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Abstract
Although various researched works have been carried out in x-ray crystallography and its applications, but there are still limited
number of researches on crystallographic theories and industrial application of x-ray diffraction. The present study reviewed and
provided detailed discussion on atomic arrangement of single crystals, mathematical concept of Bravais, reciprocal lattice, and
application of x-ray diffraction. Determination of phase identification, crystal structure, dislocation density, crystallographic
orientation, and gran size using x-ray diffraction peak intensity, peak position, and peak width were discussed. The detailed
review of crystallographic theories and x-ray diffraction application would benefit majorly engineers and specialists in chemical,
mining, iron, and steel industries.
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1 Introduction

Atoms in materials are arranged into crystal structures and mi-
crostructures [1]. Periodic arrangement of atoms depends strong-
ly on external factors such as temperature, pressure, and cooling
rate during solidification. Solid elements and their compounds
are classified into amorphous, polycrystalline, and single crystal-
line materials [2]. The amorphous solid materials are isotropic in
nature because their atomic arrangements are not regular and
possess the same properties in all directions. In contrast, the
crystalline materials are anisotropic because their atoms are ar-
ranged in regular and repeated pattern, and their properties vary
with direction [3]. The polycrystallinematerials are combinations
of several crystals of varying shapes and sizes. The properties of
polycrystalline materials are strongly dependent on distribution
of crystals sizes, shapes, and orientations within the individual
crystal [4]. About 95% of most solid materials are crystalline in
nature, and the international center diffraction data (ICDD)main-
tain about 50,000 inorganics and 25,000 organic crystalline and
single component databases [5]. Diffraction pattern or intensities
of x-ray diffraction techniques are used for characterizing and
probing arrangement of atoms in each unit cell, position of
atoms, and atomic spacing angles because of comparative

wavelength of x-ray to atomic size [6]. The x-ray diffraction,
which is a non-destructive technique, has wide range of material
analysis including minerals, metals, polymers, ceramics, plastics,
semiconductors, and solar cells [7]. The technique also has wide
industry application including aerospace, power generation, mi-
croelectronics, and several others [8].

Hart [9] carried out review on comparative methods of
measuring Bragg’s angle based on crystal arrangement and
general principle. Fewster [10] highlighted techniques of lat-
tice parameter measurement and concluded that the most suit-
able method depends strongly on materials crystals. Magner
et al. [11] gave historical review of retained austenite measure-
ment using x-ray. Guidelines to measure single crystal with
over 200 μm dimension as well as procedure to measure lat-
tice spacing was highlighted by Jesche et al. [12]. A review of
x-ray diffraction relating to x-ray powder method and the
mechanism was provided by Toraya [13]. Zhengi et al. [14]
proposed a concept for crystal orientation measurement using
butterfly diagram obtained from powder x-ray diffraction. The
new concept gave direct information on single crystals and
polycrystals orientations. A technical review of x-ray tech-
nique in terms of nanomaterial characterization and applica-
tions was conducted by Sharma et al [5]. The x-ray crystal-
lography remained a complex field of study despite wide in-
dustrial applications. Several literatures have focused on prac-
tical applications of x-ray diffraction and rarely has technical
review of crystal structures, and x-diffraction applications the-
ories been conducted. Crystallography is taken as a course at
tertiary institutions and training courses. Nonetheless, many

* E. S. Ameh
stanley.ameh@yahoo.com

1 Department of Mechanical Engineering, University of Benin,
Benin, Edo State, Nigeria

https://doi.org/10.1007/s00170-019-04508-1
The International Journal of Advanced Manufacturing Technology (2019) 105:3289–3302

/Published online: 12 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-019-04508-1&domain=pdf
mailto:stanley.ameh@yahoo.com


student and engineers have not fully understood the basic of
crystal structure and x-ray crystallography. This article pro-
vides technical review with systematic explanation of basic
crystal structure and x-ray diffraction to provide self-
explanation.

2 Crystal structure

In crystalline structures, arrays of atoms are arranged in
a regular and repeated pattern. But the smallest repeat-
ing element in the crystal is called a unit cell. In three
dimensions, the shape and size of the unit cell (Fig. 1)
can be described by length of three axes (a, b, c) and
the angles between the axes [5]. The arrays of atoms
are orderly arranged by pure translation (transformation)
without change in rotation or orientation but change of
atoms position. The translation maybe in three dimen-
sions, two dimensions, and one dimension [15]. A lat-
tice is a periodic arrangement of points collection in a
crystal, and these lattices can be represented by set of
translation vectors in both three and two dimensions as
demonstrated in Fig. 2 a and b, respectively.

Bravais introduced a mathematical concept called
space lattice in 1848 to describe crystal structure ar-
rangement (Fig. 3). The space lattice defines infinite
number of points in space such that the point arrange-
ment around a point is identical around any other points
[17]. The axes x, y, z system (Fig. 1) is used to desig-
nate points arrangement in space lattice. All possible
arrangement of points in lattice space in three-
dimensions can be represented by 14 lattices (Fig. 3),
while the 14 Bravais lattices is classified into 7 crystal
system (Table 1) based on the length of the axes, angles
between them, and symmetry properties.

2.1 Symmetry operation

Symmetry is defined as certain shape or arrangement of an
object. A structure of crystal is said to be symmetrical if certain
direction of geometry and physical property of crystal are
reproduced by certain operation [18]. There are 230 different
repetitive patterns of atomic elements that can be arranged to
form actual crystal structure. However, all the crystals have
been classified into 7 crystal system based on n-fold rotation,
reflection, inversion center and rotation-inversion symmetry
operation. Further combination of three symmetry operations
results in 32 crystal symmetry classes point group [18, 19].
The n-fold rotation (Fig. 4) means rotation about an imaginary
axis through angles 360°/n reproduces the same object and
denoted with symbol (n = 1, 2, 3, 4, 5, 6) . Where, n is the num-
ber of allowed repetitions in 360° rotation, but n = 1 means no
symmetry [21]. A reflection symmetry (Fig. 5) is a plane reflec-
tion where arrangement of each point in the crystal reproduces
mirror image on left and right sides of the plane, and it is
denoted with symbol m [2]. Invasion is a type of symmetry
operation where a point in the lattice exist such that inversion
through the point reproduces an identical arrangement, but in
opposite direction and is denoted with p symbol [4]. Whereas
the rotation-inversion symmetry operation (Fig. 6) is a combi-
nation of rotation and inversion denoted as n [20]. Additionally,
there is a translation symmetry where movement along three-
dimensional space creates repeated structure and only occurs in
solid state. The translational symmetry element is further divid-
ed into glide and screw symmetries. The glide plane is a com-
bination of translation and reflection symmetry operation while
the screw axis is a combination of translation and rotation sym-
metry operations [20, 21]. All the symmetries are classified into
point group and space group. The point group is the symmetry
elements without translation while space group is symmetry
element with translation [19].

2.2 Bravais and reciprocal lattices

A Bravais lattice is a set of lattice points with position vectors R,
while reciprocal lattice is a set of vectors,K that gives planewave
with periodicity of Bravais lattice. The lattice position vectors (R)
and reciprocal lattice vectors (K) are given as [22, 23]:

R ¼ n1a1 þ n2a2 þ n3a3 ð1Þ

K ¼ hb1 þ kb2 lb3 ð2Þ
where, n1, n2, n3 are integers; h, k, l are miller indices of plane
perpendicular to the reciprocal lattice vectors; a1,a2, a3 are
primitive lattice vectors for the position vector and b1, b2, b3
are primitive lattice vectors for reciprocal vector. Since the
vector K belong to the reciprocal lattice of Bravais lattice with
point position vector R, yield relationship of [22]:Fig. 1 Three-dimension unit cell vector [2]
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eiK � rþRð Þ ¼ eiK �r ð3Þ
or

eiK �R¼1 ð4Þ

Equations (3–4) are satisfied if K.R = 2πn and, therefore,
can been rewritten as follows:

hb1 þ kb2 lb3ð Þ � n1a1 þ n2a2 þ n3a3ð Þ
¼ 2πn;with n an integer� ð5Þ

The primitive vectors b1, b2, b3 from the reciprocal lattice
are given as follows:

b1¼2πa2�a3
a1� a2�a3ð Þ ð6Þ

b2¼2πa3�a1
a1� a2�a3ð Þ ð7Þ

b3¼2πa1�a2
a1� a2�a3ð Þ ð8Þ

From Eqs. (6–8), it is easy to derive Eq. (9):

ai � bj¼2πδij ð9Þ

where, ai are primitive lattice vectors of the position vectors; bj
are primitive lattice vectors of reciprocal vectors and δij are
lattice tensor.

Fig. 3 The 14 types of Bravais lattices [16]

Fig. 2 a Three-dimension lattice
with translation [2]. b Two-
dimension lattice with translation
vector [2]
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Proving Eq. (9) is by multiplying Eqs. (6–8) by a1:

a1:b1¼2π
a1� a2�a3ð Þ
a1� a2�a3ð Þ ¼ 2π ð10Þ

a1:b2¼2π
a1� a3�a1ð Þ
a1� a2�a3ð Þ ¼ 0 ð11Þ

a1:b3¼2π
a1� a1�a2ð Þ
a1� a2�a3ð Þ ¼ 0 ð12Þ

Two crystallographic planes that are perpendicular equal
zero. Therefore, Eqs. (11–12) are equal to zero because the
cross product of two vectors is perpendicular to both vectors.

2.3 Crystal distances and angles

Computations of angles help to determine the coordinate of
each atom while computation of distance between atoms de-
termines bond strength of atoms that are chemically bonded
together. Computation of crystallographic distances and an-
gles in crystal structure are carried out in lattice position space,
reciprocal space, or both spaces [24, 25]. Two crystallographic
directions given as [u1, v1,w1] and [u2, v2,w2] can be present-
ed in lattice position vectors form [26]:

r1 ¼ u1a1 þ v1a2 þ w1a3 ð13Þ

r2 ¼ u2a1 þ v2a2 þ w2a3 ð14Þ

In lattice position space, the angle between two vectors r1
and r2 is given as:

cosα ¼ r1 � r2
r1j j � r2j j

Table 1 The 7-crystal system [18]

System Unit cell characteristic Bravias lattice Symmetry

Cubic a = b = c
α = β = γ ≠ 900

Simple
Body-centered
Face-centered

4 3-fold rotation axes

Triclinic a ≠ b ≠ c
α ≠ β ≠ γ

Simple No plane and no axes

Monoclinic a ≠ b ≠ c
α = β = 900 ≠ γ

Simple
Base-centered

1 2-fold rotation axes or one plane

Orthorhombic a ≠ b ≠ c
α = β = γ = 900

Simple
Base-centered
Body-centered
Face-centered

3 mutually perpendicular 2-fold rotation axes, or 2
planes intersecting in a 2-fold axis

Tetragonal a = b ≠ c
α = β = γ = 900

Simple
Body-centered

1 4-fold rotation axes or a 4-fold rotation inversion axes

Hexagonal a = b ≠ c
α = β = 900, γ = 1200

Simple 1 6-fold rotation axes

Trigonal a = b = c
α = β = γ ≠ 900

Simple 1 3-fold rotation axes

Fig. 4 Typical rotation symmetry in crystal structure a 2-fold axis, b 3-
fold axis, c 4 fold axis [20]
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¼ u1a1 þ v1a2 þ w1a3ð Þ � u2a1 þ v2a2 þ w2a3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1a1 þ v1a2 þ w1a3ð Þ � u1a1 þ v1a2 þ w1a3ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2a1 þ v2a2 þ w2a3ð Þ � u2a1 þ v2a2 þ w2a3ð Þp ð15Þ

Fig. 6 The 4 rotations—inversion
symmetry in tetrahedral molecule
[20]

Fig. 5 Reflection plane symmetry of different structures [20]
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where, |a1| = a, |a2| = b, |a3| = c for cubic, tetragonal, and or-
thorhombic crystals whose angles between translation vectors
is 90° further reduces Eq. (15) to:

cosα ¼ u1u2a2 þ v1v2b2 þ w1w2c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1að Þ2 þ v1bð Þ2 þ w1cð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2að Þ2 þ v2bð Þ2 þ w2cð Þ2

q ð16Þ

In lattice position space, distance between two atoms in
(x1, y1, z1) and (x2, y2, z2) in space is given as:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x1ð Þa1þ y2−y1ð Þa2 þ z2−z1ð Þa3½ �

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x1ð Þa1þ y2−y1ð Þa2 þ z2−z1ð Þa3½ �

p
ð17Þ

Similarly, when angles between translation vectors are 90°

and where, |a1| = a, |a2| = b, |a3| = c, equation (17) can be re-
written as:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x1ð Þ2a2 þ y2−y1ð Þ2b2 þ z2−z1ð Þ2c2

q
ð18Þ

In the same manner, two crystallographic planes given as
(h1, k1, l1) and (h2, k2, l2) can be represented in reciprocal lat-
tice vector form as [26]:

K1 ¼ h1b1 þ k1b2 þ l1b3 ð19Þ

K2 ¼ h2b1 þ k2b2 þ l2b3 ð20Þ

In lattice reciprocal space, the angles between two vectors
in crystallographic planes is given as:

cosα ¼ K1 � K2

K1j j � K2j j

¼ h1b1 þ k1b2 þ l1b3ð Þ: h2b1 þ k2b2 þ l2b3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1b1 þ k1b2 þ l1b3ð Þ h1b1 þ k1b2 þ l1b3ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2b1 þ k2b2 þ l2b3ð Þ h2b1 þ k2b2 þ l2b3ð Þp ð21Þ

When angles between translation vectors in reciprocal
space is 90° and b1j j ¼ 1

�
a; b2j j ¼ 1

�
b; b3j j ¼ 1

�
c; Eq. (21)

is reduced to:

cosα ¼ h1h2=a2 þ k1k2=b2 þ l1l2=c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1=að Þ2 þ k1=bð Þ2 þ l1=cð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=að Þ2 þ k2=bð Þ2 þ l2=cð Þ2

q

ð22Þ

Calculation of vectors length K2 in reciprocal lattice space
for crystallographic planes (h, k, l) is the same way of

calculating d-spacing, which vary with different crystals. To
calculate angle between crystallographic plane vector K1 (h,
k, l) and crystallographic direction vector, r1 (u, v,w) is per-
formed using both position and reciprocal spaces:

cosα ¼ r1 � K1

r1j j � K1j j

¼ u1a1 þ v1a2 þ w1a3ð Þ � h1b1 þ k1b2 þ l1b3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1a1 þ v1a2 þ w1a3ð Þ � u1a1 þ v1a2 þ w1a3ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1b1 þ k1b2 þ l1b3ð Þ h1b1 þ k1b2 þ l1b3ð Þp ð23Þ

When the angle between vectors is 90° and setting u1 = h1,
v1 = k1 and w1 = l1 if the two vectors have the same indices
reduce Eq. (23) to:

cosα ¼ h21 þ k21 þ l21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1a1 þ k1a2 þ l1a3ð Þ � h1a1 þ k1a2 þ l1a3ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1b1 þ k1b2 þ l1b3ð Þ h1b1 þ k1b2 þ l1b3ð Þp ð24Þ
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Equation (24) can be further reduced or transformed de-
pending on the setting of |a1|, |a2|, |a3|, |b1|, |b2|, and |b3|
which are depended on type of crystal system.

2.4 Miller indices for planes

A set of coordinates expressed in the form of h, k, l that is
defined by line from origin and cut through the axes (a, b, c) or
axial vector (a1, a2, a3 ) is called miller indices for that set of
lattice planes [27]. The miller indices are used to express lat-
tice planes and to specify orientation of planes in space and
not position. The letter h, k, l are miller indices for planes and
are designated in curvilinear bracket as (h, k , l ).
Crystallographic planes are equivalent to each other by sym-
metry if the atomic d-spacing along each plane is the same.
Therefore, cubic front and back faces which intercept the x-
axis and parallel to y- and z-axes, yield miller indices (100);
the top and bottom faces, which intercept the z-axis and par-
allel to x- and y-axis is (001). Similarly, the left and right faces
of cubic crystal intercept the y-axis and parallel to both x- and
z-axes have (010). Consequently, a zero miller index implies
that the plane (face) is parallel to corresponding unit cell axis
and at infinity [17, 25]. The equivalent planes is called family
or form of indices and represented as follows: {100 = (100),
(010), (001), (100), (010), (001). A simple procedure for find-
ing the miller indices for any given plane of atoms within a
crystal is as follows [18]:

& Set up coordinate axes (x, y, z ) along the angles of the unit
cell.

& Identify the coordinates at which the crystallographic
plane intersects the x-, y-, and z-axes.

& Take intercept along axis to be infinity (zero value) if
crystallographic plane is parallel to the axis.

& Consider having family of plane or moving origin of co-
ordinates to a lattice point not on the plane to be indexed
because miller indices cannot be established for plane
passing through origin of coordinates.

& Record the intercept components in x, y, z order
& Multiply the intercept components by the smallest possi-

ble set of whole number.
& Enclose the whole number set in curvilinear bracket and

place bars over negative indices.

2.5 Miller indices for direction

Crystallographic directions are used to show orientation of a
single crystal or polycrystalline materials. Magnetic properties
of iron including other magnetic materials depend strongly on
crystallographic direction. For example, iron [100] direction is

easier to magnetize than the one with [111] and [1100] direc-
tions [16]. Three indices (u, v,w) are employed in specifying
crystallographic directions in the x, y, z directions, which are
usually enclosed in square bracket as [u, v,w], but sometimes
represented as [h, k, l]. Again, all parallel direction vectors have
the same direction indices. Thus, miller indices direction of x-
axis is [100]; the y-axis is [010] and z-axis has [001] for cubic
crystal [17]. When atomic spacing along each direction is the
same, the direction is equivalent. The equivalent direction is
called family or form indices. In the case of cubic crystal, crys-
tallographic equivalent directions are given as [28]:

〈100〉= [100], [010], [001], [010], [001], [100]
The miller indices for crystallographic direction can be

established using the following procedure [29]:

& Set up coordinate axes (x, y, z) along the angles of the unit
cell.

& Draw up vector of arbitrary length in the direction of in-
terest and define the detail as the origin.

& Decompose or resolve the drawn vector into it component
vectors (a1, a2, a3 ) along each of the coordinate axes (x, y,
z).

& Record the vector components in x, y, z order.
& Multiply the component by the smallest set of whole

number.
& Enclose the whole number set in square bracket and place

bars over negative indices.
& Recognize that a plane and the direction normal to the

plane of cubic crystal have the same miller indices as
[110] direction that is normal to the (110) planes.

3 X-ray diffraction principle

When x-ray impinges upon atoms of solid, the x-rays
are scattered by the electrons in the atoms. Either con-
structive or destructive waves interference occurs along
different direction as the scattered waves (diffraction
pattern) are emitted by atoms at different positions [1].
However, constructive interference occurs if the solid
has orderly arrangement of atomic structure. A strong
relationship between diffraction patterns and periodic
atomic structure of crystals in materials exist. Atomic
arrangement (periodicity) with long repeated distances
causes diffraction at small angles whereas short repeated
distances lead to diffraction at high angles [1].
Diffraction peak position is used to determine shape
and size of unit cell while diffraction peak intensity
determines atomic position within the cell and atomic
number [30].
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3.1 Bragg’s theory

Bragg provided simple alternative explanation and measure-
ment for diffraction of monochromatic x-ray from single crys-
tal after Laue discovery of the x-ray diffraction [31]. The
Bragg’s analysis (Fig. 7 a) assumed that crystals are in layers
or atomic planes (lattice plane- hkl) are in layers with spacing
distance, d and produce reflection when incident light or x-ray
impinges on the planes of atoms [32]. Secondly, incident
beam makes equal angle with corresponding diffracted beam
at the lattice plane. For constructive interference, the Bragg’s
diffraction condition is satisfied if the path difference lengths
equal nλ, and Pythagoras theorem (Fig. 7 b) was used to
derive Eq. (29).

According to the Bragg’s law constructive interference oc-
curs only if [32]:

ABþ BC ¼ nλ ð25Þ

From x-ray diffraction pattern schematics (Fig. 7 a), AB =
BC, therefore:

nλ ¼ 2AB ð26Þ

Representing ΔABZ (Fig. 7 b) from diffraction pattern
schematic (Fig. 7a) for Pythagoras theorem derivation yield:

sinθ ¼ AB

d
ð27Þ

AB ¼ dsinθ ð28Þ
nλ ¼ 2dsinθ ð29Þ

where, λ= x-ray wavelength, n= order of reflection, d= spac-
ing distance and θ= angle of diffraction beam. Since n is the
order of diffraction (reflection) from set of lattice planes (hkl)
with interplanar spacing dhkl:

d ¼ dhkl
n

ð30Þ

Then, Eq. (29) can be rewritten by substituting into Eq.
(30) as follows:

λ ¼ 2dhklsinθhkl ð31Þ

The Bragg’s law can be represented in vector notation
along incident and diffracted beams’ directions as shown in
Fig. 8. Therefore, the Bragg’s law in vector notation is
expressed as [30]:

S−Soð Þ
λ

¼ d*hkl ¼ ha1 þ ka2 þ la3 ð32Þ

where, S=unit vector along diffracted beam direction and
So=unit vector along incident beam direction.

3.2 Laue theory

Ewald theory leads to the discovery of x-ray diffraction by
Laue, but that theory was rarely needed in the study of crystal
structure [31]. Laue analysis assumed crystal as buildup of
rows of atoms along x-axis, y-axis, and z-axis in three dimen-
sions. Supposing, AB (Fig. 9a) is a wave crest of incident
beam and CD is the wave crest of diffracted beam for con-
structive interference for waves from atoms along z-axis [17,
25]. According to Putnam et al. [15], if diffracted path differ-
ence corresponds to integer (whole) number of incident beam
wavelength, then the diffracted beam undergoes constructive
interference (in-phase). However, if diffracted beams undergo
destructive interference (out-of-phase), then incident beams
do not correspond to wavelengths. Laue’s law vector notation
of the incident and diffracted beam directions and path differ-
ence between the diffracted beams are represented in Fig. 9b.

Mathematical representation of Laue first equation for path
difference (AB − CD) corresponding to integer number of
wavelength for a constructive interference is [25]:

AB−CDð Þ ¼ a cosαn−cosα0ð Þ ¼ nxλ ð33Þ

where, a=atom spacing along x-axis (or lattice parameter);
αn=angle of diffracted beam to x-axis; α0= angle of incident

a Schematic of x-ray diffraction pattern [32] b Pythagoras theorem [32]

Fig. 7 a Schematic of x-ray
diffraction pattern [32] b
Pythagoras theorem [32]
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beam to x-axis and nx=interger in order of diffraction. From
Laue cones (Fig. 9b), Laue first equation (33) can be
expressed in vector notation in x-axis as [25]:

a cosαn−cosα0ð Þ ¼ a1 S−Soð Þ ¼ nxλ ð34Þ

Since all the diffracted beams with the same path difference
occur at the same angle to a row of atoms, the diffracted beams
that fall on the row of atoms can be represented in three Laue
cones (Fig. 10). Where, the three Laue cones’ angles are α0

(zero order, nx = 0 ), α1 (first order, nx = 1 ), and α2 (zero order,
nx = 1 ). Similarly, Laue second and third equations for row of
atoms along y-axis and z-axis are given respectively as [25, 34]:

b cosβn−cosβ0ð Þ ¼ a2 S−Soð Þ ¼ nyλ ð35Þ

c cosγn−cosγ0ð Þ ¼ a1 S−Soð Þ ¼ nzλ ð36Þ

where, b and c are atom spacing along y-axis and z-axis
respectively; βn and β0 are angle of diffracted and incident
beams along y-axis respectively, and γn and γ0 are angle of
diffracted and incident beams along z-axis respectively.
Indeed, practical application of Laue equations (34–36) is im-
possible because all the values in the equations cannot be
determined for a given value of incident beam.

a Diffracted beams from row of atoms along − axis[25].

b Vector notation of incident diffraction beam direction and path difference [25]

Fig. 9 a Diffracted beams from
row of atoms along x-axis [25]. b
vector notation of incident
diffraction beam direction and
path difference [25]

Fig. 8 Diagrammatic
representation of Bragg’s law in
vector notation [25]
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3.3 Ewald theory

Ewald [35] proposed a theory to explain relationship between
the wavelength of light and distances of oscillators. The theory
is without approximation and valid for any ratio of light wave-
length to distancing oscillator. Ewald construction or sphere
involves sphere of reflection and reciprocal lattice, which is
used to determine if diffraction condition for reciprocal lattice
point is met [33]. Consider placing a diffracting crystal at the
center of Ewald sphere of 1/λ with incident beam, I passing
through the diameter, IO as demonstrated in Fig. 11. The exits
point of incident beam, O defines the origin of reciprocal
lattice. If a given orientation of crystal satisfies Bragg’s law
for diffraction to occur, then the exit point of incident beam,O
to exit point of diffraction beam, B shows vector OB [27, 33].
Thus, the length of the vector OB is equivalent to 1/dhkl [36].

Hence, the Bragg's law is fulfilled if the reciprocal lattice point

defined by reciprocal lattice vector d*hkl, which correspond to
reflecting planes (hkl) that intersect the Ewald sphere [10].
From triangle AOC (Fig. 11):

OCj j ¼ 1

λ
sinθ ¼ 1

2
d*hkl
�� �� ¼ 1

2dhkl
ð37Þ

The vector form of Ewald sphere to Bragg’s law is given as
[25, 33]:

S−Soð Þ
λ

¼ k−ko ¼ d*hkl ð38Þ

where, d*hkl ¼ reciprocal lattice vector; vector AO = ko and

vector AB = k as the origin of d*hkl shift from A toO in Fig. 11.

Fig. 11 Ewald sphere
construction for set of planes onto
diffraction position [33]

Fig. 10 Three Laue cones of
diffracted beams direction from
lattice row of atoms varying
between 0 and 180° [33].
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4 Diffraction application

X-ray diffraction remains a powerful technique that has long
been used to solve lot of problems relating to solid crystal
structures. There are wide major applications of x-ray diffrac-
tion which include phase identification, crystal size, crystal
structure, residual stress/strain, dislocation density, lattice pa-
rameter determination, thermal expansion coefficient, phase
transformation, and crystallographic orientation [37].

4.1 Phase identification and quantification

Every crystalline solid has a unique x-ray diffraction pattern or
set of interplanar spacing and relative intensities that serves as
finger print [5]. Therefore, peak positions and intensities of the
diffraction of a specimen are determined and the correspond-
ing interplanar spacings are calculated from Bragg’s law.
Thus, constituent phases in an unknown sample can either
be identified by computerized searching from matching joint
committee on powder diffraction standard (JCPDS) database
that match recorded interplanar spacing values of the strongest
peak intensity line, while phase quantification of unknown
sample can be determined by taking peak intensities of the
strongest line as a function of the weight fractions of the
phases in a mixture [38].

4.2 Crystalline size

Determination of crystallite size or grain size is based on the
principle that a decrease in the crystallite size leads to an
increase in width of diffraction (peak broadening). Hence, an
increased width is an indication that there are not enough
planes in small crystallite to produce complete destructive
interference [39, 40]. Debye Scherrer formulated equation
for estimating particle size as [41]:

D ¼ Kλ
Bcosθ

ð39Þ

where, D= particle size, θ= angle of diffraction, K=
Scherrer constant (=0.9), λ= x-ray wavelength, B= full width
at half maximum (FWHM) that is measured in radian.
Instrument such as detector slit width and specimen have been
known to contribute to total broadening peak because of re-
duction in the crystallite size and strain. The specimen broad-
ening FW(s) is described by [40]:

FW sð Þcosθ ¼ Kλ
Size

þ 4εsinθ ð40Þ

Total broadening peak,Bt is due to specimen and instrument
is given as [40]:

B2
t ¼

Kλ
Dcosθ

� �
þ 4εtanθ½ �2 þ B2

o ð41Þ

where, Bo=instrument broadening and ε=strain
Williamson and Hall [42] proposed a method for

deconvoluting size and strain broadening into separate equa-
tion by assuming peak width as a function of 2θ [42]:

BL ¼ kλ
Dcosθ

ð42Þ

Be ¼ Cεtanθ ð43Þ
where, C= constant, BL and Be are size and strain broadening
respectively. But size and strain could be convoluted if broad-
ening peak is affected by both size and strain broadening.
Therefore, Eq. (41) can be rewritten as follows:

Bt ¼ BL þ Be ¼ Cεtanθþ kλ
Dcosθ

ð44Þ

Multiplying Eq. (44) by cosθ further yield Eq. (45):

Btcosθ ¼ Cεsinθþ kλ
D

ð45Þ

Equation (45) can be compared with a straight-line equa-
tion, y =mx + c. Where,m= slope and c= intercept [43]. A plot
of Bt cos θ versus sinθ known as Williamson–Hall plot repre-
sent average grain size (slope of) component and average
strain (intercept of kλ/D) component.

4.3 Crystal structure determination

Identification of crystal structure is based on lattice parameters
of the unit cell of the crystal structure, lattice points, number of
atoms per unit cell, packing factor of atoms in unit cell and
coordinate number of atoms in the unit cell [16]. Typically, the
principal diffracting planes withmiller indices (h, k, l) of either
all even or odd number is identified as FCC crystal structure.
Whereas, the principal diffracting planes with sum of miller
indices (h + k + l) equaling even number is identified as BCC
crystal structure [28, 44].

4.4 Residual stress and strain

Stress that is left in crystal structure after removal of external
force is called residual stress. Analysis of stress with x-ray
diffraction techniques is based on measuring angular lattice
strain distribution by measuring interplanar spacing with high
diffraction peaks of sample [5]. The average internal stress is
then computed from hook’s law using values of strain obtain-
ed from Williamson–Hall plot or Eq. (43).
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4.5 Dislocation density

X-ray diffraction peaks get equally broadened by lattice defect
resulting from dislocation, which is an irregularity formed
within a crystal [45]. The length of dislocation lines per unit
volume of the crystal is known as dislocation density.
According to Weertman [46], dislocation density increases
with decreasing grain size and increasing strain. The disloca-
tion density of a sample is estimated as [47]:

δ ¼ 15Bcosθ
4aD

ð46Þ

4.6 Lattice parameters

Lattice parameters are critical variables in establishing chemical
and physical properties that influence crystalline materials’ state
of stress and strain [10]. The six parameters (Fig. 1), which
express the size and shape of crystals, called lattice parameters
or unit cell parameters are length of three axes, a, b, c and
corresponding angles between them, α, β, γ [12, 13].
Position of diffraction peaks are function of size and shape of
the unit cell parameters while intensities of the diffraction peaks
are function of atomic position in crystals. Therefore, the lattice
parameters can be determined by measuring peak position over
a range of 2θ from observed powder diffraction pattern and can
be mathematically expressed with Bragg’s law [13].

4.7 Expansion coefficient

Mechanical, optical, and electronic properties of materials at
high temperature depend strongly on thermal expansion coef-
ficient [48, 49]. High temperature x-ray diffraction technique
is the most reliable method for estimating thermal expansion
coefficient of materials using Rietveld analysis of powder x-
ray diffraction method [50]. Intensities of diffracted beams
decrease as temperature increases because atoms undergo in-
creasing vibration around their mean position with increasing
temperature [50, 51]. Therefore, values of lattice parameters
vary with temperature; hence, diffraction pattern of sample
can then be recorded during heating/cooling at every given
temperature. Thus, polynomial models are used to express
lattice parameters as a function of temperature to estimate
thermal coefficient of materials [52].

4.8 Phase transformation

Phase transformation and phase diagram outline are conducted
with scanning calorimetry, transmission electron microscope,
nuclear magnetic, electrical resistivity, or x-ray diffraction
method [53]. But, the x-ray diffraction method provides phase
identity on both sides of the phase boundary. The quantity and

compositional phase on phase diagram depend on heat treat-
ment temperature, timing, and alloying content [54]. The x-ray
diffraction is now widely used in phase transformation study
and construction of temperature-compositional phase diagram
of compound or alloying compositions by mapping out region
consisting of various crystal phases [55]. Continuous recording
of x-ray diffraction pattern during heating/cooling of samples
allows identification of any shift of peak position owing to
change in lattice constant which is a function of temperature
and compositional phase [55, 56]. Therefore, the changes in
diffraction patterns or peak position corresponding to phase
boundary and phase(s) presence at a given temperature are then
recorded accordingly [54].

4.9 Crystallographic orientation

Crystallographic orientation refers to spherical distribution of
crystals in polycrystalline aggregates and may be quantified
by calculating orientation distribution function, which gives
orientation density as a function of rotation angle [57]. The
orientation distribution function (ODF) may be calculated
from pole figures either by direct inversion or series expansion
method [58]. Crystallographic orientation and its distribution
affect physical and mechanical properties of materials. Several
engineering materials have preferred crystallographic orienta-
tion as characteristic physical and mechanical properties of
material [59]. The crystallographic orientation of materials
can be measured by calculating the pole figures or plotting
pole figures as the stereographic projection using the rotating
x-ray diffraction method [14]. Crystallographic orientation
measurement should consider integration approach to sum
up total diffracted intensities over an entire pole sphere and
in three-dimensional diffraction pattern [57]. Randomly ori-
ented crystals produce diffraction pattern that consist of con-
centric rings known as Debye–Scherrer rings if the crystals
have set of crystallographic planes (h, k, l) oriented such that
Bragg’s diffraction condition is fulfilled. But, preferential ori-
entation of crystals may prevent diffraction of some crystallo-
graphic planes due to how crystals are oriented [60].

5 Conclusion

This paper presented an overview of crystallographic struc-
tures, x-ray diffraction principle, and diffraction engineering
applications. The review is summarized as follows:

& Nowadays, crystal structure determination and measure-
ment of grain size, residual stress, and strain of solid me-
tallic and non-metallic materials and many other applica-
tions are performed with automated procedure with so-
phisticated equipment.
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& The review showed that Bragg’s law provided the practi-
cal applications of x-ray diffraction to the study of crys-
tallographic structures and major applications of x-ray dif-
fraction. Accurate measurement of the peak position and
intensities with Bragg’s theory laid the foundation for
crystal structure characterization.

& The wide application capabilities of x-ray diffraction were
made possible by the simplified mathematical concept of
Bragg’s theory to measure peak positions and peak inten-
sities. Nonetheless, the unit cell parameters of materials
are more strongly dependent on peak position than peak
intensity and peak width in material characterization.

& Despite wide application of x-ray diffraction, there are still
misconception of few complex crystallographic structures
and diffractions associated with shape of crystals.
Therefore, diffraction patterns of some complex structures
are inexplicable with neither Bragg nor Laue’s theory.

Nomenclature α, β, γ , angle between unit cell dimensions in x, y, z
directions respectively; αn, αo, angle between unit cell dimensions in x,
y, z directions respectively; βn, βo, angles of diffracted and incident
beams in y direction respectively; γn, γo, angles of diffracted and incident
beams in z direction respectively; r, crystallographic direction vector; u, v,
w , crystallographic directions; δ, dislocation density; L, distance between
two atoms in space; B, full width at half maximum; Bo, instrument broad-
ening; n1, n2, n3, integer numbers corresponding to wavelength; δij,
Lattice tensor; a, b, c, length of unit cell dimension in x, y, z directions
respectively; h, k, l, Miller indices of crystallographic planes; D, particle
size; R, position lattice vectors; a1,a2,a3, primitive lattice vector for posi-
tion vectors; b1,b2,b3, primitive lattice vector for reciprocal vectors; K,
reciprocal lattice vectors; K, Scherrer constant; BL, size broadening; d,
space distance; d*hkl , space distance lattice vectors; ε, strain; Be, strain
broadening; Bt, total broadening peak; s,so, unit vector along diffracted
and incident beam directions respectively; k,ko, unit vector of reciprocal
lattice along diffracted and incident beam directions respectively; λ, x-ray
wavelength
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