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Abstract
Chatter suppression during milling operations is of great significant for tool life, surface quality, and cutting efficiency. Based on
the Hamming and Simpsonmethods, a Hamming–Simpson–based method is presented in this paper for accurately and efficiently
determining the milling stability. The milling dynamic model with consideration of the regeneration effect is expressed by delay
differential equations (DDEs) with time-periodic coefficients. After separating the tooth-passing period into two different phases,
the two linear multistep methods are simultaneously adopted to estimate the state term by discretizing the forced vibration phase
into time intervals of equal length. Subsequently, the state transition matrix can be determined over one period and the chatter-free
borderline can be searched according to the Floquet theory. On this basis, the precision and efficiency of the Hamming–Simpson–
based method are analyzed in detail through comparing with the three benchmark methods. Analysis results indicate that the
Hamming method is required to convert variables which may affect the prediction accuracy. To overcome this shortcoming and
promote the computational accuracy, a three-step implicit multistep exponential fitting method is applied to predict chatter
stability; meanwhile, the Simpson method is responsible for the correction of the prediction. The effectiveness of the proposed
method has been comparatively analyzed through two benchmark examples. Numerical simulations illustrate that the proposed
method exhibits better prediction accuracy and computational efficiency.
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1 Introduction

Chatter is already recognized as a typical undesired phenom-
enon in machining operations, which always seriously affects
the production efficiency and machining quality, even accel-
erated tool wear and reduce machine tool’s life [1]. Therefore,
chatter stability prediction is an effective and significant way
for assisting the machinist to select optimal cutting parameters
to improve the production efficiency and avoid chatter [2–4].
Theoretically speaking, chatter vibration caused by the fric-
tional, mode-coupling, thermo-mechanical, and regenerative
mechanisms. During the milling processes, regenerative chat-
ter [5, 6] is regarded as a typical and undesirable self-excited

vibration because of its deteriorative effects on the surface
quality and machining productivity. The corresponding model
of milling dynamics can be formulated as delay differential
equations (DDEs) [7, 8], and numerous researches have been
conducted by solving the DDEs for predicting the stability
lobe diagram (SLD). To achieve stable machining and good
surface finish, the chatter-free cutting parameters can be ob-
tained according to the obtained SLD.

It is well known that different methods for prediction of
regenerative chatter stability have been developed. When tak-
ing the mean component of Fourier series into account,
Altintas and Budak [9, 10] firstly proposed a wide and classi-
cal analytical method for predicting the SLD using the zero-
order approximation (ZOA), which is of low computational
cost. However, it may not give better prediction accuracy for
low radial immersion conditions. To overcome this shortcom-
ing and expand the scope of applications, Merdol and Altintas
[11] brought the higher order harmonics of the directional
factors into the milling dynamic system and reported a multi-
frequency solution for determining the stable boundary. In the
abovementioned researches [9–11], the nonlinear factors of
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the milling system are not considered; thus, the differential
equation of the milling system is linear. When the nonlinear
dynamics is taken into consideration, Balachandran et al.
[12–14] found the nonlinear dynamical models have a certain
impact on the accurate and efficient prediction of chatter sta-
bility, which explored the nature of chatter. The linear dynam-
ics models can achieve quite good accuracy for milling stabil-
ity prediction without consideration of the post-instability mo-
tions, and they are used for determining suitable machining
parameters. Bayly and his co-authors [15] put forward a tem-
poral finite element analysis to simultaneously calculate the
SLD and surface location error. Butcher and his co-authors
[16] utilized a Chebyshev collocation method (CCM) to deal
with stability prediction. With the aid of shifted Chebyshev
polynomials, a stability prediction method was proposed by
Yan et al. [17] for thin-walled workpiece milling. By
discretizing the delayed term with piecewise constant func-
tions, two different order semi-discretization methods (0th
and 1st SDMs) were firstly introduced by Insperger and
Stepan [18, 19] for chatter stability prediction, and the con-
vergence rates and stability lobes of the two SDMs were care-
fully studied in [20]. Furthermore, the two SDMs can be uti-
lized for milling process stability analysis with various situa-
tions. By using improved precise time-integration algorithm,
Jiang et al. [21] interpolated the terms of DDEs using the
Newton interpolation and developed the second-order SDM
(2nd SDM) to predict the SLD, which is of high computation-
al efficiency in low- and high-speed milling processes.
Nevertheless, the SDMs have relatively low computational
efficiency.

To enhance the computational efficiency without any
loss of prediction accuracy, Ding et al. [22] discretized
the state and time-delay terms of DDEs and presented
the so-called full-discretization method (1st FDM), which
can be widely used for predicting the stability lobes. By
using direct integration scheme (DIS), different prediction
methods for higher approximation accuracy were devel-
oped. Ding et al. [23] expanded the 1st FDM and ex-
plored the second-order FDM (2nd FDM) for predicting
the stability lobes based on the second-order Lagrange
polynomial. Quo et al. [24] subsequently presented the
third-order FDM (3rd FDM) to derive the milling stabili-
ty. Ozoegwu et al. [25] further developed the fourth- and
fifth-order FDMs for determining the stability lobes based
on least squares approximation. Liu et al. [26] reported a
third-order Hermite approximation method (3rd HAM) to
calculate the SLD. Ji et al. [27] further developed a third-
order Hermite–Newton approximation method (3rd H-
NAM) to predict chatter stability; simulation results illus-
trate that the 3rd H-NAM has faster convergence rate and
higher computational accuracy in most complex situa-
tions. However, the calculation speed can be reduced
due to more complex structures.

With the aim of reducing the computational time, the
second-order updated FDM (2nd UFDM) was proposed by
Tang et al. [28] for predicting the SLD, which employs linear
interpolation techniques directly to establish the transition ma-
trix. Yan et al. [29] subsequently extended the 2nd UFDM to
the third-order UFDM (3rd UFDM). The UFDMs have been
verified to be accurate and efficient methods. The UFDMs
achieve a better performance, but all elements of dynamical
equations do not discretize completely. On the other hand, Li
et al. [30] employed the Euler’s method to discretize the dif-
ferential term and reported the complete discretization scheme
(CDS) for determining the stability lobes. Under the same
framework of complete discretization scheme, Xie [31] uti-
lized the linear interpolation to approximate the period coeffi-
cient matrices and further developed an improved CDS
(ICDS) for chatter stability prediction. Li et al. [32] utilized
the dichotomy search to determine the stability boundaries
and reported the Runge–Kutta CDM (RKCDM) for determin-
ing the stability lobes. Besides, two Runge–Kutta methods
(CRKM and GRKM) were investigated by Niu et al. [33].
The GRKM exhibits higher computational accuracy and effi-
ciency; however, its complex structure leads to the large cal-
culation of the exponential matrix. Subsequently, based on the
precise integration method (PIM), Dai et al. [34] proposed an
explicit PIM to predict the chatter stability. By using the gold-
en search to substitute the sequential search, Dai et al. [35]
developed the improved FDM (IFDM) to calculate the SLD.
Later, Li et al. [36] expanded the PIM method and developed
an improved PIM (IPIM) for milling process stability analysis
by using the second-order Taylor formula. Additionally, Ding
et al. [37] investigated on SLD using the numerical integration
schemes and reported the numerical integration method
(NIM) to search stability limits under three different condi-
tions. With the help of differential quadrature method, a
semi-analytical method was subsequently suggested by Ding
and his co-authors [38] to calculate the SLD. By using the
Simpson method to approximate the state term over a discrete
interval, a new approach was presented by Zhang et al. [39]
for predicting the stability lobes. With the aid of the numerical
extrapolation and the finite difference methods, Zhang and co-
workers [40] suggested the numerical differentiation method
(NDM) for high-speed milling.

In recent years, by using the Adams-Moulton-method
(AMM) to approximate the state term, Qin et al. [41] present-
ed an AMM for more efficiently and accurately prediction of
chatter stability. Tao et al. [42] extended the AMM to obtain
the stability lobes with multiple delays. Qin et al. [43] im-
proved the AMM and reported the Adams–Simpson–based
method (ASM) to predict the SLD. The comparative results
showed that the ASM converges much faster than the AMM
by using the predictor–corrector technique. To further im-
prove the convergence rate and prediction accuracy, a
Hamming–Simpson–based method (HSM) is proposed for
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predicting the SLD. Nevertheless, the Hamming method is
required to convert variables which may affect the prediction
accuracy of the SLD. To develop the HSM with higher pre-
diction accuracy and computational efficiency based on the
predictor–corrector technique; the authors combine the third-
order implicit multistep exponential fitting method [44, 45]
and the Simpson method to predict chatter stability, known
as the implicit multistep exponential fitting–Simpson–based
method (ISM). The simulations reveal that the ISM exhibits
much higher accuracy and efficiency.

The rest of this paper is organized as follows. In Sect. 2,
mathematical models of milling processes are constructed. In
Sect. 3, a Hamming–Simpson–based method (HSM) is pro-
posed to calculate the SLD. In Sect. 4, the accuracy of the
single-DOF SLD is discussed in detail. In Sect. 5, a three-
step implicit multistep exponential fitting–Simpson–based
method (ISM) is presented to predict milling stability. In
Sect. 6, the convergence rate and SLD with the ISM are in-
vestigated through making comparison with the three bench-
mark methods. In Sect. 7, it draws several conclusions.

2 Mathematical model of milling processes

On the basis of stability analysis, single- and two-DOF dy-
namic models with regenerative effect are described,
respectively.

2.1 The single-DOF milling model

According to regenerative chatter theory, the single-DOFmill-
ing model from [18, 19] is formulated as the following dy-
namic equation:

mt x
⋅⋅
tð Þ þ 2mtζωn x

⋅
tð Þ þ mtω

2
nx tð Þ

¼ aph tð Þ x t−Tð Þ−x tð Þ½ � ð1Þ

where

h tð Þ ¼ ∑
j¼1

N f

g ϕ j tð Þ
� �

Kns2 þ Ktsc
� � ð2Þ

where x(t) stands for the displacement vector in x direction
with the modal parameters of system represented bymt, ζ,
and ωn. ap refers to the axial cutting depth. T stands for the
regenerative delay or tooth passing period, which is decided
by the tool numberNfand the spindle speedΩ, namelyT = 60/
(NfΩ). In Eq. (2), given the normal and tangential cutting force
coefficientKn and Kt, the angular position of jth toothϕj(t) =
(2πΩ/60)t + 2π(j − 1)/Nf. Besides, s = sin(ϕj(t)), c =
cos(ϕj(t)).

The window function g(ϕj(t)) is defined as

g ϕ j tð Þ
� � ¼ 1 ϕst < ϕ j tð Þ < ϕex

0 otherwise

�
ð3Þ

where ϕst and ϕex denote the start and exit angles of tooth,
respectively. It is defined as

ϕst ¼ 0;ϕex ¼ arccos 1−
2a
D

� �
up‐milling

ϕst ¼ arccos
2a
D

−1
� �

;ϕex ¼ π down‐milling

8>><
>>:

ð4Þ

where a/D signifies the radial immersion ratio.
Through using state-space transformation, chatter stability

analysis is carried out. Therefore, Eq. (1) is rewritten in the
first-order milling model:

U
⋅

tð Þ ¼ AU tð Þ þ B tð Þ U t−Tð Þ−U tð Þ½ � ð5Þ
where

A ¼ −ζωn 1=mt

mt ζ
2ω2

n−ω
2
n

� �
−ζωn

	 

;B tð Þ ¼ 0 0

aph tð Þ 0

	 

ð6Þ

2.2 The two-DOF milling model

According to regenerative chatter theory, the two-DOF mill-
ing model from [18, 19] is formulated as the following dy-
namic equation:

mt 0
0 mt

	 

x
⋅⋅
tð Þ

y
⋅⋅
tð Þ

	 

þ 2ζωnmt 0

0 2ζωnmt

	 

x
⋅
tð Þ

y
⋅
tð Þ

	 

þ ω2

nmt 0
0 ω2

nmt

	 

x tð Þ
y tð Þ

	 


¼ aphxx tð Þ aphxy tð Þ
aphyx tð Þ aphyy tð Þ

	 

x t−Tð Þ−x tð Þ
y t−Tð Þ−y tð Þ

	 


ð7Þ

where hxx(t) = h(t) is defined by Eq. (2). Besides, the other
three cutting force coefficients read

hxy tð Þ ¼ ∑
j¼1

N f

g ϕ j tð Þ
� �

Knscþ Ktc2
� � ð8Þ

hyx tð Þ ¼ ∑
j¼1

N f

g ϕ j tð Þ
� �

Knsc−Kts2
� � ð9Þ

hyy tð Þ ¼ ∑
j¼1

N f

g ϕ j tð Þ
� �

Knc2−Ktsc
� � ð10Þ

Similarly, Eq. (7) is rewritten in the first-order milling mod-
el:

U
⋅

tð Þ ¼ AU tð Þ þ B tð Þ U t−Tð Þ−U tð Þ½ � ð11Þ
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where

A ¼
−ζωn 0 1=mt 0
0 −ζωn 0 1=mt

mtω
2
n ζ2−1
� �

0 −ζωn 0
0 mtω

2
n ζ2−1
� �

0 −ζωn

2
664

3
775

B tð Þ ¼
0 0 0 0
0 0 0 0

aphxx tð Þ aphxy tð Þ 0 0
aphyx tð Þ aphyy tð Þ 0 0

2
664

3
775 U tð Þ

¼

x tð Þ
y tð Þ

mt x
⋅
tð Þ þ ζωnx tð Þ

� �

mt y
⋅
tð Þ þ ζωny tð Þ

� �

2
66664

3
77775

ð12Þ

According to state-space theory, the dynamical Eq. (5) and
Eq. (11) of the milling system based on the DIS can be de-
duced as

U tð Þ ¼ eA t−t0ð ÞU t0ð Þ þ ∫tt0e
A t−ξð ÞB ξð Þ U ξ−Tð Þ−U ξð Þ½ �dξ ð13Þ

where t0 denotes the initial time instant.
According to whether the tool is not cutting the part, the

tooth-passing period can be precisely separated into two dif-
ferent stages: the free and forced vibration phases [37]. In the
free vibration process, the term B(ξ) equals to zero matrix.
Therefore, Eq. (13) is simplified as

U tð Þ ¼ eA t−t0ð ÞU t0ð Þ ð14Þ

Subsequently, dividing the forced vibration phase [t0 + tf, t0
+ T] into m small subintervals, h stands for the discrete step,
that is h = (T − tf)/m. Obviously, the time for each sampling
point tn(n = 1, 2, ⋯, m + 1) is given by the following:

tn ¼ t0 þ t f þ n−1ð Þh ð15Þ

At the start of the forced vibration duration, U 1 ¼ eAt f

Umþ1−T is the state term at the start time point. In addition,
at arbitrary time point tn, Eq. (13) is further equivalently re-
expressed to become

U tð Þ ¼ eA t−tnð ÞU tnð Þ þ ∫ttne
A t−ξð ÞB ξð Þ U ξ−Tð Þ−U ξð Þ½ �dξ ð16Þ

3 Hamming–Simpson–based method

As is well known, quite a few problems in the milling process
can be eventually presented in the form of DDEs, while many
traditional numerical integration methods to analyze and

compute the DDEs have some advantages and shortcomings.
Therefore, as a kind of convenient and simple numerical
methods, the various linear multistep methods are employed
to establish the state transition matrix. Therefore, the authors
combine the Hamming and Simpson methods to predict the
SLD, in which this method can not only ensure the computa-
tional efficiency but also improve the prediction accuracy. For
being easy to describe, U(tn), U(tn − T), and B(tn) are abbrevi-
ated as Un, Un − T, and Bn, respectively. Hence, the state term
Un + 1 can be obtained by the Hamming method, resulting in

Unþ1 ¼ 1

8
9eAhUn−e3AhUn−2
� �þ
3h
8
f−e2AhBn−1 Un−1−T−Un−1½ �
þ2eAhBn Un−T−Un½ � þ Bnþ1 Unþ1−T−Unþ1½ �g

ð17Þ

Then, Eq. (17) can be rewritten as

Gn−1Un−1 þ GnUn þ Gnþ1Unþ1 þ 1

8
e3AhUn−2

¼ Hn−1Un−1−T þ HnUn−T þ Hnþ1Unþ1−T ð18Þ

where

Gn−1 ¼ −
3h
8
e2AhBn−1;Gn ¼ −

9

8
eAh þ 3h

4
eAhBn;Gnþ1 ¼ I þ 3h

8
Bnþ1

Hn−1 ¼ −
3h
8
e2AhBn−1;Hn ¼ 3h

4
eAhBn;Hnþ1 ¼ 3h

8
Bnþ1

8><
>:

ð19Þ

If the variableUn − 2 in two adjacent time periods are out of
the required range, it needs to be converted into the required
range with corresponding substitutions. In Eq. (18), when n =
2, the left variable Un − 2 is equal to U0. With the substitution
U0 = Un − n = Un − T, Eq. (18) can be rewritten as

Gn−1Un−1 þ GnUn þ Gnþ1Unþ1

¼ Hn−1Un−1−T þ HnUn−T

þ Hnþ1Unþ1−T−
1

8
e3AhUn−T ð20Þ

Meanwhile, according to the Simpson method [39], the
state term Un + 1 can be expressed as

Unþ1 ¼ e2AhUn−1 þ h
3

e2AhBn−1 Un−1−T−Un−1½ � þ 4eAhBn Un−T−Un½ � þ Bnþ1 Unþ1−T−Unþ1½ � �

ð21Þ

Then, Eq. (21) can be rewritten as follows:

Rn−1Un−1 þ RnUn þ Rnþ1Unþ1

¼ Sn−1Un−1−T þ SnUn−T þ Snþ1Unþ1−T ð22Þ
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where

Rn−1 ¼ −e2Ah þ h
3
e2AhBn−1;Rn ¼ 4h

3
eAhBn;Rnþ1 ¼ I þ h

3
Bnþ1

Sn−1 ¼ h
3
e2AhBn−1; Sn ¼ 4h

3
eAhBn; Snþ1 ¼ h

3
Bnþ1

8><
>:

ð23Þ

Combining Eqs. (18), (20), and (22), the discrete map is
defined as

E1

U1

U2

⋮
Umþ1

2
664

3
775 ¼ F1 þ C1ð Þ

U1−T
U2−T
⋮

Umþ1−T

2
664

3
775 ð24Þ

where

E1 ¼

I
G1 G2 G3

R1 R2 R3
1

8
e3Ah G3 G4 G5

R3 R4 R5

⋱ ⋱ ⋱ ⋱
1

8
e3Ah Gm−1 Gm Gmþ1

Rm−1 Rm Rmþ1

2
6666666666664

3
7777777777775

ð25Þ
and

F1 ¼

eAt f

H1 H2 H3

S1 S2 S3
H3 H4 H5

S3 S4 S5
⋱ ⋱ ⋱

Hm−1 Hm Hmþ1

Sm−1 Sm Smþ1

2
66666666664

3
77777777775

C1

¼
0 ⋯ 0 0

0 ⋯ −
1

8
e3Ah 0

⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0

2
6664

3
7775 ð26Þ

The state transition matrixΨ1 with the HSM is constructed
in Eq. (27):

Ψ1 ¼ E1ð Þ−1 F1 þ C1ð Þ ð27Þ

Finally, the eigenvalues of Ψ1 can be used to extract the
crucial stability contour curve based on Floquet theory [22].
The milling system is unstable when the maximal magnitude
of all eigenvalues surpasses one. Otherwise, it is stable.
Hence, the stability criterion can be obtained to judge whether
system is unstable or not.

4 Result comparison and discussion

In this section, three benchmark methods are employed to
dissect the effectiveness of the HSM, and the SLD can be
obtained under two different radial immersion conditions.

4.1 Analysis of convergence rate

In general, the local discretization error can be generally con-
sidered as the most difficult issue of numerical approximation,
which can be utilized to analyze the stability and prediction
accuracy over a discrete time interval. The system parameters
in this paper are from [18, 22], which are displayed in Table 1.
Besides, the programs of each method are implemented using
Matlab R2014a, and executed on the same computation plat-
form with a central processing unit 2.8 GHZ (Intel Core(TM)
i5-8400, 8 GB), to compare the computational accuracy and
efficiency equally.

With the aim of comparing the prediction accuracy of dif-
ferent numerical methods, the absolute value of two different
solutions is utilized to study the convergence rate. As is
known to all, for the 1st SDM in literature [19], the local
discretization error can be proven as O(h3) [20]. In addition,
the local discretization error of the NIM was calculated and
given as O(h3) [37]. As for the two-step Adams–Moulton
method [41], the local approximation order is O(h4) [43]. In
terms of the Hamming and Simpson methods, the local ap-
proximation orders are both O(h5). The Hamming and
Simpson methods together constitute the predictor–corrector
scheme to predict milling stability. Consequently, for the HSM
in this brief paper, the theoretical local discretization error can
be determined as O(h6). For the purpose of studying the con-
vergence rate of the HSM, the approximate critical eigen-
values of state transition matrix are marked as |μ|, which are
calculated by using different methods with respect to various
computational parameters m. The exact critical eigenvalue is
marked as μ0, which is calculated by the HSMwithm = 1000.
For the purpose of demonstrating the accuracy of the HSM,
the four machining parameter combinations (a/D = 1, Ω
= 5000 rpm, ap = 0.1, 0.5, 0.7, and 1.0 mm) are selective
for convergence comparison.

Figure 1 reveals the convergence rates with four differ-
ent cutting parameters for four different methods. As
shown in Fig. 1, the HSM converges much faster com-
pared with the other three benchmark methods, which
means that the HSM has a better numerical stability. For

Table 1 Milling parameters

m(kg) ζ ωn

(rad/s)
Nf Kt

(N/mm2)
Kn

(N/mm2)
Milling type

0.03993 0.011 922×2π 2 600 200 Down-milling
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example, the HSM can achieve numerical stability with m
= 48; nevertheless, the computational parameter m of oth-
er three benchmark methods significantly surpasses 48,
respectively. It means that the HSM achieves much faster
converse rate than the three benchmark methods. Hence,
the HSM can obviously improve the prediction accuracy.

4.2 Stability lobe prediction

Based on the regeneration theory, theoretical analysis is
used to investigate the milling stability for developing
and perfecting the theory in this realm. To further compare
the computational precision of the HSM, the stability lobes
that are calculated by using the four different methods with
the time interval m = 40 and 50 are shown in Fig. 2. To
begin with, the authors set a/D = 1 for full immersion
milling. The cutting parameters with Ω ∈ [5 × 103, 25 ×
103] rpm and ap ∈ [0, 5 × 10−3] mm are utilized in con-
struction of the SLDs over a 200 × 100-sized grid. In the
diagrams, the SLDs are determined by the HSM withm =
500, which serves as the exact reference stability bound-
aries in red curves. As the computation times are unstable,

every program runs five times and the average time con-
sumption can be conducted.

Figure 2 shows the HSM achieves better prediction accu-
racy than the other three methods, which means that the SLDs
obtained by the HSM have very good agreement with the
reference stability boundaries. Hence, from the accuracy as-
pect, it signifies the HSM is applicable and reliable for chatter
stability prediction and could ascertain the stability lobes more
accurate for full immersion milling with the small time inter-
vals. For example, the HSM can generate accurate stability
lobes with m = 50; nevertheless, the time interval m of other
three benchmark methods is greater than 50, respectively.
Hence, the HSM takes less time compared with the other three
benchmark methods to calculate the SLD with small time
intervals. Meanwhile, Fig. 4 illustrates the average computa-
tional time of the four different methods under different radial
immersion ratio a/D and time intervalm. According to Fig. 4a,
it is obvious that the HSM is more efficient than the classic 1st
SDM, which can be dropped about 88% computational time.
Nevertheless, compared with the NIM and ASMmethods, the
HSM has higher prediction accuracy with only a slight in-
crease in computational cost. This is because the calculation
of matrix exponentials with the HSM can be increased, which

30 40 50 60 70 80 90 100
0
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0.003
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0.007

0.008

0.009

m

1st SDM
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ASM
HSM

30 40 50 60 70 80 90 100
0
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0.02
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0.04

0.05

0.06

m

1st SDM
NIM
ASM
HSM

30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

m

1st SDM
NIM
ASM
HSM

30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m

1st SDM
NIM
ASM
HSM

=5000 rpm, a
p
=0.1 mm,

0
=0.736962 =5000 rpm, a

p
=0.5 mm,

0
=1.073975

=5000 rpm, a
p
=0.7 mm,

0
=1.221556 =5000 rpm, a

p
=1.0 mm,

0
=1.406473

Fig. 1 Convergence rates of the HSM, ASM, NIM, and 1st SDM with a/D = 1
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leads to more costs in computational time. In addition, the
NIM and the ASM have been verified as an efficient method
to obtain the SLD. For example, the computational time of 1st
SDM, NIM, and ASM with a/D = 1 and m = 50 costs 811.8,
84.5, and 96.3 s, respectively. Nevertheless, for the HSM, its
corresponding computational time consumes 103.5 s. In sum-
mary, the HSM has better prediction accuracy and numerical
stability than the other three benchmark methods.

To better verify the performance of the HSM, the stability
lobes that are calculated by using the four different methods
with time interval m = 10 and 20 are shown in Fig. 3.
Subsequently, the authors set a/D = 0.5 for half immer-
sion milling. Similarly, in the stability charts, the exact sta-
bility boundaries computed by the HSM with m = 500. The
cutting parameters with Ω ∈ [5 × 103, 25 × 103] rpm and ap
∈ [0, 3.5 × 10−3] mm are utilized in construction of the
SLDs over a 200 × 100-sized grid. Figure 3 shows the
HSM achieves better prediction accuracy than the classic
1st SDM under the same time intervals, which means that
the SLDs obtained by the HSM have very good agreement
with the reference stability boundaries. Consequently, from
the accuracy aspect, it signifies the HSM is feasible and
reliable for chatter stability prediction and could ascertain
the stability lobes more accurate for half immersion milling
with the same time intervals. For example, the HSM can
generate accurate stability lobes with m = 20; nevertheless,
the time interval m of other three benchmark methods sur-
passes 20, respectively. Hence, the HSM consumes less
time compared with the other three benchmark methods to
calculate the SLD with small time intervals. In addition,
according to Fig. 4b, it is clear that the HSM is more effi-
cient than the classic 1st SDM, which can be dropped almost
88% computational time. Therefore, it is concluded that the
HSM achieves satisfactory computational efficiency and
prediction accuracy. For example, the computational time
of 1st SDM, NIM, and ASMwith a/D = 0.5 andm = 20 costs
86.4, 18.6, and 24.4 s, respectively. Nevertheless, for the

HSM, its corresponding computational time is 25.4 s. Due
to the out of the required range variable Un − 2, values of the
HSM need to convert into the required range, which may
affect the prediction accuracy of SLD. Additionally, the
state transition matrix of the HSM has an asymmetric struc-
ture. To solve the problem and enhance the performance of
the HSM, the authors develop the three-step implicit multi-
step exponential fitting method to predict the milling
stability.

5 Implicit multistep exponential
fitting–Simpson–based method

Combined with traditional numerical integration tech-
niques, several numerical algorithms with high accuracy
and efficiency for the analytical solution of delay differ-
ential equations (DDEs) have been constructed. A novel
method that combines the three-step implicit multistep
exponential fitting method with the Simpson method
(ISM) is proposed to predict milling stability [44, 45].
The proposed method can not only ensure the computa-
tional efficiency but also improve the computational ac-
curacy. Similarly, Based on the implicit multistep expo-
nential fitting–Simpson–based method, the state term Un +

1 can be obtained as follows:

Unþ1 ¼ eAhUn þ hN2Bn−1 Un−1−T−Un−1½ �−h N1 þ 2N2ð ÞBn Un−T−Un½ �
þ h N0 þ N1 þ N2ð ÞBnþ1 Unþ1−T−Unþ1½ �

ð28Þ

The coefficients N0, N1, N2 can be derived by Eq. (28).

N ¼ eAh ð29Þ

N0 ¼ −
A−1

h
I−Nð Þ ð30Þ

Fig. 4 Comparison of computational time using the 1st SDM, NIM, ASM, and HSM with a, b a/D = 1 and 0.5
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N1 ¼ −
A−1

h

� �2

I−Nð Þ− A−1

h
N ð31Þ

N2 ¼ −
A−1

h

� �3

I−Nð Þ− A−1

h

� �2
1

2
I þ 1

2
N

� �
ð32Þ

Then, Eq. (28) can be rewritten as follows:

Kn−1Un−1 þ KnUn þ Knþ1Unþ1

¼ Ln−1Un−1−T þ LnUn−T þ Lnþ1Unþ1−T ð33Þ

where

Kn−1 ¼ hN 2Bn−1; Ln−1 ¼ hN 2Bn−1
Kn ¼ −eAh−h N1 þ 2N2ð ÞBn;Ln ¼ −h N1 þ 2N2ð ÞBn

Knþ1 ¼ I þ h N0 þ N1 þ N 2ð ÞBnþ1; Lnþ1 ¼ h N0 þ N1 þ N2ð ÞBnþ1

8<
:

ð34Þ

Combining Eqs. (22) and (33), the discrete map is defined
as

E2

U1

U2

⋮
Umþ1

2
664

3
775 ¼ F2

U 1−T
U 2−T
⋮

Umþ1−T

2
664

3
775 ð35Þ

where

E2 ¼

I
K1 K2 K3

R1 R2 R3

K3 K4 K5

R3 R4 R5

⋱ ⋱ ⋱
Km−1 Km Kmþ1

Rm−1 Rm Rmþ1

2
66666666664

3
77777777775

ð36Þ

and
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Fig. 5 Convergence rates of the ISM, ASM, NIM, and 1st SDM with a/D = 1
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F2 ¼

eAt f

L1 L2 L3
S1 S2 S3

L3 L4 L5
S3 S4 S5

⋱ ⋱ ⋱
Lm−1 Lm Lmþ1

Sm−1 Sm Smþ1

2
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ð37Þ

The state transition matrix Ψ2 with the ISM is constructed
in Eq. (38):

Ψ2 ¼ E2ð Þ−1F2 ð38Þ

Then, the chatter stability can be determined in the same
way as in Sect. 3.

6 Numerical result analysis and discussion

This section focuses on the introduction of implicit multistep
exponential fitting–Simpson–based method (ISM) to predict
milling stability, and three benchmark examples are employed
to verify the ISM for milling processes. The parameters of this

milling model are the same as those used in Sect. 4; only the
analytical method is different.

6.1 Comparison of convergence rate

To verify the computational precision of the ISM, the
convergence rate of the ISM is analyzed by comparing
with the other three benchmark methods. Following the
same way used in [20], for the ISM in this brief paper, the
local discretization error can be determined as O(h6).
Meanwhile, the four machining parameter combinations
(a/D = 1, Ω = 5000 rpm, ap = 0.1, 0.5, 0.7, and
1.0 mm) are selective for convergence comparison.
Similarly, the exact critical eigenvalue μ0 is also comput-
ed by the ISM with m = 1000 in this section. Figure 5
reveals the convergence rates with four different cutting
parameters for the three benchmark methods and the ISM.
As shown in Fig. 5, the ISM converges much faster com-
pared with the other three benchmark methods, which
means that the ISM achieves high numerical stability
and precision. For example, the ISM can achieve conver-
gence withm = 35, but the value of discretization param-
eter m of the other three benchmark methods clearly sur-
passes 35, respectively. It means that the ISM obtains
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Fig. 6 Convergence rates of the ISM, ASM, NIM, and 1st SDM with a/D = 0.05
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Fig. 7 Comparison of SLDs using the 1st SDM, NIM, ASM, and ISM with a/D = 0.6
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Fig. 8 Comparison of SLDs using the 1st SDM, NIM, ASM, and ISM with a/D = 0.06
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much faster converse rate than the three benchmark
methods. Hence, the ISM can significantly enhance the
prediction accuracy of stability lobes.

For the purpose of further illustrating the calculate accuracy
of the ISM, the four machining parameter combinations (a/D
= 0.05,Ω = 5000 rpm,ap = 0.5, 1.0, 1.5 and 2.0 mm) are
selective for convergence comparison. In the same way, the
system parameters of previous cases are still used in this sec-
tion. The exact reference critical eigenvalueμ0is also deter-
mined by the ISM with m = 1000. As shown in Fig. 6, the
ISM converges much faster than the other three benchmark
methods under the same time intervals, which means that the
ISM achieves excellent numerical stability. Hence, it is con-
cluded from the convergence analysis results that the ISM is
more suitable for stability prediction under two different radial
immersion conditions.

6.2 Stability lobe prediction

For the purpose of providing comparison for the prediction
accuracy and computational time, we will make comparisons
with the three benchmark methods and the ISM, in which the
same dynamic model parameters are adopted.

6.2.1 Single-DOF milling system

Without loss of generality, to evaluate the validity and effec-
tiveness of the ISM, the stability lobes are calculated by using
the three benchmark methods and the ISM with the time in-
tervalm = 10 and 20are shown in Fig. 7. To begin with, the
authors set a/D = 0.6 for medium immersion milling. The
cutting parameters withΩ ∈ [5 × 103, 25 × 103] rpm and ap ∈
[0, 5 × 10−3] mm are utilized in construction of the SLDs
over a 200 × 100-sized grid. In the diagrams, the SLDs are
determined by the ISMwithm = 500, which serves as the exact
reference stability boundaries in red curves. Figure 7 shows
the ISM achieves better prediction accuracy than those of the
other three methods under the same conditions, which means

that the SLDs obtained by the ISM have very good agreement
with the reference stability boundary curves. Consequently,
from the accuracy aspect, it signifies the ISM is reliable and
feasible for chatter stability prediction and could ascertain the
stability lobes more accurate for medium immersion milling
with the same time intervals. For example, the HSM can gen-
erate accurate stability lobes with m = 20; nevertheless, the
time interval m of other three benchmark methods is greater
than 20, respectively. Hence, the ISM takes less time com-
pared with the other three benchmark methods to calculate
the SLD with small time intervals. Meanwhile, Fig. 9 illus-
trates the average computational time of the three benchmark
methods and the ISM under different radial immersion ratios
a/D and time interval m. According to Fig. 9a, it is clear that
the ISM is more efficient than the classic 1st SDM, which can
be dropped almost 89% computational time. Nevertheless,
compared with the NIM, the ISM has higher prediction accu-
racy with only a slight increase in computational cost. This is
because that the number of exponential matrix calculations
with the NIM can be reduced. The ISM and the ASM take
about the same amount of computational time to predict the
stability lobes. For example, the computational time of 1st
SDM, NIM, and ASM with a/D = 0.6 and m = 20 costs
86.1, 20.5, and 25.3 s, respectively. Nevertheless, for the
ISM, its corresponding computational time costs 26.8 s.
Hence, the conclusions indicate that the ISM is much higher
than the NIM and ASM in terms of computational accuracy
within the same computational efficiency.

For the purpose of investigating calculation accuracy and
efficiency of the ISM, the stability lobes are calculated by
using the three benchmark methods and the ISM with time
intervalm = 4 and 10 are shown in Fig. 8. Meanwhile, the
authors set a/D = 0.06 for low immersion milling.
Similarly, in the stability charts, the exact stability bound-
aries computed by the ISM withm = 500. The cutting pa-
rameters with Ω ∈ [5 × 103, 25 × 103] rpm and ap ∈ [0, 10
× 10−3] mm are utilized in construction of the SLDs over a
200 × 100-sized grid. Figure 8 shows the ISM achieves

Fig. 9 Comparison of computational time using the 1st SDM, NIM, ASM, and ISM with a, b a/D = 0.6 and 0.06

Int J Adv Manuf Technol (2019) 105:3271–32883284



(krpm)

a
p

)
m

m(

1st SDM, a/D=0.06, m=4, time=21.3s

5 10 15 20 25
0

2

4

6

8

10
reference
1st SDM

(krpm)

a
p

)
m

m(

1st SDM, a/D=0.06, m=10, time=49.5s

5 10 15 20 25
0

2

4

6

8

10
reference
1st SDM

(krpm)

a
p

)
m

m(

NIM, a/D=0.06, m=4, time=2.5s

5 10 15 20 25
0

2

4

6

8

10
reference
NIM

(krpm)

a
p

)
m

m(

NIM, a/D=0.06, m=10, time=13.2s

5 10 15 20 25
0

2

4

6

8

10
reference
NIM

a
p

)
m

m(

ASM, a/D=0.06, m=4, time=3.0s

5 10 15 20 25
0

2

4

6

8

10
reference
ASM

a
p

)
m

m(

ASM, a/D=0.06, m=10, time=15.3s

5 10 15 20 25
0

2

4

6

8

10
reference
ASM

a
p

)
m

m(

ISM, a/D=0.06, m=4, time=3.1s

5 10 15 20 25
0

2

4

6

8

10
reference
ISM

a
p

)
m

m(

ISM, a/D=0.06, m=10, time=16.0s

5 10 15 20 25
0

2

4

6

8

10
reference
ISM

(krpm) (krpm)

(krpm) (krpm)
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better precision compared with the classic 1st SDM under
the same time intervals, which means that the SLDs obtain-
ed by the HSM have very good agreement with the reference
stability boundaries. Hence, from the accuracy aspect, it
signifies the HSM is feasible and reliable for chatter stabil-
ity prediction and could ascertain the stability lobes more
accurate for low immersion milling with the same time in-
tervals. For example, the ISM can generate accurate stabil-
ity lobes withm = 10; nevertheless, the time interval m of
other three benchmark methods suppresses 10, respectively.
Consequently, the ISM spends less time compared with the
other three benchmark methods to calculate the SLD with
small time intervals. Additionally, according to Fig. 9b, it is
clear that the ISM is more efficient than the classic 1st SDM,
which can be dropped about 88% computational time.
Compared with the NIM and the ASM, the ISM has higher
prediction accuracy with only marginally increase in time
loss. For example, the computational time of 1st SDM,
NIM, and ASM with a/D = 0.06 and m = 10 costs 44.2,
3.6, and 4.7 s, respectively. Nevertheless, for the ISM, its
corresponding computational time is 4.8 s. As a conse-
quence, the ISM achieves higher prediction accuracy with-
out loss of any computational efficiency under both low and
medium immersion conditions.

6.2.2 Two-DOF milling system

Through the above research, the characteristics of single-DOF
milling process are understood. The parameters of two-DOF
milling dynamic system are similar to those of single-DOF
milling system, and the model parameters in the two directions
correspondingly are further assumed equal. Furthermore, to
compare the effectiveness of the ISM, the stability lobes are
calculated by using the three benchmark methods and the ISM

with the time intervalm = 4 and 10 are shown in Fig. 10. To
begin with, the authors set a/D = 0.06 for low immersion
milling. The cutting parameters withΩ ∈ [5 × 103, 25 × 103]
rpm and ap ∈ [0, 10 × 10−3] mm are utilized in construction
of the SLDs over a 200 × 100-sized grid. In the diagrams, the
SLDs are determined by the ISM with m = 500, which serves
as the exact reference stability boundaries in red curves.

It is clear from Fig. 10 that the prediction accuracy of the
ISM is superior to that of the other three methods, which
means that the SLDs obtained by the ISM have very good
agreement with the reference stability boundaries curves.
Consequently, from the accuracy aspect, it signifies the ISM
is applicable and reliable for chatter stability prediction and
could ascertain the stability lobes more accurate for low im-
mersionmilling with the same time intervals. For example, the
ISM can generate accurate stability lobes with m = 10; never-
theless, the time interval m of other three benchmark methods
is greater than 10, respectively. Hence, the ISM takes less time
compared with the other three benchmark methods to calcu-
late the SLD with small time intervals. Meanwhile, Fig. 11
illustrates the average computational time of the three bench-
mark methods and the ISM under different radial immersion
ratios a/D and time intervals m. According to Fig. 11, it is
obvious that the 1st SDM consumes the most computational
time and the INM takes the least amount of computational
time among the four methods. For example, the computational
time of 1st SDM, NIM, and ASM with a/D = 0.06 and m =
10 costs 49.5, 13.2, and 15.3 s, respectively. Nevertheless, for
the ISM, its corresponding computational time consumes 16.0
s. Hence, it is clear that the ISM is more efficient than the 1st
classic SDM,which can be dropped almost 85% computation-
al time. Nevertheless, when comparedwith the NIM andASM
methods, the computational time of the ISM is increased by
about 19% and 3% is very small. Obviously, the
abovementioned research consequence shows the ISM has
higher computational efficiency and accuracy to predict the
milling stability.

7 Conclusions

In this paper, two highly accurate and efficient methods are
proposed for determining the milling stability. The state tran-
sition matrix is directly constructed by using a predictor–
corrector scheme. Some conclusions are summarized from
this research work.

(1) The milling dynamic model with consideration of the
regeneration effect can be expressed as DDEs, and the
linear multistep methods are simultaneously utilized to
approximate the state term.

(2) Based on the predictor–corrector technique, a
Hamming–Simpson–based method (HSM) is presented

Fig. 11 Comparison of computational time using the 1st SDM, NIM,
ASM, and ISM with a/D = 0.06
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to calculate the stability lobe diagram. The convergence
rate of the HSM is analyzed in detail by comparisons
with the three benchmark methods. Numerical results
illustrate that the HSM converges faster to the exact
critical eigenvalue than those of the other three methods,
which means that the HSM can obviously enhance the
prediction accuracy of the SLD.

(3) The calculation accuracy and efficiency of the HSM are
investigated by using half immersion and full immersion,
which proves that the HSM not only has higher compu-
tational efficiency but also better prediction accuracy
when compared with the classical 1st SDM.
Nevertheless, when compared with the NIM and ASM
methods, the HSM has higher prediction accuracy with
only a slight increase in computational cost.
Consequently, it is concluded that the HSM achieves
satisfactory computational efficiency and accuracy. Due
to the variable, Un − 2 of the Hamming method located
out of the required range into the required range, which
will lead to the computational accuracy of the HSM, can
be reduced. Hence, the performance of the HSM in terms
of accuracy and efficiency needs to be improved.

(4) For the purpose of improving the performance of the
HSM, we use a three-step implicit multistep exponential
fitting method to predict milling stability and then use the
Simpson method to correct this prediction. Three bench-
mark methods are adopted to demonstrate the effective-
ness of the three-step implicit multistep exponential
fitting–Simpson–based method (ISM). Simulation re-
sults indicate that the ISM simultaneously exhibits better
computational efficiency and accuracy under the same
time intervals.
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