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Abstract
Chatter is a kind of undesired vibration with multiple adverse effects in machining operations, and online detection of
chatter is crucial for chatter avoidance or suppression. However, it is observed that time-varying harmonic components are
abundant in turning of thin-walled parts. The emergence of harmonics alters conventional frequency distribution patterns of
the measured signal. In particular, it is a very challenging task to detect chatter in an early stage when the signal spectrum
is dominated by the harmonics. This paper firstly investigates theoretically the relationship between the chatter frequency
and the natural frequency based on a well-accepted chatter model of turning. The chatter frequency is found to vary far
more slowly than the natural frequency during the thin-walled turning. Based on this finding, the adaptive signal predictor
is proposed as a preprocessor for chatter detection, which can alleviate harmonics interference and noise with no prior
knowledge of the workpiece dynamics. Furthermore, an improved adaptive filter algorithm is developed to enhance the
performance of time-varying harmonics removal. Finally, simulation and experimental results validate the effectiveness of
the proposed approach in harmonics removal and noise reduction for chatter detection in thin-walled turning.
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1 Introduction

The self-excited chatter is a kind of unstable vibration
phenomenon commonly encountered in machining. Further-
more, chatter vibration results in numerous adverse effects,
including harm to machine tools, deteriorated surface qual-
ity, harsh noise, and waste of material and energy. The
complicated mechanism and elusive behavior make it very
difficult to fully understand and completely avoid chat-
ter in machining [1]. To achieve high productivity, some
researchers have focused on chatter prediction based on
stability lobe diagrams [2], which guide the selection of
cutting parameters for chatter-free machining. But it is
usually difficult to use this approach to avoid chatter in
industrial practice due to inevitable model errors and uncer-
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tainties [3, 4]. Another approach is to automatically identify
the machining status and suppress chatter [5, 6], which is
proved to be useful and reliable. In particular, it is desirable
to detect or predict chatter timely and accurately in order to
minimize the adverse effects caused by chatter vibration.

Due to the requirement of lightweight design in
various fields of industrial manufacturing, the proportion
of thin-walled parts raises quickly [7]. However, their
low stiffness and massive material removal easily cause
machining chatter, which has been one of the most
challenging problems in both the industrial and the
academic communities. Mehdi et al. [8] investigated the
dynamic behavior of a thin-walled cylindrical workpiece
in turning. Khoshdarregi and Altintas [9] found that
instantaneous shell deformations due to the cutting forces
caused residual shell vibrations, which could affect the
chip thickness when the corresponding point arrived at
the cutting region. Liu et al. [10] proposed a varying
threshold for chatter detection to identify chatter in milling
of thin-walled workpieces by monitoring the cutting torque.
Harmonic filters were used to remove the current harmonics
induced by the cutting force measurement system. Urbikain
et al. [11] observed that the cutting frequency and its
multiples appeared under stable and unstable conditions in
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turning using the discrete Fourier transform (DFT) of the
force signal.

Many approaches have been proposed for chatter
detection during the past decades. The extensive literature
review shows that there are mainly four types of techniques
for chatter detection, namely, time domain or frequency
domain analysis, time-frequency domain analysis, pattern
recognition, and others [12]. When chatter occurs, the
amplitude of vibrational signals is increasing significantly.
Thus some features can be extracted from time-domain
signals to indicate chatter, such as once per revolution
sampling [13]. From the frequency spectrum point of
view, there is a trend to transform energy from broadband
to narrowband in the development process of chatter.
This characteristic in the frequency domain is utilized
to detect chatter, such as fast Fourier transform (FFT)
[14]. Time-frequency domain analysis, for example, wavelet
transform (WT) [15], was applied to analyze the frequency
components with varying resolutions. Pattern classification
methods, such as the support vector machine [16], was
also proposed in chatter detection. Except for the above
signal processing methods, many chatter indicators are
derived from statistics theory, like energy entropy [17].
Since the harmonics of the natural frequency in turning
of flexible parts mainly affect the frequency spectrum of
monitoring signals, the chatter detection methods related
to the frequency spectrum distribution will be strongly
influenced by the harmonics interference.

As a matter of fact, harmonics often present in milling,
which is caused by the forced vibration of the tool.
Because the milling tool intermittently enters and leaves
the workpiece during the milling, the frequencies of forced
vibration are integer multiples of the spindle frequency. In
contrast, the tool tip contacts the workpiece continually in
turning. Therefore, the harmonics are mainly determined
by the thin-walled workpiece dynamics in the turning
process, and their frequencies are evidently time-varying
due to material removal. Thus, the comb filter used to filter
out harmonics in milling [18] cannot work in thin-walled
turning. Besides, the natural frequency of the thin-walled
workpiece needs to be obtained in advance by modal tests
if the band-pass filter is used for harmonics removal. There
is still no practical solution to the harmonics removal for
chatter detection in turning of flexible workpieces.

To solve this problem, the adaptive signal predictor
is introduced to filter out the time-varying harmonics in
turning of thin-walled parts in this paper. By theoretical
analysis, we discover that the chatter frequency varies more
slowly than the natural frequency in thin-walled turning.
Therefore, their differences in autocorrelation can be
utilized to alleviate the harmonics interference. Moreover,
an improved normal least mean square (NLMS) algorithm
is proposed for the adaptive signal predictor to enhance the

filtering ability. In this way, no prior knowledge is required
to remove harmonics for chatter detection when turning
thin-walled parts.

The remainder of this paper is arranged as follows.
Section 2 presents the encountered problem for chatter
detection in turning of thin-walled workpieces and investi-
gates the frequency variation during chatter. In this section,
the relationship between the chatter frequency and the
natural frequency of a thin-walled disc is investigated the-
oretically in the end-face turning. Moreover, their relative
rates of change are revealed quantitatively. Section 3 pro-
poses the adaptive signal predictor with an improved NLMS
algorithm to separate signals with big differences in the rate
of frequency change, which is verified by simulation. In
Section 4, the effectiveness of the adaptive signal predic-
tor in alleviating the interference of harmonics and noise is
experimentally confirmed. Finally, conclusions are drawn in
Section 5.

2 Problem formulation and frequency
analysis

Due to high flexibility and varying dynamics, there is a
significant difference between the turning process of a
flexible workpiece and that of a relatively rigid workpiece.
Further, this difference brings about new problems for the
existing chatter detection approaches. In this section, the
phenomenon that the harmonics of the natural frequency
emerge in the chatter signal is exposed and its consequences
on chatter detection are pointed out. Then the change
characteristics of the natural frequency and the chatter
frequency are investigated using a well-accepted chatter
model in turning, which provides guidance for harmonics
removal.

2.1 Problem formulation

As mentioned above, chatter vibration presents a challenge
to achieve high dimensional accuracy and productivity
in turning of thin-walled parts. On-line detection is very
essential to avoid chatter. Various signals have been
utilized to monitor the machining state, such as the cutting
force, audio signals, and vibration. The sampled signal
in the chatter-free state is generally deemed to obey a
Gaussian distribution. While chatter has fully developed,
the monitoring signal is depicted as a harmonic function
with a single frequency. To achieve a unified representation,
the signal is modeled as a single sinusoid signal added to
random noise [19], namely,

a(t) = A sin (ωt) + rand(t) (1)
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where t denotes time, a(t) and rand(t) are the sampled
signal and the random function representing signals in
the chatter-free state, respectively, ω is the angular chatter
frequency and A is the amplitude of the chatter frequency
component. A is increasing during the development of
chatter. The sampled signal is random noise in the
stable state, while A is large and a(t) approximately
equals a sinusoid signal in the chatter state. From the
energy distribution point of view, chatter results in energy
aggregation around the chatter frequency, which leads to the
decreased uniformity of energy distribution. Many chatter
detection methods are based on this change in signal
characteristics, such as the wavelet packet entropy (WPE)
[20].

However, when it comes to the turning of thin-walled
workpieces with low stiffness, high-order vibration modes
are very prone to be excited even in the stable state.
Moreover, multiple mode frequencies of thin-walled parts
are often low and close to each other. Therefore, they may
well be aroused by the cutting force and the monitoring
signal would contain multiple mode frequencies. As a
result, the harmonics and inter-harmonics of multiple mode
frequencies dominate the energy spectrum of monitoring
signals in the stable and transition state, which is different
from the conventional energy distribution pattern. On
the other hand, chatter actually experiences a premature
process, namely, the transition stage, before it has fully
developed [21]. Moreover, there are no obvious chatter
marks on the machined surface at the transition stage.
Therefore, chatter is expected to be recognized at this stage
so that damage incurred by chatter can be mitigated as much
as possible. The signal characteristics in transition state are
very critical to chatter detection at the early stage. However,
the existing approach for chatter detection may be nullified
due to the emergence of harmonics in turning of thin-walled
parts.

2.2 Frequency analysis

In order to filter out harmonics, the frequency charac-
teristics of signals in turning of thin-walled workpieces
should be firstly investigated. The turning process of the
flexible workpiece is impractically complex due to location-
dependent modal parameters and material removal. More-
over, the flexible workpieces in turning are characterized
by various geometrical shapes, such as a long slender bar,
a thin-walled circular cylindrical shell, and a thin-walled
disc. Besides, the boundary conditions are also difficult to
elaborate. As a result, the modeling of machining chat-
ter in turning of flexible parts becomes very challenging.
Until today, several models have been proposed for the spe-
cific type of flexible workpieces. Stepan et al. modeled
the varying dynamic properties of a long slender work-

piece due to the material removal process using the finite
element method [22]. Chanda and Dwivedy studied simul-
taneously the nonlinear dynamics of the tool and the thin
cylindrical workpiece for turning operations [23]. Guo et al.
developed a time-varying distributed-parameter model for
the dynamics of a rotating thin-walled plate [24]. Although
the above-mentioned models were demonstrated to have a
certain degree of validity by comparisons between the pre-
dicted and experimental stability boundaries, they either
need to acquire modal parameters of each position on the
flexible workpiece or depend on finite element analysis,
which is difficult to implement in industrial production.

It is noted that modal parameters of thin-walled parts
change remarkably during the turning process due to
material removal. Therefore, the chatter frequency varied
according to the natural frequency of a thin-walled
workpiece [22]. Although the cutting force is influenced
by many nonlinear factors, such as process damping, the
linearized model has been extensively accepted [5, 25, 26]
and utilized to predict the chatter frequency with adequate
precision in the orthogonal turning [27]. In this paper, the
well-accepted chatter model in Fig. 1 [28] is employed to
approximately model the dynamics of the turning process
with flexible workpieces and to derive the relationship
between the natural and chatter frequency to some extent.
In this model, the workpiece is modeled as a single-degree-
of-freedom body since the thin-walled disc in the direction
perpendicular to the plate has a much lower stiffness than
the other two directions. Moreover, it is reasonable to
assume that the tool is rigid with respect to the flexible
workpiece. The modal parameters of the flexible workpiece
are approximated as constants within one cut. For this
cutting model, the linearized cutting force Ff (t) can be
expressed as

Ff (t) = Kf ah(t) = Kf a[h0 − (x(t) − x(t − T ))] (2)

Fig. 1 Mechanism of regenerative chatter in the turning operation with
the flexible workpiece
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where t is the time, T is the delay time, Kf is the cutting
force coefficient in the direction of feed, a is the depth
of cut, h(t) and h0 are the dynamic cutting thickness
and the nominal cutting thickness, respectively, x(t) and
x(t − T ) denote the current displacement and the previous
displacement, respectively. When the amplitude of chatter
vibration is too large (i.e., x(t) − x(t − T ) > h0), the
tool jumps out of cut, which produces a zero chip thickness
and zero cutting force. As a result, the whole process is
too complex and nonlinear to model correctly analytically.
Such severe chatter for a long time is always not allowed.
Therefore, the influence of the tool jumping out of cut
is neglected. For a single-degree-of-freedom system, the
governing equation of motion is represented as

mẍ(t) + cẋ(t) + kx(t) = Ff (t) (3)

where m is the modal mass of the workpiece, and c and k are
the structural damping coefficient and structural stiffness,
respectively. In the Laplace S-domain, the dynamic cutting
thickness h(t) can be expressed as

h(s) = h0 +
(
e−sT − 1

)
x(s). (4)

The Laplace transform function of this system is defined as

Φ(s) = x(s)

Ff (s)
= ω2

n

ks2 + 2ξωns + ω2
n

(5)

where ωn is the angular natural frequency of the workpiece
and ξ is the damping ratio. The current vibration
displacement of the workpiece is given as

x(s) = Ff (s)Φ(s) = Kf ah(s)Φ(s). (6)

Substituting Eq. 6 into Eq. 4, another form of h(s) is
expressed as

h(s) = h0 +
(
e−sT − 1

)
Kf ah(s)Φ(s). (7)

The stability of this closed-loop transfer function is
determined by the roots of its characteristic equation, which
is derived as

1 +
(

1 − e−sT
)

Kf aΦ(s) = 0. (8)

When the real part of the characteristic root equals zero,
the system is critically stable. The characteristic root now
becomes jωc, where j is an imaginary unit and ωc is the
angular chatter frequency. Subsequently, the characteristic
equation becomes

1 +
(

1 − e−sT
)

Kf alimΦ(jωc) = 0 (9)

where alim is the critical depth of cut. If Φ(jωc) is divided
into a real part and an imaginary part, namely,

Φ(jωc) = G + jH . (10)

Substituting Eq. 10 into Eq. 9 and splitting the real and
imaginary part, Eq. 9 can be rewritten as
{
1 + Kf alim [G (1 − cos ωcT ) − H sin ωcT ]

}

+j {G sin ωcT + H (1 − cos ωcT )} = 0. (11)

According to Eq. 11, the real and imaginary parts of the
characteristic equation have to be zero. It is considered that
the imaginary part equals zero, namely,

Gsin ωcT + H (1 − cos ωcT ) = 0. (12)

When the phase of Φ is represented by �, according to
Eq. 12

tan Ψ = H (ωc)

G (ωc)
= sin ωcT

cos ωcT − 1
= tan

(
ωcT

2
− 3π

2

)
.

(13)

Then the relation between � and ωc can be deduced:

ωcT = 2� + (3 + 2k) π (14)

where k is the number of vibration cycles. Substituting the
characteristic root into Eq. 5, Φ can be further expressed as

Φ (jωc) = 1

k

(
1 − ω2

c

ω2
n

+ j
2ξωc

ωn

) . (15)

If we set r = ωc/ωn and split up the real and imaginary parts
of Φ (jωc), simplified results are

G = 1 − r2

k
[(

1 − r2
)2 + (2ξr)2

] , (16)

H = −2ξr

k
[(

1 − r2
)2 + (2ξr)2

] . (17)

Therefore, the phase of the transfer function is calculated as

� = arctan
H

G
= arctan

2ξr

r2 − 1
. (18)

Substituting Eq. 18 into Eq. 14, the relation between ωc and
ωn is

tan
ωcT − 3π

2
= 2ξωcωn

ω2
c − ω2

n

. (19)

In addition, T is the time taken for one revolution which is
calculated by 60/n, where n in r/min is the spindle speed.
Finally, the relation between the chatter frequency fc and
the natural frequency fn is presented as

tan

120πfc

n
− 3π

2
+ 2ξfcfn

f 2
n − f 2

c

= 0. (20)
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It has been demonstrated that natural frequencies of
workpieces are not sensitive to low spindle speeds, but they
decrease linearly with the part thickness [24]. Therefore,
the natural frequencies of the thin-walled workpiece
are remarkably time-varying in turning processes. To
investigate the relationship between the natural and chatter
frequency, the model parameters in ref. [29] are adopted.
The corresponding parameters are n = 758.15 r/min and
ξ = 0.0105. According to Eq. 20, fc as a function of fn

ranging from 200 to 900 Hz is shown in Fig. 2, since natural
frequencies of thin-walled parts are often low. It is noted
that the slope of the curve kcn, which represents the rate of
relative change between fc and fn, is always less than 1.
Moreover, kcn is gradually increasing with fn and far less
than 0.5 in most cases. In Fig. 2, kcn at two sample points
are 0.182 and 0.318, respectively. It is found that the chatter
frequency varies far more slowly than the natural frequency
in turning of thin-walled discs.

It is seen in Eq. 20 that ξ and n are two key parameters.
Therefore, their effects on kcn should be studied. For the
sake of simplification, kcn is approximatively replaced by
the quotient, which the relative change of fc is divided by
that of fn in a small range. The chatter frequency of 822
Hz is adopted from Experiment 1 in Section 5. Considering
that the chatter frequency changes from 822 to 823 Hz, the
corresponding kcn is calculated for various spindle speeds
and damping coefficients. kcn as a function of ξ and n is
fitted with the quadratic interpolation method and shown in
Fig. 3. It can be seen that kcn increases with the decrease
of ξ and the increase of n. In addition, we can see that
kcn is always less than 0.5 in the range of low spindle
speeds. In practice, the damping ratio of a thin-walled
workpiece is usually greater than 0.01 [9, 30]. Therefore, it
is confirmed that the chatter frequency varies more slowly
than the natural frequency during the turning of thin-walled
workpieces.
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f
n
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kcn=1

kcn=0.318

Fig. 2 Behavior of the chatter frequency varies with respect to the
natural frequency of the thin-walled part in ref. [29]

Fig. 3 Effects of n and ξ on kcn

3 Adaptive harmonics removal approach

With the development of computing capability and emerg-
ing algorithms, the adaptive filter has been successfully used
in various applications such as system identification, noise
canceling, and echo cancellation. In order to separate noise
and periodic signals, the adaptive signal predictor based on
the difference in autocorrelation is proposed [31]. Actually,
signals with different rates of frequency change also have
a difference in autocorrelation. Therefore, we attempt to
utilize this difference to weaken effects of the harmonics
interference and improve the adaptive signal predictor.

3.1 Adaptive signal predictor

Based on signal correlation, the adaptive signal predictor is
an application of the adaptive filter in noise canceling. It
is assumed that the input of an adaptive signal predictor is
composed of a random and a periodic signal, namely,

x(t) = x0(t) + N(t) (21)

where x0(t) and N(t) denote the periodic signal and the
random signal, respectively. The autocorrelation function of
x(t) is defined as Rx(τ), which is expressed as

Rx(τ) = lim
T →∞

1

T

∫ T

0
x(t)x(t + τ) dt (22)

where τ is the delay time. The random signal N(t) and
N(t + τ) have no correlation with x0(t) and x0(t + τ).
Therefore, correlation coefficients among them equal zero.
Substituting Eq. 21 into Eq. 22, the simplified Rx(τ) is
derived as

Rx(τ) = Rx0(τ ) + RN(τ) (23)

where Rx0(τ ) and RN(τ) denote the autocorrelation
function of x0(t) and that of N(t), respectively. With long
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delay time, RN(τ) is close to zero but Rx0(τ ) remains
unchanged.

Based on signal delay and the adaptive filter, the basic
adaptive signal predictor system is depicted in Fig. 4.
In Fig. 4, a wide-band signal n(i) and a periodic signal
p(i) constitute the desired signal d(i) and its delayed
version is served as the adaptive filter input. The delay
time makes the wide-band signal lose correlation with its
delayed version, but the correlation between the periodic
signal and its delayed version remains strong. As the output
of the adaptive filter, an optimum estimate of the periodic
signal y(i) is obtained after iteratively adjusting weight
coefficients. Then the wide-band signal is extracted as
the error signal e(i) by signal subtraction. The natural
frequency component has weak autocorrelation through
time delay due to a large rate of frequency change. In
contrast, the chatter frequency component with a small
rate of frequency change shows strong autocorrelation via
time delay. Therefore, the chatter frequency component is
isolated by the adaptive signal predictor.

3.2 Improved NLMS algorithm

Recently, various algorithms have been proposed to adjust
automatically and iteratively weights of the adaptive filter
in order to minimize a prescribed criterion [32, 33]. The
least mean square (LMS) is the most frequently used search
algorithm in the adaptive filtering due to its computational
simplicity. The instantaneous estimate of the gradient is
employed to search the minimum mean square error (MSE)
in the LMS algorithm. The LMS algorithm with a single
input can be represented as [34]

y(i) = ωT x(i) =
N−1∑
k=0

ωk(i)xk(i) (24)

e(i) = d(i) − y(i) (25)

ω(i + 1) = ω(i) + μe(i)x(i) (26)

where ω(i) is the filter coefficient vector at instant i, x(i)

and y(i) denote the input and output of the adaptive filter,
respectively, N is the filter order, e(i) is the estimation error
of the adaptive filter, d(i) represents the desired signal, and

Fig. 4 Block diagram of the adaptive signal predictor

μ is the fixed step size. The convergence rate and stability
of the algorithm are controlled by the step size, which is
constrained by

0<μ<
1

λmax
(27)

where λmax is the maximum eigenvalue of the autocorrela-
tion matrix of the input signal.

That the weight increment is proportional to the input
vector makes the LMS algorithm sensitive to the scaling of
its input, and gradient noise is amplified. Therefore, it is
very difficult to select a proper step size that keeps a balance
between stability and accuracy. To overcome this difficulty,
the NLMS algorithm is proposed with a normalized step
size independently by Nagumo (1967) and Albert (1967),
which is written as

μ(i) = μ0

δ + xT (i)x(i)
(28)

where μ0 is the convergence factor and δ is a small positive
constant in case that the denominator becomes zero. In the
NLMS algorithm, μ0 is a key parameter associated with the
step size and Paulo et al. have studied its available range
[35], which is given as: 0 < μ0 < 2. With a large step size,
the rate of convergence is fast but the increased MSE and the
instability of the algorithm are encountered, and vice visa.
Therefore, the selection of μ0 needs to consider both the
MSE and the rate of convergence. In most cases, the value
of μ0 should not be chosen close to the upper bound due to
the approximations and assumptions made.

The LMS algorithm is still far from the optimum
trade-off between the steady-state misadjustment and the
convergence rate. To overcome this deficiency, various
variable step-size LMS algorithms have been proposed
[36]. By contrast, the NLMS algorithm is regarded as the
best one when considering the ease of use, computational
complexity, and performance. However, the convergence
factor in the NLMS algorithm is constant. To produce
a smaller MSE as fast as possible, an improved NLMS
algorithm is developed in this paper by defining a variable
convergence factor as

μ0(i) = α

(
1 − 1

|e(i)e(i − I )| + 1

)
(29)

where α is a constant, I as the delay factor is a positive
integer greater than 1. The value scope of μ0(i) is
controlled by α, which plays the same role as μ0 in
the NLMS algorithm. Therefore, the selection method for
an appropriate μ0 can be directly applied to determining
α. A large delay factor promotes the attenuation of
the autocorrelation of the component with a larger rate
of frequency change. Thus, I requires to be adjusted
according to the attenuation degree of the autocorrelation of
components with larger rates of frequency change.
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The step size adjustment is connected to the autocorre-
lation of errors in order to weaken aperiodic signals. More-
over, the convergence factor defined in Eq. 29 produces
an increasing resolution for searching the minimum MSE
due to error reduction. Therefore, faster convergence and
reduced MSE are achieved simultaneously by the proposed
algorithm. In conclusion, the improved NLMS algorithm
retains the advantages of the NLMS algorithm and enhances
the filtering ability.

4 Simulation results

It has been extrapolated that the adaptive signal predictor
can remove signal components with very weak periodicity.
To verify the above analysis, simulations were carried out
with a composite signal, which contained two components
with linearly increasing frequencies and random noise and
was expressed as

s(t) = sin(4πt +πt2)+ sin(4πt + 0.2πt2)+ rand(t). (30)

N = 5 and D = 50 were selected in the adaptive
signal predictor. Moreover, the NLMS algorithm with μ0 =
0.0005 and the improved NLMS algorithm with I = 1
and α = 0.0005 were applied in the adaptive filter.
Besides, the time-frequency analysis technique is required
to demonstrate simulation results. In this paper, the short-
time Fourier transform (STFT) was utilized to give the
time-frequency distribution of the simulated signal and its
output via the NLMS and improved NLMS adaptive filter in
Fig. 5.

Figure 5a shows the time-frequency distribution of the
original composite signal, and each component has the same
energy. Compared with Fig. 5a, most of random noise is
removed in Fig. 5b. Moreover, the remaining energy for
the signal with the slope of frequency change kf = 1
in Fig. 5b is 28.2% of the one with kf = 0.2 after
being processed by the NLMS adaptive filter. The similar
comparison is made when the improved NLMS algorithm is
applied, and the corresponding percentage is only 12.57%.
In the simulation, the signal with kf = 0.2 preserves
76.73% and 52.06% of its original energy via the NLMS and
improved NLMS filter, respectively. Although the improved
NLMS filter removes more signal energy than the NLMS
filter, it can produce a bigger difference in remaining energy
for signals with various rates of frequency change. In the
simulation, the ratio of the remaining energy of the signal
with the slope of the frequency change kf = 0.2 to that
with the slope of frequency change kf = 1 increases
from 2.72 to 4.14 when the improved NLMS algorithm
is utilized in the adaptive signal predictor to replace the
NLMS algorithm. Therefore, those signal components with
much larger rates of frequency change can be thought to be

Fig. 5 Time-frequency distributions with respect to a the simulated
signal, its outputs via b the NLMS adaptive filter, and c the improved
NLMS adaptive filter

filtered out via the preprocessor. This is the reason why the
harmonics and inter-harmonics of a thin-walled workpiece
should be weakened significantly compared with the chatter
frequency.

In order to test the real-time performance of the adaptive
signal predictor, we conducted a simulation study with a test
signal, which was expressed as

x(t) = sin(0.2πt) + 0.4rand(t) (31)

where rand(t) was a white Gaussian noise. The number of
sampling points was 100 in the simulation. The parametric
values of the adaptive signal predictor were selected as
follows: N = 5, D = 1. The convergence factor μ0 =
0.001 was employed in the NLMS algorithm. For the
proposed convergence factor, I = 1 and α = 0.001 were
set. The simulation was implemented with MATLAB on an
Intel 3.2-GHz computer. The simulation results demonstrate
that the execution time for simulated signals processed by
the NLMS and improved NLMS adaptive filter is 3.43 ms
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and 3.40 ms, respectively. We see that these algorithms
are very efficient and show good real-time performance.
Moreover, a fast implementation of LMS adaptive filters can
also be used to accelerate the computation [37].

5 Experimental results and discussion

Thin-walled parts contain various types, such as the
cylindrical and the plate. The experimental workpiece was
a thin-walled disc with a stepped surface, which had
the 120-mm inner diameter and 180-mm outer diameter.
The unmachined disc had a thickness of 7 mm and its
material was AISI 4340. End-face turning experiments were
performed on a CK6150A lathe. The type of cutter insert
was Sumitomo 2NC-DCGW11T304. The oil-based cutting
fluid was used to remove heat rapidly and lubricate the
chip-tool interface. The experimental setup is shown in
Fig. 6. Audio signals were measured by a BSWA MPA
201 microphone with the frequency response of 20∼20,000
Hz, which was placed close to the workpiece. Experimental
signals were sampled by a HRU-1213 data acquisition
system with a maximum sampling rate of 100 kHz.

5.1 Chatter detection scheme based on theWPE

It is mentioned that chatter occurrence leads to the
progressive aggregation of energy at a certain frequency.
The randomness index has been used as chatter indicators,
such as the approximate entropy [38] and energy entropy
[17]. Due to high computational efficiency, our attentions
are attracted by the WPE that reflects the randomness of
energy distribution in the frequency domain. Moreover,
it has been proved to be an effective chatter indicator
in turning [20]. The definition of the WPE will be
subsequently presented. The signal s(t) is decomposed at

Fig. 6 Experimental setup

the j th level and 2j vectors of wavelet packet coefficients
corresponding to all nodes of the wavelet packet tree are
obtained. The wavelet sub-signal in the nth node at the j th
level sn

j is represented as

sn
j (t) =

K∑
k=1

dn
j,kψj,k (32)

where j , n, and k denote the scale level, the node index, and
the shift index, respectively, K is the decomposition factor
length of the space, dn

j,k is the wavelet packet coefficient,
and ψj,k is the wavelet function. The wavelet packet node
energy can represent the signal energy in a certain frequency
band and is defined as the square sum of all frequency
decomposition coefficients of each node. The energy of the
nth node at the j th scale is expressed as

En
j =

K∑
k=1

∣∣∣dn
j,k

∣∣∣
2

(33)

Then the total energy of a signal is obtained by accumulat-
ing energy of all sub-bands:

Ej =
2j −1∑
n=0

En
j . (34)

To facilitate comparison, the wavelet packet node energy
(WPNE) at a certain decomposition level is normalized as

pn = En
j

Ej

. (35)

In order to avoid operating large numbers, the energy vector

V =
[
E0

j , E1
j , ..., E2j −1

j

]
is normalized as

V n = [
p0, p1, ..., p2j −1

]

= 1

Ej

[
E0

j , E1
j , ..., E2j −1

j

]
. (36)

Fig. 7 Flowchart of the proposed chatter detection scheme with the
WPE
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Finally, the WPE is calculated as

En = −
2j −1∑
n=0

pn ln pn. (37)

When the WPE is used as the chatter indicator, the
flowchart of the proposed chatter detection scheme is shown
in Fig. 7. The sound in the turning process is on-line
captured by a microphone. The harmonics of the natural
frequency of workpieces and noise are filtered out through
the adaptive signal predictor with the NLMS or improved
NLMS algorithm. The filtered signal is utilized to calculate
the WPE value, which is compared with the predefined
threshold. When the WPE is below the set threshold, chatter
is thought to occur. The threshold value for chatter detection
is experimentally determined.

5.2 Experimental verification

To determine its effectiveness and adaptability, the proposed
method was applied to experimental signals recorded under
different cutting conditions. Experiment 1 was illustrated
to testify the validity of the proposed method in harmonics
and noise removal. The cutting parameters for Experiment
1 are listed in Table 1. The audio signal was sampled at 40
kHz. The machined surface of the workpiece and collected
signals are shown in Fig. 8a and b, respectively. The audio
signal in Fig. 8a is divided into three stages, which are the
stable stage, transition stage, and chatter stage according to
the amplitude. To reveal the presence of harmonics, the FFT
spectrum of audio signals in the transition state is provided
in Fig. 8c.

In Fig. 8b, the machining process is stable before t

reaches 8 s, then chatter starts to develop and arrives
at the fully developed stage at around t = 12 s. It
is reasonable that chatter vibration is induced during the
turning process since the thin-walled disc has a decreasing
rigidity when the tool tip moves towards the edge. On the
other hand, the harmonics and inter-harmonics of natural
frequencies of thin-walled discs are excited easily due to
low modal frequencies. In Fig. 8c, the natural frequency
and its harmonics can be clearly observed. These emerging
harmonics disturb conventional energy distribution in the
premature stage, and thereby degrade the effectiveness of
existing chatter detection methods. To solve this problem,
the adaptive filtering approach is utilized to filter out
harmonics.

Table 1 Cutting parameter setting for experiments

Spindle speed (r/min) Feed rate (mm/r) Depth of cut (mm)

Exp. 1 300 0.12 0.2

Exp. 2 250 0.1 0.16

Fig. 8 Finished surface, audio signals, and audio spectrum in
Experiment 1: a machined surface, b audio signals, c FFT spectrum of
signals ranging from 9.5 to 12 s

The adaptive signal predictor is applied to the audio
signal shown in Fig. 8c. The following parametric values in
the adaptive signal predictor are selected: N = 5, D = 1.
The NLMS algorithm is implemented with μ0 = 0.005. In
addition, the proposed convergence factor with α = 0.005
and I = 1 are used in the improved NLMS algorithm. The
FFT spectrum of the signal in the transition state and its
output via the NLMS and improved NLMS adaptive filter
are plotted in Fig. 9a.

In Fig. 9a, the harmonics of the natural frequency
and random noise are effectively removed through the
NLMS adaptive filtering. When the improved NLMS
algorithm substitutes for the NLMS one, magnitudes
of the harmonics further decrease and random noise
is canceled more thoroughly. Meanwhile, the amplitude
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Fig. 9 Experimental result comparisons with different preprocessing
methods for Experiment 1: a FFT spectrum, b percentages of the
WPNE for the signal in Fig. 8c and its output via the NLMS and
improved NLMS adaptive filter

drop of the chatter frequency can also be seen after
preprocessing. But the amplitude of chatter frequency
exhibits less relative reduction compared with that of the
harmonics. The preprocessed audio signals have a similar
energy distribution with conventional signals in turning.
Therefore, chatter detection methods based on the spectral
characteristics of signals can be effective again.

In Experiment 1, the dominant natural frequency and
damping ratio of the disc obtained by modal tests are
813.8 Hz and 0.01, respectively. The chatter frequency in
Experiment 1 is 822 Hz, which is recognized by the FFT
spectrum of signals in chatter state. According to Eq. 20, we
delineate the function curve with respect to fc and fn, the
slope of whose fitting straight line is 0.2. In other words, the
change rate of the chatter frequency is 0.2 times that of the
dominant natural frequency, which explains the reason for
the harmonics removal in Fig. 9a.

The WPNE is calculated to quantitate the effect of the
adaptive filtering approach. Because energy concentration
around the natural frequency is a significant characteristic
of chatter occurrence, the percentage of WPNE in chatter
frequency band can be viewed as a chatter indicator.
The size of each frequency band is 2500 Hz at the

third level of wavelet packet decomposition of signals.
Therefore, the chatter frequency of 822 Hz in Experiment
1 is located in the first frequency band ranging from 0
to 2500 Hz. The percentages of the third level WPNE
for three signals in Fig. 9a are shown in Fig. 9b. It is
noted that the WPNE percentage of the chatter frequency
band increases by approximately 20% after the signal in
the transition state is processed with the NLMS adaptive
signal predictor. This percentage is further enhanced by
almost 5% if we use the improved NLMS algorithm instead.
Therefore, the preprocessing procedure is able to highlight

Fig. 10 Experimental result comparisons with different preprocessing
methods for Experiment 2: a audio signals, b FFT spectrum of the
original signal ranging from 13 to 15.5 s and its output via the NLMS
and improved NLMS adaptive filter, c percentages of the WPNE for
three signals in Fig. 10b
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Fig. 11 Normalized WPEs of the signal at the transition stage for
Experiment 2 and its output via the NLMS and improved NLMS
adaptive filter

the characteristics of energy concentration at the transition
stage, which benefits the early detection of chatter.

5.3 Case study

To reduce the effect of harmonic interference, the proposed
filtering method is added into the conventional chatter
detection system as a preprocessing step in turning of thin-
walled parts. A case study for chatter detection named
Experiment 2 was conducted to investigate the influence
of the preprocessor. It should be noted that the signal in
Experiment 2 originated from different cutting stages with
Experiment 1. In other words, the workpieces in the two
experiments had different thicknesses. Experiment 2 was
performed with cutting parameters listed in Table 1 and the
sampling frequency was changed to 10 kHz. Experimental
results are presented in Fig. 10. The audio signal provided
in Fig. 10a is segmented into three stages, namely, stable
stage, transition stage, and chatter stage. FFT spectra of the
original signal and processed signals through the NLMS and
improved NLMS adaptive signal predictor are illustrated in
Fig. 10b. The following parametric values in the adaptive
signal predictor are selected: N = 10, D = 10, and other
parameters are the same as Experiment 1.

The FFT spectrum of the original signal shows that the
chatter frequency is 783 Hz in Experiment 2. It is observed
that harmonics and noise have reduced dramatically after
being processed by the NLMS adaptive signal predictor
in Fig. 10b. Furthermore, the improved NLMS algorithm
enhances the ability of the adaptive filtering method
to remove harmonics and noise. The chatter frequency
component also attenuates slightly due to its slowly time-
varying frequency. But we can see that the amplitude of
chatter frequency shows less relative reduction compared
with the natural frequency and its harmonics. In addition,
Fig. 10c presents the percentages of the third level WPNE
for three signals in Fig. 10b. It is worth noting that the
chatter frequency of 783 Hz is located in the second

frequency band, which ranges from 626 to 1250 Hz. The
WPNE percentage of the chatter frequency band increases
by 7.3% through the preprocessor with the NLMS filter.
Besides, this percentage is further enhanced by almost 2%
if the NLMS algorithm is replaced with the improved one.
Consequently, the energy aggregation characteristics caused
by chatter can be captured as early as possible when adding
the adaptive filtering step.

To reveal the effect of the proposed method on
chatter detection, we compare the test results for chatter
detection with and without preprocessing using the signal of
Experiment 2. The sliding window with 50% overlap was
utilized to calculate the WPE and its length is 2000 samples.
The third level of the wavelet packet decomposition and the
Daubechies wavelet (db3) were selected for the computation
of the WPE. The parameter setting of the adaptive signal
predictor was identical to that used in Experiment 1.
Besides, the WPE value is normalized by divided the
maximum value of the WPE and the threshold of the
normalized WPE is set to 0.6. Figure 11 shows normalized
WPEs of the original signal at the transition stage and its
output via the NLMS and improved NLMS adaptive filter.
In Fig. 11, normalized WPEs of the original signal and its
output via the NLMS and improved NLMS adaptive filter
drop below the threshold at t = 18.10 s, t = 17.95 s and
t = 17.75 s, respectively. In other words, chatter is detected
using the normalized WPEs of preprocessed signals by
the NLMS and improved NLMS adaptive signal predictor
earlier than that of the original signal by 0.15 s and 0.35 s,
respectively. As a result, those detrimental effects induced
by chatter would be remarkably reduced.

6 Conclusions

The emergence of harmonics of the natural frequency in
the flexible workpiece turning process changes conven-
tional frequency distribution patterns in the development
of chatter, and further vitiates the detection of chatter. The
time-dependence and uncertainty in the dynamic character-
istics of the flexible workpiece make the identification of the
natural frequency more difficult. In this paper, an adaptive
harmonics removal approach for chatter detection is pro-
posed to simultaneously remove harmonics and noise from
the measured signal in turning of thin-walled workpieces.
Simulation and experimental results showed that the pro-
posed adaptive harmonics removal approach could alleviate
the interference of harmonics and noise in the case of no
prior knowledge. The main contributions of this paper are
concluded as follows:

1. The investigation into signal frequencies during the
turning of thin-walled workpieces was firstly conducted
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and discovered that the rate of change of the chatter
frequency was much slower than that of the natural
frequency.

2. Based on the aforementioned finding, the adaptive
signal predictor is introduced as a preprocessor to
remove the harmonics and noise but remain the chatter
frequency component. Moreover, an improved NLMS
algorithm is put forward to enhance the filtering ability.

3. The simulations demonstrated that the adaptive signal
predictor was capable to filter out signal components
with large rates of frequency change and very efficient
in terms of the computation time.

4. The turning experiments of thin-walled discs were con-
ducted to validate the effectiveness of the proposed
method. Experimental results showed that the harmon-
ics of the natural frequency and noise were significantly
attenuated through the preprocessor with the NLMS
algorithm. Moreover, the improved NLMS algorithm
outperformed the NLMS one in the filtering perfor-
mance. Besides, chatter was recognized earlier when
adding the preprocessing step for harmonics removal in
chatter detection.
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