new thermal error modelling method for the TDMS
is proposed in this paper. In Sect. 2, the system structure is
presented to analyze the heat generation. The thermal error
model based on Elman and DE-Elman is introduced in Sect.
3. Thermal error modelling and compensation experiments are
conducted in Sect. 4. Finally, the conclusions are presented in
Sect. 5.

2 Heat effect analysis

The block diagram of the TDMS is shown in Fig. 1. The
experimental platform mainly consists of a nut-driven ball
screw, linear motion guides, and two permanent magnet syn-
chronous motors (PMSMs).

As shown in Fig. 2, the outer ring of the supporting bearing
in the TDMS nut assembly is integrated with the flange in the
nut assembly, the inner ring of the supporting bearing is inte-
grated with the outer ring of the rotating nut, and the nut and
the screw drive are separately driven. This structure and the
driving method make the mechanism different from the heat
source point of the conventional drive feed mechanism. At the
same time, the temperature distribution of the mechanism is
different from that of the conventional driving feed mecha-
nism. Due to the special driving mode of the TDMS, the
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Fig. 1 Block diagram of the TDMS
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Fig. 2 Heat source distribution

two axes have to be maintained at a relatively high speed, and
the heat generated by the TDMS per unit time is more than
that of the CDFS. Therefore, the thermal error compensation
is important to the TDMS.

3 Elman neural network based differential
evolution algorithm

3.1 Elman network

The BP neural network is a feedforward neural network.
Because it is a static neural network, only nonlinear static
mapping of the input and output can be achieved. The
Elman neural network is a typical recurrent neural network,
as shown in Fig. 3. The recurrent neural network can respond
to externally input signals according to the timing, and then
dynamically process the input signals to achieve dynamic
nonlinear mapping of the input and output. On the basis of
static neural networks, recurrent neural networks add feed-
back connections. Through the storage of neuron history

Fig. 3 Structure of Elman neural
network

Output Layer

Hidden Layer

Input Layer

records, delay of the output based on the input is realized so
that the prediction model has a memory function for the his-
torical data, which improves the recognition accuracy of the
dynamic system. Therefore, recurrent neural networks have
many applications in modelling and prediction of nonlinear
dynamic systems.

3.2 Differential evolution algorithm

Differential evolution (DE) generates an individual population
by coding with floating-point vectors. In the process of DE
algorithm optimization, first, two individuals are selected
from the parents to create a difference between vectors to
generate difference vectors; second, another individual is se-
lected to sum the difference vectors to generate the experimen-
tal individuals; then, the parent and the corresponding exper-
imental individuals are cross-operated to generate new off-
spring individuals; finally, the parent and the corresponding
experimental individuals are generated. Selection between the
progeny and the progeny is performed to preserve the eligible
individuals in the next generation [20].
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1. Initialization:
{xi(0)|x,»(0) = [xil,x,«z,xﬁ, ...7x,»D],1 = 1,2, NP} (1)

xj=a;+rand x (bj=a;) i=1,2,""NP,j=1,2,"",D (2)

where x; (0) is the ith individual in the initial population, x;;
denotes the jth component of the ith individual, NP represents
the population size, and rand is a uniformly distributed ran-
dom number lying between 0 and 1.

2. Determination of fitness function:

Fiin =1/ El(yi_Qi)z (3)

where 7 is the number of neurons in the output layer; y;
represents the predicted outputs, and Q; represents the expect-
ed outputs.

3. Mutation: The DE algorithm realizes the mutation opera-
tion through a differential mode. The basic method is to
select two dissimilar individuals randomly in the current
population, then scale their difference vector and perform
the vector operation with other individuals to generate
new individuals.

Vilg +1) = Xn(g) + F x (Xn2(g)=Xs(g)) (4)

where i£r £ #r3, i=1,2, .., NP, r, 1, and r3 are random
integers in the interval [1, NP], X/(g) is the ith individual of the
g-generation population, g is the evolutionary algebra, and F
is the scaling factor. After mutation, the g-generation popula-
tion produces a new intermediate population:

{Vilg+1),i=1,2,"" NP} (5)

4. Crossover: Inter-individual crossover operations are per-
formed on the g-generation population {X;(g),i=1, 2,
-+, NP} and its intermediate population {Vi(g+1),i=1,
2,,NP}:

Vij(g—‘,— 1),if”'al’ld§CR0rj :jrund
x;i(g), otherwise

wie+1) = { ©)

wherei=1,2, .., NPj=1,2, .., D, rand is a uniformly distrib-
uted random number in the interval (0, 1), Uj(g+1)=[u;,
Up, Uz, ", u;plrepresents the ith individual in the g+1-th new
population, u;{g+ 1) and v;(g + 1) represent the jth compo-
nent in U(g + 1) and V(g + 1), respectively. CR represents the
crossover probability and j,,,, is a random integer within the
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interval. This crossover strategy ensures that at least one com-
ponent of U(g + 1) is contributed by the corresponding com-
ponent in V(g + 1).

5. Selection: The DE algorithm uses a greedy strategy to
select individuals entering a new population based on
the size of the objective function.

g+ 1) { Y&+ N[Ol + D<) g

where i=1, 2, .., NP.

6. Stopping rule: If the number of iterations g exceeds the
maximum number of iterations or the solution accuracy meets
the requirements, the search is stopped; otherwise, the popu-
lation is again subjected to mutation, crossover, and selection
until the condition is met.

3.3 DE-Elman modelling

In the training process of the Elman model, the impor-
tant parameters to be determined are the initial values of
the connection weights of the thresholds. Reasonable
and accurate selection of these parameters can enable
the Elman neural network to carry out nonlinear approx-
imation. The DE algorithm optimizes the Elman model
to obtain the best weight and threshold, which lays a
foundation for the thermal deformation modelling of the
TDMS. The specific process is shown in Fig. 4.

1) Initialization of the Elman model: The inputs of the DE-
Elman model are the typical temperature variables, and
the output of the DE-Elman model is the thermal error.

2) Initialization of the DE algorithm: The maximum evolu-
tionary algebra, population size N, minimum optimal fit-
ness, mutation factor and crossover probability of the ini-
tialization population are obtained, and the initial network
connection weights and thresholds obtained in step (1) are
mapped to the individual population by using the real
number coding method.

3) Determination of fitness function: Reference Eq. (3).

4) Mutation: Reference Eq. (4) and Eq. (5).

5) Crossover: Reference Eq. (6).

6) Selection: Reference Eq. (7).

7) Calculation of fitness value.

8) Obtain the best original weights and the thresholds of the
DE-Elman model.

9) Training of the model: The prediction model is
trained by training data. The parameters of the
Elman model are shown in Table 1, and the param-
eters of the DE are shown in Table 2.
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4 Experiment based thermal error modelling
4.1 Experimental equipment

A schematic diagram of the temperature increase and the ther-
mal elongation of the system is shown in Fig. 5. The experi-
mental environment is a room with constant temperature and
humidity, that is, a temperature of 20 = 1 °C and humidity of
50 £ 10%. The positioning error of the worktable is measured
using a Renishaw XL-80 dual-frequency laser interferometer.
The hardware of the detection system is mainly composed of
temperature sensors (T1, T23, T4, and T5), a transmitter and a
data acquisition card. The temperature sensor T1 is installed
near the screw motor bearing to measure the temperature of
the rear bearing. The temperature sensor T4 is mounted away

Table 1 Parameters of the Elman model
Parameters ~ Training times Sum of error square ~ Learning rate
Values 1000 0.1 le—6

ermination condition is
satisfied?

A 4
] Calculate output error of Elman
neural network

ermination condition is
satisfied?

[ Update weights and thresholds ]

Obtain DE-Elman model
which meets the conditions

from the screw motor bearing to measure the temperature of
the front bearing. The temperature sensor T23 is mounted on
the flange of the nut to measure the temperature of the nut. The
temperature sensor T5 is used to measure the temperature of
the environment. The temperature sensors use a PT100 therm-
istor and a matched temperature transmitter. The temperature
range is 0 to 100°, and the output is 0 to 5 V. An Advantech
USB-4711A multi-channel data acquisition card is used with
16 analogue input channels and a 12-bit resolution. During the
experiment, the experimental data were recorded over 5 min,
including the temperature values of the key points and the
positioning errors of the worktable.

The experimental conditions, as shown in Table 3, include
the running speed, the stroke, and the running time of the
table. By changing the above three operating conditions, and
then measuring the temperature and thermal error, the model
is built and verified. The table runs reciprocally, and the posi-
tioning error in the experiment is measured by a laser interfer-
ometer. Experiment I is used to build the thermal error model.
Experiments I~V are used to compensate the thermal errors
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Table 2 Parameters of DE

Parameters Size of Generations of Intersecting rate Variation rate Fitness value
group evolution T CR P, Fruin
N

Values 100 1000 0.1 0.01 0

and verify the validity of the model. In each experiment, the
table runs 150 min according to the set speed and stroke, and
experiment IV consists of 3 consecutive stages of different
speeds and strokes.

4.2 Thermal error modelling

The result of experiment I is shown in Fig. 7. Figure 7 a is a
critical point temperature curve. The Y-axis is based on the
temperature increase data to facilitate drawing. Figures 8, 9,
and 10 are the same. Figure 7 b is the curve of the change in
the thermal error. Based on these two sets of data, a thermal
error neural network model can be obtained. To compare the
modelling effect of the feedforward and the dynamic neural
network, the BP and Elman networks are used to model the
temperature and the thermal error data obtained in experiment
L. The inputs of the BP and Elman network are the increases in
temperature of four key temperature points, and the output
variable is the thermal error of the system. In training, the
input variable is the array (4 x 30), which is collected in ex-
periment I, and the output variable is the system thermal error
array (1 % 30) of the corresponding time.

The thermal error prediction values and residual values of
the BP and Elman network are shown in Fig. 7b. The estimat-
ed residual values of the BP and the Elman model are —
1.85~1.88 um and — 0.45~0.46 um, respectively. By compar-
ison, the compensation effects of the two models are

improved. The residual value reflects the fact that the Elman
model has a better modelling effect.

Next, the robustness of the BP and Elman network model-
ling is compared with the model obtained in experiment I. The
temperatures of the key points under different operating con-
ditions are used as the inputs of the model.

First, the temperature variation data collected in experiment
IT are used as the input, and the BP and Elman model are used
to predict the thermal error. The results are shown in Fig. 8.
The estimated residual of the BP model fluctuates between —
2.51 and 2.42 pum, and the estimated residual of the Elman
model fluctuates between — 0.87 and 0.87 pm; the estimation
made using the Elman model is clearly better. This is because
feedforward neural networks contain only static neurons and
lack time factors and thus cannot more accurately describe the
dynamic characteristics of screw thermal characteristics. The
first layer of the Elman network has a feedback connection,
which can store the previous value. Therefore, the dynamic
nonlinear thermal error model of the system is established by
Elman network, which has strong approximation performance
and robustness.

According to the temperature variation data of experiment
II1, the thermal errors of the Elman and the DE-Elman model
are used to predict the thermal error. The results are shown in
Fig. 9. The experimental results can be divided into two stages
in accordance with the passage of time. The estimation error
of'the two models before 30 min is larger; the maximum errors

laser
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interferometer

mirror E
|— ————— - Q—reﬂecting mirror

—|— magnetic base

table

—L////

Motor

\front

bearing

ball screw

123 T5 L — o

base

Fig. 5 TDMS experimental setup
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Table 3 Operation conditions of experiments
Experiment Velocity of Velocity of nut drive ~ Stroke ~ Time

table(mm/s) axis (r/min) (mm) (min)
I 5 180 200 150
II 10 180 150 150
I 15 180 100 150

5 180 200 40
v 10 240 220 60

5 200 160 50

of the BP and the Elman model are 2.68 um and 1.21 pum,
respectively. After 30 min, the amount of model data increases
as time passes, and the model estimation error gradually be-
comes stable. The estimation error of the Elman neural net-
work then becomes — 1.93~2.04 um, and the estimation error
of DE-Elman is — 1.12~1.18 um. Therefore, the convergence
time of DE-Elman is much shorter than the Elman model, and
the prediction accuracy of the DE-Elman model is higher
when the model converges.

Next, the temperature variation data of experiment III are
used as the input variable, and the thermal errors of the Elman

and DE-Elman model are used for thermal error prediction.
The parameters of the differential evolution algorithm are
shown in Table 2, and the prediction results are shown in
Fig. 9. The experimental results can be divided into two
stages. The estimation error of the two models before
30 min is large, with the maximum errors of the BP and
Elman model being 2.68 um and 1.21 pum, respectively.
After 30 min, the amount of model data gradually increases
as time passes, and the model estimation error gradually be-
comes stable. The estimation error of the Elman neural net-
work is — 1.93~2.04 pum, and the estimation error of DE-
Elman is — 1.12~1.18 um. Therefore, the convergence time
of DE-Elman is much smaller than Elman model, and the
prediction accuracy of the DE-Elman model is higher when
the model converges.

Finally, experiment IV is analyzed. To simulate the
movement of the carriage in the actual machining process,
the experiment is divided into three stages with different
operating conditions. Figure 10 is the prediction results of
the two models. The two models have a large deviation in
the estimation of the thermal error. The estimated residual
errors of the Elman and the DE-Elman model are —
2.56~2.93 um and — 1.54~1.79 um, respectively.
Although the DE-Elman model has a better estimation
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Fig. 7 Experiment I. a Temperature data. b Thermal error prediction

performance than Elman model, the prediction perfor-
mance is considerably lower than that in experiment III.

From Figs. 7, 8, 9, and 10, it is known that the Elman model
with a feedback structure and the DE-Elman model have good
effects on the prediction of the heat error of the screw. This
shows that the dynamic neural network is suitable for describ-
ing the thermal characteristics of the dynamic change in the
dual-axis differential system. However, when the operating
conditions are more complex, the temperature increase data
and the thermal error of the key temperature measurement
points also undergo complicated changes. When this occurs,
the Elman neural network and DE-Elman fail to achieve better
prediction results. Therefore, based on the DE-Elman model
and considering the effect of the operating conditions on the
thermal error, the prediction model of the dual-axis differential
system is set up, and the heat error compensation experiment
is conducted based on the model.
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The DE-Elman model considering the actual operat-
ing conditions has seven input terminal nodes, which
are the temperature of the near-end bearing, the temper-
ature of the screw nut, the temperature of the far-end
bearing, the temperature of the environment, the feed
speed of the worktable, and the speed and stroke of
the nut axis. The array is composed of the correspond-
ing time feed speed, nut shaft speed, and stroke with
the previous temperature increase data used as the input
of the model. The thermal error distribution of the sys-
tem is obtained by the interpolation method, and the
thermal error model of the system is built. The model
data are introduced into the fixed high motion controller
to achieve the thermal error compensation function. For
example, in Figs. 6, 7, 8, 9, 10, and 11 and Table 4,
considering the thermal error compensation of the DE-
Elman model under the operating conditions, the
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Fig. 9 Experiment III. a Temperature data. b Thermal error prediction

positioning error of the worktable fluctuates between —
0.88 and 0.83 pm. Compared with the Elman neural
network model (which fluctuates between — 1.42 and
1.73 um), more ideal results were obtained.

To summarize, when the temperature increase data of
the feed system are taken as the input, the BP, Elman,
and DE-Elman network can set up the model of thermal
error. When the operation state of the feed system re-
mains unchanged, the Elman network model based on a
differential evolution algorithm is more effective in
compensating for the thermal error of the system.
When the conditions are complex, the above three neu-
ral network models have insufficient thermal error pre-
diction, while the model considered to be the input term
of the DE-Elman model can achieve good estimation for
all conditions, the compensation effect is better, and the
robustness is stronger.

Time (min)

(b) Thermal error prediction

Fig. 10 Experiment IV. a Temperature data. b Thermal error prediction
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Fig. 11 Experiment IV

@ Springer



288

Int J Adv Manuf Technol (2020) 106:279-288

Table 4 Comparison of the predicting errors in experiments

Modelling method Elman DE-Elman
Maximum 1.73 um 0.88 um
Average 0.52 um 0.24 um
Standard Deviation 0.34 um 0.16 um

5 Conclusions

This paper first analyzes the dynamic characteristics of the
heat source and temperature field of a two-axis differential
micro-feed servo system. Through the analysis of the thermal
characteristics of the system, the DE-Elman model, which
considers the varying conditions, is utilized to model the ther-
mal deformation error of the feed system, and good results are
obtained. The experiment shows that when the operating con-
ditions of the TDMS are more complex, the thermal deforma-
tion estimation residual of DE-Elman network modelling con-
sidering the operating conditions fluctuates between — 0.88
and 0.83 wm. Compared with BP and Elman neural network,
this method has a better prediction accuracy and robustness
and shows strong potential for engineering applications.

Acknowledgments This study was supported by the National Natural
Science Foundation for Young Scientists of China (No. 51705289),
National Natural Science Foundation of China (No. 513752665, No.
51875325), Key Research & Development Program of Shandong
Province (No. 2019GGX104101), and the Natural Science Foundation
of Shandong Province of China (No. ZR2017PEE(05).

References

1. Bryan J (1990) International Status of Thermal Error Research
(1990). CIRP Ann Manuf Technol 39:645-656. https://doi.org/10.
1016/S0007-8506(07)63001-7

2. DuF, Zhang M, Wang Z, Yu C, Feng X, Li P (2018) Identification
and compensation of friction for a novel two-axis differential
micro-feed system. Mech Syst Signal Process 106:453—465.
https://doi.org/10.1016/j.ymssp.2018.01.004

3. DuF, Feng X, Li P, Wang J, Wang Z, Yu C (2018) Cross-coupled
intelligent control for a novel two-axis differential micro-feed sys-
tem. Adv Mech Eng 10:2072046550. https://doi.org/10.1177/
1687814018774628

4. DuF,LiP, Wang Z, Yue M, Feng X (2017) Modeling, identification
and analysis of a novel two-axis differential micro-feed system.
Precis Eng 50:320-327. https://doi.org/10.1016/j.precisioneng.
2017.06.005

5. YuH, Feng X (2016) Dynamic modeling and spectrum analysis of
macro-macro dual driven system. J Comput Nonlinear Dyn 11.
https://doi.org/10.1115/1.4032245

6. DuF, Feng X, Li P, Yue M, Wang Z (2018) Modeling and analysis
for a novel dual-axis differential micro-feed system. J Mech Eng 9:
195204

7. ShiH, Ma C, Yang J, Zhao L, Mei X, Gong G (2015) Investigation
into effect of thermal expansion on thermally induced error of ball

@ Springer

screw feed drive system of precision machine tools. Int J Mach
Tools Manuf 97:60-71. https://doi.org/10.1016/j.ijmachtools.
2015.07.003
8. Ma C, Zhao L, Mei X, Shi H, Yang J (2017) Thermal error com-

pensation of high-speed spindle system based on a modified BP
neural network. Int J Adv Manuf Technol 89:3071-3085. https:/
doi.org/10.1007/s00170-016-9254-4
Li D, Feng P, Zhang J, Wu Z, Yu D (2014) Calculation method of
convective heat transfer coefficients for thermal simulation of a
spindle system based on RBF neural network. Int J] Adv Manuf
Technol 70:1445-1454. https://doi.org/10.1007/s00170-013-5386-
y

10. Deng C, Xie SQ, Wu J, Shao XY (2014) Position error compensa-
tion of semi-closed loop servo system using support vector regres-
sion and fuzzy PID control. Int J] Adv Manuf Technol 71:887-898.
https://doi.org/10.1007/s00170-013-5495-7

11. Cheng Q, Qi Z, Zhang G, Zhao Y, Sun B, Gu P (2016) Robust
modelling and prediction of thermally induced positional error
based on grey rough set theory and neural networks. Int J Adv
Manuf Technol 83:753-764. https://doi.org/10.1007/s00170-015-
7556-6

12.  Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2015)
Thermal error modelling of machine tools based on ANFIS with
fuzzy c-means clustering using a thermal imaging camera. Appl
Math Model 39:1837-1852. https://doi.org/10.1016/j.apm.2014.
10.016

13.  Chang C, Kang Y, Chen Y, Chu M, Wang Y (2006) Thermal de-
formation prediction in machine tools by using neural network. In:
King I, Wang J, Chan L, et al (ed) Lecture notes in computer science
850-859

14.  Yang H, NiJ (2005) Dynamic neural network modeling for nonlin-
ear, nonstationary machine tool thermally induced error. Int ] Mach
Tool Manu 45:455-465. https://doi.org/10.1016/j.ijmachtools.
2004.09.004

15. Xia J, Hu'Y, Bo W, Shi T (2009) Research on thermal dynamics
characteristics and modeling approach of ball screw. Int J Adv
Manuf Technol 43:421-430. https://doi.org/10.1007/s00170-008-
1723-y

16. YangZ,SunM, Li W, Liang W (2011) Modified Elman network for
thermal deformation compensation modeling in machine tools. Int J
Adv Manuf Technol 54:669-676. https://doi.org/10.1007/s00170-
010-2961-3

17. Yu-chun H, Jian-ping T, Yang H-1 (2015) Thermal error modeling
for machine tool based on genetic algorithm optimization Elman
neural network. Modular Mach Tool Autom Manuf Techn. https://
doi.org/10.13462/j.cnki.mmtamt.2015.04.019

18.  Zhu X-1, Yang J-g, Gui-song D (2014) AVQ clustering algorithm
and OIF-Elman neural network for machine tool thermal error.
Journal of Shanghai Jiaotong University

19. Cheng C, Yang C-m, Chen-yang Z (2014) Modeling on thermal
errors of ball screw driving system on Elman network considering
operating conditions. Opt Precis Eng. https://doi.org/10.3788/OPE.
20142203.0704

20. Hung Y, Lin F, Hwang J, Chang J, Ruan K (2015) Wavelet fuzzy
neural network with asymmetric membership function controller
for electric power steering system via improved differential evolu-
tion. IEEE Trans Power Electron 30:2350-2362. https://doi.org/10.
1109/TPEL.2014.2327693

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


https://doi.org/10.1016/S0007-8506(07)63001-7
https://doi.org/10.1016/S0007-8506(07)63001-7
https://doi.org/10.1016/j.ymssp.2018.01.004
https://doi.org/10.1177/1687814018774628
https://doi.org/10.1177/1687814018774628
https://doi.org/10.1016/j.precisioneng.2017.06.005
https://doi.org/10.1016/j.precisioneng.2017.06.005
https://doi.org/10.1115/1.4032245
https://doi.org/10.1016/j.ijmachtools.2015.07.003
https://doi.org/10.1016/j.ijmachtools.2015.07.003
https://doi.org/10.1007/s00170-016-9254-4
https://doi.org/10.1007/s00170-016-9254-4
https://doi.org/10.1007/s00170-013-5386-y
https://doi.org/10.1007/s00170-013-5386-y
https://doi.org/10.1007/s00170-013-5495-7
https://doi.org/10.1007/s00170-015-7556-6
https://doi.org/10.1007/s00170-015-7556-6
https://doi.org/10.1016/j.apm.2014.10.016
https://doi.org/10.1016/j.apm.2014.10.016
https://doi.org/10.1016/j.ijmachtools.2004.09.004
https://doi.org/10.1016/j.ijmachtools.2004.09.004
https://doi.org/10.1007/s00170-008-1723-y
https://doi.org/10.1007/s00170-008-1723-y
https://doi.org/10.1007/s00170-010-2961-3
https://doi.org/10.1007/s00170-010-2961-3
https://doi.org/10.13462/j.cnki.mmtamt.2015.04.019
https://doi.org/10.13462/j.cnki.mmtamt.2015.04.019
https://doi.org/10.3788/OPE.20142203.0704
https://doi.org/10.3788/OPE.20142203.0704
https://doi.org/10.1109/TPEL.2014.2327693
https://doi.org/10.1109/TPEL.2014.2327693

	Thermal error modelling for a high-precision feed system in varying conditions based on an improved Elman network
	Abstract
	Introduction
	Heat effect analysis
	Elman neural network based differential evolution algorithm
	Elman network
	Differential evolution algorithm
	DE-Elman modelling

	Experiment based thermal error modelling
	Experimental equipment
	Thermal error modelling

	Conclusions
	References




