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Abstract
Establishing a mathematical model that can reflect the relationship between temperature increase and thermal error during
machining is the core of thermal error compensation technology for CNC machine tools. The collinearity between
temperature-sensitive points and the correlation between temperature-sensitive points and thermal errors are important factors
affecting the prediction accuracy and robustness of the thermal error compensation model. Based on the thermal error measure-
ment experiments of the Leaderway-V450 CNCmachine tool in different periods of the year, the principal component regression
(PCR) modelling algorithm, which can eliminate the collinearity effect, is proposed to establish the thermal error compensation
model of the machine tool on the basis of selecting the temperature-sensitive points by using the correlation coefficient. It is
compared with the newly proposed ridge regression thermal error compensation modelling algorithm. The results show that the
thermal error compensation modelling method proposed in this paper can basically control the Z-direction thermal error of the
CNC machine tool spindle within 10 μmwith only two temperature sensors and has higher engineering practicability. It is found
that the thermal error compensationmodel of machine tools has a jump interval affected by the ambient temperature. This interval
is called the temperature-sensitive interval, and a temperature-sensitive interval subsection point selection algorithm is proposed
to build a subsection model on both sides of the segment point. The results show that the Z-direction thermal error of the spindle
of CNC machine tools can be basically controlled within 5 μm with only two temperature sensors and that the model is highly
robust and has great engineering application value.

Keywords CNC machine tool . Thermal error . Collinearity . Principal component regression algorithm . Temperature-sensitive
interval . Segmentationmodelling

1 Introduction

In precision machining, the thermal error accounts for 40–
70% of the total machine error [1, 2]. The core of thermal error
compensation technology of the CNC machine tool is to es-
tablish a mathematical model that can reflect the relationship
between the temperature increase in the process of machine
tool processing and the thermal error. The collinearity between

temperature-sensitive points and the correlation between
temperature-sensitive points and thermal errors are important
factors affecting the prediction accuracy and robustness of the
thermal error compensation model. In particular, the robust-
ness of prediction reflects the predictive accuracy of the ther-
mal error model under various external conditions. It is an
important index to measure the thermal error compensation
efficiency of machine tools [3]. Generally, in the thermal error
compensation model, the stronger the correlation between the
input temperature and thermal deformation is, the higher the
prediction accuracy of the model [4–6]. However, if there is a
strong collinearity between the input temperatures of the mod-
el, the sensitivity of the model to external interference will be
increased [6, 7], which makes it difficult to maintain good
fitting accuracy under the influence of environmental temper-
ature, rotational speed, and other factors and reduces the pre-
dictive robustness of the model, resulting in the low
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engineering applicability of the compensation model. In short,
to ensure the accuracy and robustness of the multi-input mod-
el, the correlation between the input temperature and thermal
deformation must be guaranteed, and the interference of col-
linearity between the input temperatures on the robustness of
the model prediction must be reduced. Therefore, the estab-
lishment of a thermal error compensation model must solve
two key technologies:

1. Temperature-sensitive point selection technology
2. Thermal error modelling algorithms

In view of the above two key technologies, many scholars
at home and abroad have conducted in-depth research to vary-
ing degrees.

1: Research status of temperature-sensitive point selection
technology:

In recent research on temperature-sensitive point selection
technology [3, 5, 6, 8–16], the Gauss integral, grey system
theory, fuzzy clustering method, and finite element simulation
technology are widely used in temperature-sensitive point se-
lection. Most of these methods are based on the idea of clas-
sification and optimization to select temperature-sensitive
points. The purpose of these methods is to reduce the collin-
earity between temperature-sensitive points and improve the
robustness of the modelling algorithm.

2: Research status of thermal error modelling algorithms:

The recent research on thermal error modelling algorithms [3,
5, 6, 17–27] has mainly focused on modelling the thermal error
by finite element simulation and statistical analysis. The thermal
error model based on statistical analysis is beneficial to real-time
compensation of the thermal error. Minimizing residuals is the
core idea of modelling algorithms, which aim to minimize fitting
errors when modelling data are brought into the model. Around
this idea, multiple regression and neural networks are commonly
used thermal error modelling algorithms.

At present, the commonly used thermal error compensation
model has some shortcomings. Taking the robust thermal error
compensation model proposed byMiao Enming’s team [5] as an
example, the construction process of the model is as follows:
First, the temperature measurement points are classified by fuzzy
clustering, and the temperature sensors with larger collinearity
are classified into one class. Then, the grey relational analysis
method is used to select the temperature measurement points that
have the greatest similarity with the trend of thermal errors in
each category as the temperature-sensitive points. Finally, the
selected temperature-sensitive points are brought into the multi-
variate regression algorithm for modelling. However, in a recent
study [6], Miao’s team found that this method of selecting

temperature-sensitive points leads to a strong collinearity be-
tween the selected temperature-sensitive points. For this reason,
they proposed using a ridge regression algorithm to build a ther-
mal error model to suppress the influence of collinearity between
temperature-sensitive points on the prediction accuracy and ro-
bustness of the thermal error model. However, the ridge regres-
sion thermal error modelling algorithm involves the determina-
tion of ridge parameters, which requires a large amount of data
and is time-consuming.

In this paper, based on the newly proposed correlation coef-
ficient method for temperature-sensitive point selection, the
principal component regression modelling algorithm is used
for thermal error modelling. The purpose of the ridge regression
algorithm is to solve the problem of collinearity between
temperature-sensitive points involved in the establishment of
a thermal error compensation model, and the same problem
can be solved by using a principal component regression algo-
rithm. More importantly, the principal component regression
(PCR) algorithm theory eliminates the effect of collinearity
among independent variables on the robustness of the model
by using PCT to make the principal component variables or-
thogonal (uncorrelated), such that the collinearity between in-
dependent variables obtained by backdating has no effect on the
robustness of the model. There is no need to determine addi-
tional parameters according to a large number of experimental
data to participate in the modelling. Therefore, compared with
the ridge regression modelling algorithm, the proposed algo-
rithm can greatly enhance the practical value of engineering.

At the same time, this paper also finds that the thermal error
compensation model of the machine tool has a jump interval
affected by the ambient temperature, which is named the
temperature-sensitive interval, and further proposes a
temperature-sensitive interval subsection point selection algo-
rithm to model both sides of it. The results show that the
thermal error compensation modelling method proposed in
this paper can basically control the Z-direction thermal error
of the CNC machine tool spindle within 5 μm with only two
temperature sensors and that the model has high robustness,
giving it great engineering application value.

2 Introduction to the experiment

This paper carries out a year-round tracking experiment fo-
cused on the Z-direction thermal error of the machine tool
spindle, which has the greatest variation. The experimental
environment is as follows: indoors, no air conditioning, and
every batch of experiments having different rotational speeds.
A total of 18 batches of experiments were conducted. The
measurement of the thermal error involves the “five-point
method” from the international standard “Test code for ma-
chine tools - Part 3: Determination of thermal effects” (ISO
230-3: 2001 IDT) [28]. At the same time, 10 temperature
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sensors are arranged in the key parts of the machine to collect
temperature values synchronously.

2.1 Measuring device for thermal error

The thermal error measuring device is shown in Fig. 1:
The (1) in the figure is called the “test bar”. It is a metal bar,

and it is fixed to the spindle. The (3) in the figure is the fixture
tool, and it is fixed to the workbench. The (2) in the figure is a
displacement sensor, and it is fixed to the fixture tool. The dis-
placement sensor (2) is used to measure the displacement of the
“test bar” (1) in the Z-direction to measure the thermal error.

2.2 Position of temperature sensor

A total of 10 temperature sensors are arranged in each part of the
machine tool, which are recorded as T1~T10. These 10 temper-
ature sensors are located near the main heat source of the ma-
chine tool, which affects the Z-direction thermal deformation of
the machine tool spindle; for specific details, refer to references
[3, 5, 6, 11, 29]. The positions of these 10 temperature sensors
can reflect the main temperature field of the spindle system,
which has a strong correlation with the thermal error. The pur-
pose of these sensors is to measure the temperature near the main
heat source of the machine tool, which affects the Z-direction
thermal deformation of themachine tool. The temperature sensor

is a DS18B20 digital temperature sensor. The range of the sensor
is − 55~125 °C. The resolution of the sensor is 0.0625 °C. The
accuracy of the sensor can reach ± 0.5 °C (− 10~85 °C). It is
mounted onto the machine tool by magnetic adsorption. The
position of the temperature sensor on the machine is shown in
Figs. 2 and 3 and Table 1.

2.3 Thermal error measurement process

The thermal error measurement process is shown in Fig. 4:

2.4 Test data

The Z-axis thermal error of the Leaderway-V450 CNC machin-
ing centre is studied. The experimental data weremeasured every
3 min with a fixed worktable and idle spindle assumed. Each
experiment lasted more than 4 h. A total of 18 batches of exper-
imental data for the whole year were obtained, and the specific
parameters are shown in Table 2. The Z-direction thermal error of
the machine tool spindle in these 18 batches of experimental data
is shown in Fig. 5.

3 Analysis of the mechanism of eliminating
collinearity by two algorithms

3.1 Collinearity effect mechanism on the accuracy
of the multivariate linear regression model

For multivariate linear regression algorithms:

y ¼ k0 þ k1x1 þ⋯þ kmxm ð1Þ

1

2

3

Fig. 1 Thermal error measuring device

T1~T5

T9

T6

T7

T8

T10

Fig. 2 Temperature sensor placement diagram

Int J Adv Manuf Technol (2020) 106:655–669 657



In formula (1), y denotes the thermal error, and x1, …, xm
represent the temperature-sensitive points brought into the
thermal error compensation model. The model coefficients k
= {k0, k1,…, km} can be estimated by a multiple linear regres-
sion algorithm, as shown in Eq. (2):

k̂
T
¼ XT

c Xc
� �−1

XT
c Y ð2Þ

k̂ is the estimated value of the model coefficient

k, Xc ¼ 1;X0ð Þ ¼
1 x11 x21 … xm1
1 x12 x22 … xm2
⋮ ⋮ ⋮ … ⋮
1 x1n x2n … xmn

0
BB@

1
CCA

Y = y, y is the thermal error observation value synchronized
with the data at the temperature-sensitive point.

Expectation E(k0, k1, k2…) and varianceVar(k0, k1, k2…) of
the estimated independent coefficient are as follows:

E k̂
� �

¼ k ¼ E k0; k1; k2…ð Þ ¼ k0; k1; k2 ð3Þ

Var k̂
� �

¼ Var k0; k1; k2…ð Þ ¼ diag XT
c Xc

� �−1h i
σ ð4Þ

Among them, σ is the sum of squares of the model resid-

uals and σ ¼ ∑
n

i¼1
yi−ŷið Þ2;diag XT

c Xc
� �−1h i

are column vec-

tors composed of principal diagonal elements of matrix

XT
c Xc

� �−1
. From formula (4), it can be seen that the variance

T1

T2

T3
T4

T5

Fig. 3 Detailed positions of T1~T5

Table 1 Position table of temperature sensors

Serial number Placement position

T1~T3 Front bearing of the spindle

T4, T5 Sideway bearing of the spindle

T6 Spindle box

T7 Spindle cylinder base

T8 Spindle motor

T9 Spindle box cavity

T10 Ambient temperature

The spindle moves 
to the measuring 

position and stops 
turning.

The spindle pressure triggers 
the measurement signal, and  
the Z-direction thermal error 

of the machine tool is 
measured and recorded, along 

with the temperature.

The worktable 
performs a 
rectangular 

movement, and the 
spindle rotates.

Fig. 4 Diagram of the thermal error measurement process

Table 2 18 Batches of experimental data for the whole year

Data batch Spindle speed (rpm) Ambient temperature ( °C) Month

K1 2000 6.56~11.00 1

K2 4000 5.31~10.40 12

K3 6000 6.19~9.94 2

K4 2000 13.10~16.00 3

K5 4000 12.90~14.90 3

K6 6000 10.50~13.30 11

K7 4000 14.40~19.30 10

K8 6000 14.40~19.70 10

K9 4000 20.50~23.70 4

K10 4000 20.80~22.00 5

K11 2000 23.60~27.50 6

K12 4000 25.00~29.60 9

K13 6000 25.60~29.60 9

K14 4000 26.90~29.80 7

K15 6000 27.70~31.60 7

K16 4000 28.10~31.10 8

K17 4000 29.20~32.30 8

K18 6000 33.10~37.50 7
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of coefficients estimated in the multivariate linear regression

model is proportional to XT
c Xc

� �−1
principal diagonal ele-

ments. However, the value of XT
c Xc

� �−1
principal diagonal

elements is related to the degree of collinearity between tem-
perature observations at temperature-sensitive points. If the col-
linearity is large, XT

c Xc will approach the singular matrix, that
is, it will become very small, which will increase the value of

XT
c Xc

� �−1
principal diagonal elements, resulting in the estima-

tion of model coefficients easily deviating from the true value,
and the probability of model coefficients being too large will
increase significantly.

3.2 The mechanism of ridge regression to eliminate
collinearity

For the coefficient estimation formula of the multivariate linear
regression model shown in formula (1), the ridge regression
algorithm proposed by Hoerl [30] estimates the coefficients of
the model as follows:

k̂̂
*T ¼ XT

c Xc þ βI
� �−1

XT
c Y ð5Þ

β is the ridge parameter, and β ≥ 0,I is the unit matrix. From
formula (5), we can see that the ridge regression algorithm adds a
normal number matrix βI to XT

c Xc, which means that the ridge
regression algorithm abandons the unbiased estimation of model
coefficients and reduces the degree of XT

c Xc approaching the
singular matrix caused by collinearity. This has been proved by
Hoerl [30]. A. E. Hoerl proved that by reasonably increasing the
ridge parameter β, one can greatly reduce the variance of the
estimated coefficient of themodel coefficient under the condition
that the estimated value of the model coefficient deviates slightly
from the true value, as shown in Fig. 6.

MLR refers to the multivariate linear regression model, and
RR refers to the ridge regression algorithm model. Figure 6
shows a comparison of the probability distribution of the

estimation coefficients between the multivariate linear regres-
sion and ridge regression models when the input variables of
the model are collinear. It can be seen from the graph that
although the ridge regression deviates slightly from the expect-
ed and true values of the model coefficients estimated by mul-
tiple linear regression, the probability of the model coefficients
approaching the true values increases greatly due to the small
variance, which restrains the influence of collinearity on the
model coefficients estimated and improves the prediction accu-
racy and robustness of the model.

3.3 The mechanism of principal component
regression to eliminate collinearity

The core idea of the principal component regression algorithm
is dimensionality reduction, which combines multiple features
in high-dimensional space into a few unrelated principal com-
ponents and contains most variation information in the original
data, thus reducing the multiple collinearity between features.
That is, on the premise of minimizing data loss as much as
possible, after linear transformation and discarding part of the
information, a few new comprehensive variables (principal
component variables) are used to replace the original multi-
dimensional variables.
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Fig. 5 18 Batch machine tool
spindle Z-directional thermal
error
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Fig. 6 Probability distribution of estimated coefficients in multivariate
linear regression and ridge regression models with collinear problems
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Variation information in the above concepts is measured by
variance. The first principal component is a vector in high-
dimensional space, and the sum of squares of distances from
all points to straight lines is the smallest. As shown in Fig. 7,
the sum of squares of distances from all points to the blue line is
the smallest, which represents the first principal component vec-
tor. With the first principal component, the principal component
can be selected backwards, and the principal components are
orthogonal vectors. The yellow line shown in Fig. 7 represents
the second principal component vector. For high-dimensional
space, there can be countless orthogonal vectors of a vector.
After determining the first principal component, the vector
searched by the sum of distance squares in the orthogonal vector
is regarded as the second principal component, and then the
principal component is analogized in turn.

Suppose that for two strongly collinear independent variables
x1 and x2, the measured values of the two variables are drawn.
Taking x1 and x2 as two coordinate axes of the coordinate system,
respectively, and thenmaking scatter plots of x2 changingwith x1
according to the measured data, we find that there is a strong
linear relationship between them. However, if by transformation,
x1 and x2 are transformed into new variables z1 and z2, then the
following holds:

z1 ¼ p11x1 þ p12x2
z2 ¼ p21x1 þ p22x2

�
ð6Þ

In the process of transformation, if the correlation between z1
and z2 is removed, two completely non-collinear independent
variables, i.e., principal component variables, will be obtained.
The effect of collinearity onmodel accuracy can be eliminated by
using principal component variables and regression. In the pro-
cess of transformation, if the correlation between z1 and z2 is
removed, two completely non-collinear independent variables,
i.e., principal component variables, will be obtained. The effect
of collinearity on model accuracy can be eliminated by using
principal component variables and regression. It can also be seen
from Fig. 6 that the information contained in the two principal

component variables is completely different. When z1 increases
gradually, z2 fluctuates only in a small range near zero. Therefore,
z2 is removed from the model, and only the main information z1
is retained. This will help to further eliminate the interference of
noise information in the data to the accuracy of the model. That
is, the principal component regression algorithm is used to obtain
the function expression:

y ¼ k0 þ k1z1 ð7Þ

By introducing formula (6) into formula (7), the following
results are obtained:

y ¼ k0 þ k1 p11x1 þ p12x2ð Þ ð8Þ

Formula (8) still contains independent variables x1 and x2
with collinearity, but it eliminates the influence of collinearity
on the robustness of the model. This is because the so-called
elimination of collinearity does not mean eliminating the col-
linearity between independent variables, such that the inde-
pendent variables in the model do not have collinearity, but
means making the collinearity between independent variables
in the model have no effect or no obvious influence on the
robustness of the model.

The effect of collinearity on the robustness of the model
occurs in the least squares step:

k0
k1
⋮
kl

0
B@

1
CA ¼ XT

c Xc
� �−1

XT
c Y ð9Þ

For the PCR algorithm, the only step that involves least
squares is that involving finding the pre-principal component
coefficients:

b1
⋮
bk

0
@

1
A ¼ ZTZ

� �−1
ZTy* ð10Þ

y∗is a column vector consisting of all measurements of
variable y∗.

y* ¼ y=STDy ð11Þ

STDy is the standard deviation of y.

Z ¼ Z1Z2⋯Zkð Þ k ¼ 1; 2;… ð12Þ

Zk is a column vector consisting of all measurements of
variable Zk.

The principal component variables have become orthogo-
nal (irrelevant) through the COV matrix. Therefore, although
the final modelling results obtained by principal component
transformation contain independent variables x1and x2 with
coefficients not equal to 0, the collinearity between x1and x2
has no effect on the robustness of the model.

0 x

y

Z1

Z2

Fig. 7 Principal component regression algorithms
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4 Comparing and analysing the accuracy
of the two algorithms in establishing models

4.1 Selection of temperature-sensitive points
by correlation coefficient method

Liu Hui’s article [6] has proved that when using an algorithm
that can effectively eliminate the collinearity effect, the
temperature-sensitive points can be selected with the correla-
tion coefficient method, which can reduce the change in
temperature-sensitive points and make the model more robust
and more accurate in prediction. In this paper, the correlation
coefficient method is used to select temperature-sensitive
points. The results of selecting temperature-sensitive points
for the 18 batches of experimental data covering the whole
year are shown in Table 3.

The temperature-sensitive points selected by the correlation
coefficient have little variation, which indicates that the
temperature-sensitive points and thermal errors do have a
long-term and stable strong correlation.

4.2 Machine tool thermal error compensation model
based on ridge regression

In this paper, the method of selecting ridge parameters men-
tioned in Liu Hui’s article [6] is used, and the β value of ridge
parameters is gradually increased from β=0 to β=25 for the
experimental data covering the whole year. The prediction
accuracy and robustness of the model with different β values
are analysed to find the best ridge parameters for modelling.
Finally, the optimum ridge parameter is determined to be β =
20, and the model R-M1~R-M18 is established based on the
18 batches of experimental data. Due to limited space, only
some models are listed:

R−M1 : y ¼ 2:04þ 2:10x1þ 1:78x2
⋮

R−M18 : y ¼ 2:44þ 3:97x1þ 1:41x2

The standard deviation of the prediction residual of the 18
batch models based on the ridge regression algorithm is
shown in Fig. 8 (in which fitting is regarded as the prediction
of the model itself).

4.3 Establishment of thermal error compensation
model of machine tool based on principal component
regression

The temperature-sensitive points selected by correlation coef-
ficients are brought into the principal component regression
(PCR) algorithm for modelling, and the model P-M1~P-M18
is established based on the 18 batches of data. Due to limited
space, only some models are listed: Ta
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P−M1 : y ¼ 0:61þ 2:10x1þ 2:07x2
⋮

P−M18 : y ¼ 0:66þ 3:16x1þ 2:91x2

The standard deviation of the prediction residual of the 18
batch models based on the principal component regression
algorithm is shown in Fig. 9 (in which fitting is regarded as
the prediction of the model itself

4.4 Comparison and analysis of the accuracy
of the two models

The correlation coefficient method is used to select the
temperature-sensitive points for the 18 batches of experimen-
tal data. The ridge regression algorithm and principal compo-
nent regression algorithm are used to build two models. The
accuracy analysis of these two models is shown in Figs. 10
and 11.

Among them, S is the fitting standard deviation of the
model, which is used to characterize the fitting accuracy of
the model. The smaller the value is, the higher the fitting
accuracy of the model. Sm is the mean of the prediction stan-
dard deviation of the model for other batch data, which is used
to characterize the prediction accuracy of the model. The

smaller the value is, the higher the prediction accuracy of the
model. Sd is the standard deviation of the standard deviation
for the prediction of other batches of data. It is used to char-
acterize the dispersion degree of the prediction accuracy of the
model. The smaller the value is, the higher the robustness of
the model.

The formulas for Sm and Sd are as follows:

Sm ¼ ∑
17

i¼1
Sri

� �
=17 ð13Þ

Sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
17

i¼1`
Sri−Smð Þ2


 �
=16

s
ð14Þ

From Figs. 10 and 11, it can be seen that under the premise
of selecting temperature-sensitive points by the correlation
coefficient method, the thermal error compensation model
established by the principal component regression algorithm
has lower fitting accuracy, prediction accuracy, and model
robustness than the those of the model established by the ridge
regression algorithm. However, it still ensures that the Z-
direction thermal error of the CNC machine tool spindle can
be basically controlled within 10 μm with two temperature
sensors [6]. More importantly, the completeness of the
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principal component regression modelling algorithm theory
makes it unnecessary to determine additional parameters
based on the experimental data covering the whole year.
Therefore, compared with the ridge regression modelling al-
gorithm, the proposed algorithm can greatly enhance the prac-
tical value to engineering.

5 Study on temperature-sensitive intervals
of the two models

Further analysis of the two models reveals that the thermal
error compensation model established by the two algorithms
combined with the 18 batches of data has a jump interval
affected by the ambient temperature. In this paper, the interval
is called a temperature-sensitive interval, and a temperature-
sensitive interval subsection point selection algorithm is pro-
posed to select subsection points for subsection modelling.

5.1 Temperature-sensitive intervals of the twomodels

Draw the data in Fig. 8 as a three-dimensional model,
as shown in Fig. 12, and draw the effect of the ambient

temperature on the data in Fig. 8, as shown in Fig. 13.
An analysis of Figs. 12 and 13 shows that for the 18
batch models based on the ridge regression algorithm,
the low-temperature section (R-M1~R-M10) predicts the
low-temperature section and the high-temperature sec-
tion (R-M11~R-M18) predicts the high-temperature sec-
tion, i.e., the mutual prediction effect between the same
temperature sections is better, the average prediction ac-
curacy of the low-temperature section is 4.72 μm, and
the average prediction accuracy of the high-temperature
section is 4.53 μm. The average prediction accuracy of
the high-temperature section and the low-temperature
section reached 9.22 μm (low-temperature section pre-
dicted high-temperature section) and 13.09 μm (high-
temperature section predicted low-temperature section),
respectively, and the prediction accuracy decreased
sharply.

Similarly, the data in Fig. 9 are drawn as a three-
dimensional model, as shown in Fig. 14, and the effect of
the ambient temperature on the data in Fig. 9 is shown in
Fig. 15. An analysis of Figs. 14 and 15 shows that for the 18
batch models based on the principal component regression
algorithm, the low-temperature section (P-M1~P-M10)
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predicts the low-temperature section and the high-temperature
section (P-M11~P-M18) predicts the high-temperature sec-
tion, i.e., the mutual prediction effect between the same tem-
perature sections is better. The average prediction accuracy of
the low-temperature section is 5.22 μm and that of the high-
temperature section is 4.99 μm. The average prediction accu-
racy of the high-temperature section and the low-temperature
section reached 10.18 μm (low-temperature section predicts
high-temperature section) and 15.73 μm (high-temperature
section predicts low-temperature section), respectively, and
the prediction accuracy decreased sharply.

The above shows that there is a sudden change in the ther-
mal error characteristics of machine tools due to the change in
ambient temperature, which will seriously affect the accuracy
of the thermal error compensation. The temperature range
from low-temperature to high-temperature (R(P)-M10~R(P)-
M11) is named the temperature-sensitive interval.

5.2 Segmented point selection algorithms
for temperature-sensitive interval

The focus here is on the abrupt change in the thermal error
characteristics caused by the change in ambient temperature of
the machine tools. To improve the accuracy of the thermal
error compensation, a piecewise point selection algorithm in
a temperature-sensitive interval is proposed to select piece-
wise points for piecewise modelling. The flow chart of the
temperature-sensitive section point selection algorithm is
shown in Fig. 16.

The specific steps of the algorithm are as follows:

1. First, the prediction accuracy tables of the thermal error
compensation model for other batch data are obtained,
and the Kolmogorov-Smirnov test of a single sample is
used to verify whether the sequence of prediction
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accuracy of each model for other batch data obeys the
normal distribution or another distribution.

The K-S test of a single sample mainly examines the max-
imum absolute value

Dmax ¼ max Sn xð Þ−F0 xð Þj j ð15Þ
of the empirical distribution function and theoretical distribu-
tion function. In formula (11), Sn(x) is the cumulative proba-
bility distribution function of random sample observations,
i.e., the empirical distribution function with a sample size n;
F0(x) is a specific cumulative probability distribution func-
tion, i.e., the theoretical distribution function. If Sn(x)
and F0(x) are very close to each x value, the fitting degree
between the empirical distribution function and the theoretical
distribution function is very high. It is reasonable to think that
the sample data come from the population subject to the the-
oretical distribution. The steps of the single-sample K-S test
are as follows:

(1) Hypothesis:

H0 : Sn xð Þ ¼ F0 xð Þ;H1 : Sn xð Þ≠F0 xð Þ: ð16Þ

(2) Calculate the statistic Dmax.
(3) According to the given significance level α and the

amount of sample data n, the critical value Dα of the
single-sample K-S test is determined.

(4) If Dmax < Dα, H0 cannot be rejected at the level of sig-
nificance of α; otherwise, H0 can be rejected.

Because the data in this paper obey a normal distribution
through the K-S test of a single sample, the following are
illustrated with a normal distribution as an example.

2. The confidence interval of σ2 is derived from the param-
eter estimation of a single normal population when μ is
unknown.
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The parameters of the normal distribution are obtained
from the unbiased estimation x of μ.When μ is unknown,
the random variable

χ2 ¼ n−1ð ÞS2=σ2∼χ2 n−1ð Þ ð17Þ

Then, the confidence interval of σ with a confidence coef-

ficient of 1 − α is obtained as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−1ð Þ
χ2
α=2

n−1ð Þ

r
S;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1ð Þ

χ2
1−α=2 n−1ð Þ

r
S

� �
,

and then the normal distribution x~N(μ, σ2) is obtained by
unbiased estimation of x of μ.

3. According to the obtained normal distribution, the predic-
tion accuracy of the thermal error compensationmodel for

the remaining batches of data falls outside the 3σ range of
the normal distribution. If it is outside the scope, this point
is marked; otherwise, it is not marked. When all the ther-
mal error compensationmodels have completed the above
steps, the judgement table of the modelling points in the
temperature-sensitive interval can be obtained.

4. According to the judgement table, the jump threshold is
selected according to the actual engineering needs, and
the modelling points of the temperature-sensitive interval
are obtained.

According to the actual engineering needs, the jump thresh-
old is 90%, and the confidence is 99%. The judgement result
of temperature-sensitive interval segmentation modelling
points based on the ridge regression algorithm for the 18 batch
models is shown in Fig. 17. The judgement result of the
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Fig. 16 Flow chart of the
temperature-sensitive interval
subsection point selection
algorithm
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temperature-sensitive interval segmentation modelling points
based on the 18 batch models established by the principal
component regression algorithm is shown in Fig. 18:

In Figs. 17 and 18, the black blocks represent the emer-
gence of the segmentation points for the prediction accuracy
of the data of this line using the thermal error compensation
model of this row. In contrast, the white blocks indicate that
there are no segmentation points in the prediction accuracy.

From Figs. 17 and 18, it can be seen that the prediction
accuracy of the high-temperature segment (R(P)-M11~ R(P)-
M18) model for batches of data above 24 °C is improved from
24 °C (Batch 11). Most of the low-temperature segment (R(P)-
M1~ R(P)-M10) that models the prediction accuracy of batch
data above 24 °C (11th data batch) deteriorates, that is, 94.4%
of the data at 24 °C have jumped, which is larger than the
selected threshold. Therefore, 24 °C is selected as the

modelling point of the temperature-sensitive interval. The
mean predictive accuracy of the two models in the high-
temperature section is 3.75 μm (ridge regression) and
4.18 μm (principal component), respectively, at 24 °C (11th
batch). The mean prediction accuracy of the two models in the
low-temperature section is 4.97 μm (ridge regression) and
5.75 μm (principal component). It can be concluded that the
prediction accuracy of the high-temperature section model is
better than that of the low-temperature section model at 24 C
(11th batch); thus, the high-temperature section model is
adopted at 24 C (11th batch).

5.3 Piecewise modelling of temperature-sensitive
interval

According to the temperature-sensitive interval subsec-
tion point selection algorithm, the subsection point is 24
C (11th batch of data). Based on the ridge regression
algorithm and the temperature-sensitive interval subsec-
tion modelling, the Z-direction thermal error compensa-
tion model of the machine tool spindle is established as
follows:

y ¼ 3:13þ 2:75x1þ 1:39x2 T < 24°C
2:44þ 3:97x1þ 1:41x2 T ≥24°C

�
ð18Þ

The model is recorded as R-M0.
The Z-direction thermal error compensation model of the

machine tool spindle is based on principal component regres-
sion and piecewise modelling of the temperature-sensitive in-
terval, which is established with 24 C (11th batch of data) as
the demarcation point as follows:
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Fig. 18 Temperature-sensitive
interval segmentation modelling
point judgement result based on
18 batch models established by
principal component regression
algorithm
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y ¼ 0:87þ 2:24x1þ 2:22x2 T < 24°C
0:55þ 3:02x1þ 2:78x2 T ≥24°C

�
ð19Þ

The model is recorded as P-M0.
The prediction accuracy of the R-M0 and P-M0 models for

the 18 batches of data covering the whole year is shown in
Table 4. The prediction accuracy analysis of the R-M0 and P-
M0 models is shown in Table 5.

It can be seen that for the phenomenon of the temperature-
sensitive interval existing in CNC machine tools, the
temperature-sensitive interval modelling method can be used
to achieve the thermal error of the CNC machine tool spindle
Z to 5 μm with two temperature sensors. The piecewise
modelling technology of the temperature-sensitive interval
can improve the prediction accuracy of the correlation coeffi-
cient selection temperature-sensitive point, the machine tool
thermal error compensation model based on the ridge regres-
sion algorithm, and the machine tool thermal error compensa-
tion model based on principal component regression by a
factor of approximately two. Moreover, it can reduce the dis-
persion degree of the prediction accuracy of the model, im-
prove the prediction robustness of the model throughout the
year, and make the prediction accuracy of the model change
within ± 2 μm. The piecewise modelling technology of
temperature-sensitive intervals has great engineering applica-
tion value.

6 Conclusions

1. This paper is based on a Z-direction thermal error exper-
iment of the idle spindle of the Leaderway-V450 NC ma-
chining centre under different conditions (different rota-
tional speeds and different ambient temperatures). On this
basis, the PCR algorithm is used to establish the Z-

direction thermal error compensation model of machine
tools on the premise of using the correlation coefficient
method to select temperature-sensitive points, and the
model is compared with the newly proposed ridge regres-
sion algorithm. In this paper, the mechanism of ridge re-
gression and principal component regression to eliminate
collinearity is analysed. It is proved that the PCR model-
ling theory does not need to determine additional param-
eters based on experimental data covering the whole year.
Mathematical analysis of the two models is carried out
based on experimental data covering the whole year.
The results show that the Z-direction thermal error of the
CNC machine tool spindle can be basically controlled
within 10 μm by using a PCR modelling algorithm with
only two temperature sensors. Therefore, the PCRmodel-
ling algorithm has stronger engineering practical value.

2. In this paper, the ridge regression model and the principal
component regression model are further analysed based
on experimental data covering the whole year. It is found
that the Z-direction thermal error compensation model of
machine tools established by the two algorithms has a
jump range affected by the ambient temperature. The in-
terval is called the temperature-sensitive interval, and a
piecewise point selection algorithm for the temperature-
sensitive interval is proposed to select piecewise points
for piecewise modelling.

3. It is found that the Z-direction thermal error of the CNC
machine tool spindle can be basically controlled within
5 μm with only two temperature sensors by using the
piecewise modelling technology of the temperature-
sensitive interval. The piecewise modelling technology
of the temperature-sensitive interval can improve the pre-
diction accuracy of the machine tool thermal error com-
pensation model based on the ridge regression algorithm
and the machine tool thermal error compensation model
based on principal component regression by approximate-
ly two times. Moreover, it can reduce the dispersion de-
gree of the prediction accuracy of the model, improve the
prediction robustness of the model over the course of a
year, and keep the prediction change of the model over the
whole year to within ± 2 μm. This method has great en-
gineering application value.

Table 5 Precision
analysis of R-M0 and P-
M0 models

Model Sm (μm) Sd (μm)

R-M0 4.12 1.15

P-M0 4.60 1.40

Table 4 Prediction accuracy of
R-M0 and P-M0 for 18 batches of
data covering the whole year
(μm)

R-M1 R-M2 R-M3 R-M4 R-M5 R-M6 R-M7 R-M8 R-M9

R-M0 4.21 4.75 5.36 2.95 4.20 4.82 4.52 6.47 4.55

P-M1 P-M2 P-M3 P-M4 P-M5 P-M6 P-M7 P-M8 P-M9

P-M0 4.38 5.20 6.06 3.57 4.90 5.87 5.12 7.80 4.65

R-M10 R-M11 R-M12 R-M13 R-M14 R-M15 R-M16 R-M17 R-M18

R-M0 2.16 3.60 3.71 4.70 2.38 3.48 5.73 2.69 3.79

P-M10 P-M11 P-M12 P-M13 P-M14 P-M15 P-M16 P-M17 P-M18

P-M0 2.19 3.42 3.87 4.93 2.75 3.81 6.55 3.38 4.27
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4. “Robust Machine Tool Thermal Error Compensation
Modelling Based on Temperature-Sensitive Interval
Segmentation Modelling Technology” can basically con-
trol the Z-direction thermal error of the CNCmachine tool
spindle within 5 μm with only two temperature sensors,
and it does not require determining additional parameters
according to the annual experimental data to participate in
the modelling; thus, it has great engineering application
value.

5. The predictive effect of “Robust Machine Tool Thermal
Error Compensation Modelling Based on Temperature-
Sensitive Interval Segmentation Modelling Technology”
on the thermal error is validated only when the machine
tool is idle, and the compensation effect of the thermal
error in the tangent state requires further validation.
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